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Abstract: Energy storage technology has become critical for supporting China’s large-scale access
to renewable energy. As the interface between the battery energy storage system (BESS) and power
grid, the stability of the PCS (power conversion system) plays an essential role. Here, we present a
topology of a 10 kV high-voltage energy storage PCS without a power frequency transformer for the
establishment of a large-scale energy storage system. We analyzed the energy storage converter’s
mechanism and characteristics and also introduced the power-control strategy of the HVAC (high-
voltage AC) and LVDC (low-voltage DC) converter module. On this basis, a 10 kV/1 MW high-
capacity PCS prototype was designed. Additionally, by simulation and experiment, we proved the
correctness of the PCS scheme. The topology and control strategy proposed in this paper can provide
cases and technical support for the subsequent promotion and application of new energy and power
station energy storage.

Keywords: high-frequency isolation; power conversion system; DAB; power decoupling

1. Introduction

Driven by the goal of “carbon peaking and carbon neutralization”, renewable energy
technologies such as PV (photovoltaic) and wind power are developing rapidly. It is
estimated that in 2030, the installed capacity of non-aqueous renewable energy will account
for 43% of China’s total installed capacity. However, renewable energy is random, volatile
and uncertain. This would seriously affect the safety and stability of the power grid
operation. Energy storage can solve the power grid’s requirements of transient stability
and short-term power balance and can be used for long-term power regulation. It can
effectively deal with the systemic peak valley regulation and blocking of transmission and
distribution lines [1,2].

A PCS can schedule and support the bidirectional flow of electric energy on demand
under different operation modes, which is the core equipment supporting the operation of
energy storage [3].

Large-scale energy storage is favorable currently. The capacity expansion needs
to be realized by the parallel connection of multiple low-voltage small-capacity PCSs
and connected to a medium- or high-voltage power grid through the transformer. The
connection would lead to the problems of low efficiency, high cost and unnecessary land
occupation. In addition, the parallel connecting of multiple PCSs also has the stability risk
of circulating current and resonance [3,4]. Therefore, the key research directions of energy
storage PCSs are high-voltage access, single-machine large capacity and modularization.

Some scholars have proposed cascaded modular topology in terms of topology [5,6].
The cascaded H-bridge (CHB) converter obtains the most attention and applications due
to its good performance. CHB is challenging to adapt to multiple types of energy storage
batteries, and the double fundamental frequency fluctuation in the BESS will reduce the
battery life [7–9]. The topology composed of an H-bridge and DC/DC converter, such
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as a non-isolated buck-boost circuit, can suppress the BESS’s double frequency power
fluctuation. The adaptability of CHB to BESS has also been improved. However, the
battery pack is in a high-voltage suspension state without electrical isolation; its common-
mode current causes electromagnetic compatibility problems and significantly increases
the insulation cost. The topology composed of an H-bridge and isolated DC/DC converter
is suitable for accessing a low-voltage battery pack [10–12]. The system is safer and more
flexible, which covers an in-demand research issue in recent years [13–20]. For the PV grid-
connected system, references [19,20] propose a topology based on isolated DC converters
to meet the insulation requirements of photovoltaic systems connected to medium-voltage
power grids. For the energy storage system, a high-frequency isolated topology is proposed,
and the SiC-MOSFET module and prototype are developed [21].

Regarding the device research and development, in 2014, Professor Hirofumi Akagi
of the Tokyo Institute of Technology proposed a modular multilevel cascade converter
(MMCC) topology of high-voltage direct hanging energy storage system and developed
a 6.6 kV/500 kW SSBC (single-star bridge-cell)-based MMCC for BESSs [18]. In China,
Shanghai Jiaotong University and China Southern Power Grid proposed a transformer-less
high-voltage PCS in 2014. A set of 10 kV/2 MW/2 MWh device prototypes has been
developed and applied in Baoqing energy storage power station of the China Southern
Power Grid [22]. In 2022, the South China University of Technology and State Grid
Corporation of China proposed a PCS topology with an online bypass function based on
H-bridge. They developed a 10 kV/2 MW medium-voltage direct-hanging energy storage
converter [23]. The above prototypes adopt non-isolated topology or power frequency
isolated topology.

To sum up, the topology generally adopts the non-isolation structure based on MMC
topology and CHB topology, as well as the isolation structure using an H-bridge and high-
frequency transformer. The former has a higher applicable voltage level, while the latter
has certain advantages in insulation cost, device volume and safety. It can be popularized
and applied to PV, wind power grid connection, power grid peak shaving and frequency
modulation, electric vehicle V2G [24], etc.

On the basis of the literature [21], this paper proposes a high-frequency isolated energy
storage PCS, which does not need a power-frequency isolation transformer. Cascaded
H-bridge converter topology, in comparison, can effectively reduce insulation costs and
increase system security. Firstly, the proposed topology’s working principle and converter
characteristics are analyzed. Additionally, the power control strategy of the HVAC (high-
voltage AC) and LVDC (low-voltage AC) converter modules are introduced. Finally, the
application of SiC-MOSFET power devices is explored, a 10 kV/1 MW high-capacity PCS
prototype is built, and the simulation and experimental results show the feasibility and
effectiveness of the proposed topology and control strategy.

The topology and control strategy of the high-voltage energy storage converter with
higher energy efficiency and smaller volume are proposed, which can provide cases
and technical support for the promotion and application of subsequent new energy and
power station energy storage, so as to promote the development of the large-scale energy
storage industry.

2. Main Circuit Topology and Working Principle of PCS
Main Circuit Topology

Figure 1 shows the topology of a high-frequency isolated large-capacity energy storage
system. The PCS adopts the star-connection mode, A,B,C represents the three phases of the
power grid, and each phase is cascaded by multiple power modules. Each power module is
composed of an H-bridge power converter, bidirectional DAB (dual active bridge) DC/DC
conversion unit, battery pack and supporting drive circuit, capacitor, voltage equalizing
resistance, etc. HVAC modules are connected in series, and some LVDC modules are
connected to batteries in groups, and the reactor is connected in series to realize filtering.



Energies 2022, 15, 5272 3 of 18

Energies 2022, 15, x FOR PEER REVIEW 3 of 18 
 

 

modules are connected to batteries in groups, and the reactor is connected in series to 

realize filtering. 

B
at
te
ry

H-bridge

B
at
te
ry

B
at
te
ry

H-bridgeH-bridge

HFT

A

B
at
te
ry

H-bridge

B
at
te
ry

B
at
te
ry

H-bridgeH-bridge

HFT

B

B
at
te
ry

H-bridge

B
at
te
ry

B
at
te
ry

H-bridgeH-bridge

HFT

C

Usa
Usb
Usc

 

Figure 1. Topology of high-frequency isolated energy storage converter. 

The DAB module is the primary function module of the topology, which realizes the 

DC bidirectional converter and isolation, as shown in Figure 2. Each DAB module consists 

of two sets of H-bridges, an HFT (high-frequency transformer), and corresponding capac-

itor components C1 and C2 [21]. The leakage inductance of HFT is the key to realizing the 

ZVS (Zero Voltage Switch) under phase-shifting control [25,26]. In Figure 2, Udc1 and Udc2 

are DC voltages at both ends of the converter, Uac1 and Uac2 are the HFT primary and sec-

ondary AC voltages, iT1 and iT2 are the HFT primary and secondary AC currents, n = N1/N2 

represents the transformation ratio of HFT, and S11–S24 are power electronic devices. 

21S

22S

23S

24S

1C
2C

1 2:N N

11S

12S

13S

14S

HFT

dc1U
dc2U

B1i B2i

T1i
ac1u

ac2uT2i

HB1 HB2  

Figure 2. DAB topology. 

The DAB module adopts single-phase-shift control mode, and the phase angle of the 

HB2 driving signal is φ degrees later than HB1. The bidirectional energy flow of HB1 and 

HB2 can be realized by adjusting the polarity of the phase-shift angle φ. 

When the voltage phase of the bridge arm is ahead of the AC power supply, the en-

ergy storage system is in discharge operation state. On the contrary, when the voltage 

phase of the bridge arm lags behind the voltage phase of the AC power grid, the energy 

storage is in charging state. The charge and discharge power is determined by the phase-

shift angle φ [21]. 

The equivalent circuit of DAB is shown in Figure 3, wherein Udc1 is the DC-side volt-

age of H-bridge on the grid side; Udc2 is the DC voltage at the battery side; uac1 and uac2 

represent HB1 and HB2 high-frequency AC voltage, respectively; L represents HFT leak-

age inductance reduced to Udc1 side; and iL represents HFT high-frequency current. 

Figure 1. Topology of high-frequency isolated energy storage converter.

The DAB module is the primary function module of the topology, which realizes the
DC bidirectional converter and isolation, as shown in Figure 2. Each DAB module consists
of two sets of H-bridges, an HFT (high-frequency transformer), and corresponding capacitor
components C1 and C2 [21]. The leakage inductance of HFT is the key to realizing the ZVS
(Zero Voltage Switch) under phase-shifting control [25,26]. In Figure 2, Udc1 and Udc2 are
DC voltages at both ends of the converter, Uac1 and Uac2 are the HFT primary and secondary
AC voltages, iT1 and iT2 are the HFT primary and secondary AC currents, n = N1/N2
represents the transformation ratio of HFT, and S11–S24 are power electronic devices.
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Figure 2. DAB topology.

The DAB module adopts single-phase-shift control mode, and the phase angle of the
HB2 driving signal is ϕ degrees later than HB1. The bidirectional energy flow of HB1 and
HB2 can be realized by adjusting the polarity of the phase-shift angle ϕ.

When the voltage phase of the bridge arm is ahead of the AC power supply, the energy
storage system is in discharge operation state. On the contrary, when the voltage phase of
the bridge arm lags behind the voltage phase of the AC power grid, the energy storage is
in charging state. The charge and discharge power is determined by the phase-shift angle
ϕ [21].

The equivalent circuit of DAB is shown in Figure 3, wherein Udc1 is the DC-side
voltage of H-bridge on the grid side; Udc2 is the DC voltage at the battery side; uac1 and
uac2 represent HB1 and HB2 high-frequency AC voltage, respectively; L represents HFT
leakage inductance reduced to Udc1 side; and iL represents HFT high-frequency current.
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The high-frequency AC part can be expressed as:

diL(t)
dt

=
uac1(t)− uac2(t)

L
(1)

Ths represents half a switching cycle:

Ths =
1
2

Ts (2)

Then the average transmission power in one switching cycle Ts is:

P =
1
Ts

∫ Ts

0
uac1(t)iL(t)dt =

nUdc1Udc2 ϕ(1− |ϕ|)Ths
L

(3)

where n is the HFT transformation ratio and ϕ is the phase-shift angle, assuming that:

k =
Udc1

nUdc2
(4)

Then, the maximum current of the transformer is:

imax =
nUdc2
4 fsL

(2ϕ + k− 1) (5)

The switching frequency is:

fs =
1

2Ths
(6)

In order to analyze the influencing factors and change the trend of transmission power,
PB is taken as the reference value of power to obtain the unit value P′ of transmission power,
and the following formula is obtained:

PB =
nUdc1Udc2

8 fsL
(7)

P′ =
P
PB

= 4ϕ(1− ϕ) (8)

Equation (8) shows that the transmission power changes with the change in ϕ, and
the relationship between transmission power and ϕ is shown in Figure 4. It can be seen
that when ϕ is 0.5, the power reaches its peak.
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3. PCS Control Strategy
3.1. HVAC Port Control Strategy

A power decoupling control strategy is proposed for the HVAC port of the PCS; the
phase voltages (usag, usbg and uscg) of the PCS can be expressed as:

us = u+
s + u−s + uth

s = u+
s + u−s + ∑

h = 6k± 1
k = 1, 2, 3 · · ·

uh
s (9)

In Equation (9), u+
s and u−s represent the positive sequence and negative sequence com-

ponents of the fundamental wave, respectively, uth
s is the high-order harmonic component,

h = 6k ± 1 is the harmonic number, and k is a positive integer with the value of 1, 2, or 3.
The input current of the PCS can be expressed as:

i = i+ + i− + ith = i+ + i− + ∑
h = 6k± 1

k = 1, 2, 3 · · ·

ih (10)

The three-phase average active power of the HVAC port can be expressed as:

¯
P =

[
Pa Pb Pc

]T
=

¯
P
+

+
¯
P
−
=

¯
P
+

p +
¯
P
+

n +
¯
P
−

n +
¯
P
−

p (11)

In Equation (11), superscript “+” and “−” represent the positive sequence current
component and negative sequence current component, respectively, and subscripts p
and n represent the positive sequence voltage component and negative sequence voltage

component, respectively. Taking
¯
P
+

p as an example, it represents the instantaneous active
power flow generated by positive sequence current i+ and positive sequence voltage u+

s .
Each power component can be expressed as voltage and current components in the dq
coordinate system:

¯
P
+

p =

 P+
pa

P+
pb

P+
pc

 =


(

U+
sd I+d + U+

q I+q
)

/2(
U+

sd I+d + U+
sq I+q

)
/2(

U+
sd I+d + U+

sq I+q
)

/2

 (12)

¯
P
+

n =

 P+
na

P+
nb

P+
nc

 =
1
4

 2U−sd 2U−sq
−U−sd −

√
3U−sq U−sq −

√
3U−sd

−U−sd +
√

3U−sq U−sq +
√

3U−sd

[ I+d
I+q

]
(13)
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¯
P
−

n =

 P−na

P−nb

P−nc

 =


(

U−sd I−d + U−sq I−q
)

/2(
U−sd I−d + U−sq I−q

)
/2(

U−sd I−d + U−sq I−q
)

/2

 (14)

¯
P
−

p =

 P−pa

P−pb

P−pc

 =
1
4

 2U+
sd −2U+

sq
−U+

sd −
√

3U+
sq U+

sq −
√

3U+
sd

−U+
sd +
√

3U+
sq U+

sq +
√

3U+
sd

[ I−d
I−q

]
(15)

where the subscripts sd and d represent d-axis components and the subscripts sq and q
represent q-axis components.

The average value of DC bus voltage in the phase is called cluster voltage, and the
average cluster voltage represents the average value of all DC bus voltages of three phases,
and the distribution law of input active power can be obtained. For the average active

power
¯
P
+

p and
¯
P
−

n of cluster balance, each element is equal, and adjusting the positive
sequence or negative sequence current will not affect the performance of phase-to-phase

active power balance; for the cluster unbalanced average active power
¯
P
+

n and
¯
P
−

p , the
sum of each element is zero, and the average cluster voltage has nothing to do with it. By
adjusting the positive sequence or negative sequence current, the active power of each
phase can be controlled independently, so as to control the cluster voltage and improve its
balance performance.

The average cluster voltage of CHB fluctuates under the influence of active power
flow, which can be stabilized by balancing the three-phase total input and output active
power. The three-phase total input active power of CHB can be expressed as:

Pin = P+
p + P−n =

(
u+

s
)T · i+ +

(
u−s
)T · i− (16)

Since u−s is generally small, let i− = 0. In Equation (16), the positive sequence active
current to be injected is:

I+d
∗ =

2P+∗
p

3U+
sd

(17)

In addition, the DC side of CHB is satisfied by KCL (Kirchhoff’s current law):

ic = Cdc
duc

dt
= ici − ico (18)

wherein uc, ic, ici and ico are the average values of DC side voltage and current of all sub
modules of MVAC port, i.e.,

uc =
1

3n

3
∑

m=1

n
∑

j=1
ucmj, ic = 1

3n

3
∑

m=1

n
∑

j=1
icmj

ici =
1

3n

3
∑

m=1

n
∑

j=1
icimj, ico = 1

3n

3
∑

m=1

n
∑

j=1
icomj

(19)

Assuming that the DC bus of each module of CHB has equal voltage, there is:

ici =
Pin

3n · uc
(20)

ico =
Pout

3n · uc
(21)

The three-phase total active power control loop can be obtained as shown in Figure 5a,
and the single-phase average active power control block diagram can be found in Figure 5b,
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wherein, Pout is the active power at the DC side of CHB, P out − P −n is the power feedfor-
ward quantity, and G+

iloop(s) is the current inner loop transfer function, the superscript *
represents the instruction reference value.
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The LVDC port works in constant current mode, and its DC side meets the following 

relationship: 
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2
c2 dc 2 hf2
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wherein UP2 is the LVDC port voltage, U2 is the voltage at both ends of the LVDC DC 
support capacitor, LP2 is the LVDC port inductance, RP2 is the LVDC port line resistance, 
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Figure 5. Average active power control block diagram of HVAC: (a) Three-phase total average active
power control block diagram; (b) single-phase average active power control block diagram.

3.2. LVDC Port Control Strategy

The LVDC port works in constant current mode, and its DC side meets the following
relationship:

UP2 = U2 + LP2
di2
dt

+ RP2i2 (22)

ic2 = Cdc
dU2

dt
= i2 − ihf2 (23)

wherein UP2 is the LVDC port voltage, U2 is the voltage at both ends of the LVDC DC
support capacitor, LP2 is the LVDC port inductance, RP2 is the LVDC port line resistance,
and i2 is the LVDC port input current.

The DC side current ihf2 of the LVDC port can be expressed as:

ihf2 = −U1D1_2

2 fsL1_2
(24)

D1_2 = (d2 − d1)(1− |d2 − d1|) (25)

D1_2 is shown in Equation (25), where d1 and d2 represent the H-bridge phase-shift
ratio of the HVAC and LVDC, and L1_2 is the equivalent phase-shifting inductance between
the HVAC and LVDC.
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According to the above relationship, the small signal mathematical model of the
system can be obtained as follows:

îhf2 = −
(

U∗1 D̂1_2
2 fs L1_2

+
D∗1_2Û1
2 fs Lk_2

)
î2(s) = Gior(s) · îhf2(s)

Gior(s) = 1
CdcLP2s2+CdcRP2s+1

(26)

The current control block diagram of the LVDC port can be obtained from the small
signal mathematical model, as shown in Figure 6, in which GPIi(s) is the current controller
and Gd(s) is the delay link.

GPIi(s) = KPi + KIi/s (27)

Gd(s) =
1

1 + (Tsd + 0.5Thd)s
(28)

K2 =
U∗1 U2

2 fsL1_2
(29)
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4. Simulation Verification 

Figure 6. Power control block diagram of LVDC.

The transfer function of the above current control loop can be expressed as:

î2(s) =
Gi(s)

1 + Gi(s)
î2_ref(s) +

D∗1_2

2 fsL1_2

−Gior(s)
1 + Gi(s)

Û1(s) (30)

Gi(s) =
(

KPi +
KIi

s

)
1

1 + (Tsd + 0.5Thd)s
1

U2_ref
Gior(s) (31)

Simplify the order of the transfer function, i.e.,

KPi

KIi
= Tsd + 0.5Thd (32)

Then:

Gi(s) =
KIi

s

(
1

U2_ref

1
CdcLP2s2 + CdcRP2s + 1

)
(33)

The amplitude margin of the system shall meet:

γm = −20lg

(
KIi

U2_ref
·
√

LP2Cdc
2

)
> 6 dB (34)

i.e.,
KIi

U2_ref
·
√

LP2Cdc
2

< 0.5 (35)
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4. Simulation Verification

Based on the PSCAD simulation platform, the simulation model of the energy storage
PCS system proposed in this paper is built, the specific parameters are shown in Table 1,
and the power step transient process and steady-state process are simulated and analyzed.

Table 1. Simulation parameters.

Parameter Value

Grid parameters Grid line voltage 10 kV
Grid frequency 50 Hz

HVAC

Number of modules 15 per phase, 45 in total
Support capacitance 1 mF

HFT parameters
Capacity 40 kVA

Leakage inductance 45 µH
Excitation inductance 3 mH

Filter inductance 16 mH

LVDC

LVDC port voltage range 500~700 V
Number of modules 45
Support capacitance 1 mF

High-frequency reactance 7 µH
LVDC output inductance 10 µH

DC isolation capacitor 100 µF

Switching frequency 20 kHz

Among them, the rated voltage of the power grid is 10 kV and the frequency is 50 Hz.
The HVAC part of the energy storage PCS system contains 15 modules in each phase, with
a three-phase Y-connection. In each HVAC module, the filter inducement is 16 mH, support
capability is 1 mF, HFT capacity is 40 kVA, HFT Leakage inductance is 45 µH and excitation
inductance is 3 mH. The LVDC part contains 45 modules, the DC rated voltage is 500~700 V,
support capacitance is 1 mF, high-frequency reactance is 7 µF, LVDC output inductance is
10 µF and DC isolation capacitor is 100 µF. The switching frequency is 20 kHz.

Figure 7 shows the simulation results of the grid current, HVDC DC-bus voltage,
LVDC DC-bus voltage and LVDC DC current under the condition of battery power step
from 0 to 20%. It can be seen that the dynamic response process of the HVAC AC side is less
than 20 ms with no overshoot. The peak value of transient overvoltage at the LVDC side is
about 720 V and overshoot is about 0.02%, and the peak value of transient overcurrent at
the LVDC side is about 480 A and overshoot is about 68.4%, which is within the allowable
range. Under the condition of 20% rated power, the output current THDi is 3.31%, as
shown in Figure 8.

Figure 9 shows the simulation results of grid current, HVDC DC bus voltage, LVDC
DC bus voltage, and LVDC DC current under the condition of battery power step from
20% to 50%. It can be seen that the dynamic response process of the HVAC AC side is less
than 20 ms with no overshoot. The peak value of transient overvoltage at the LVDC side is
about 730 V and overshoot is about 0.01%, and the peak value of transient overcurrent at
the LVDC side is about 846 A and overshoot is about 22.2%, which is within the allowable
range. Under the condition of 50% rated power, the output current THDi is 1.31%, as
shown in Figure 10.
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Figure 9 shows the simulation results of grid current, HVDC DC bus voltage, LVDC 
DC bus voltage, and LVDC DC current under the condition of battery power step from 
20% to 50%. It can be seen that the dynamic response process of the HVAC AC side is less 
than 20 ms with no overshoot. The peak value of transient overvoltage at the LVDC side 
is about 730 V and overshoot is about 0.01%, and the peak value of transient overcurrent 
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able range. Under the condition of 50% rated power, the output current THDi is 1.31%, as 
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DC bus voltage, and LVDC DC current under the condition of battery power step from 
50% to 80%. It can be seen that the dynamic response process of the HVAC AC side is less 
than 20 ms with no overshoot. The peak value of transient overvoltage at the LVDC side 
is about 744 V and overshoot is about 0.01%, and the peak value of transient overcurrent 
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Figure 10. HVAC grid current THDi (50% of rated power).

Figure 11 shows the simulation results of grid current, HVDC DC bus voltage, LVDC
DC bus voltage, and LVDC DC current under the condition of battery power step from
50% to 80%. It can be seen that the dynamic response process of the HVAC AC side is less
than 20 ms with no overshoot. The peak value of transient overvoltage at the LVDC side is
about 744 V and overshoot is about 0.01%, and the peak value of transient overcurrent at
the LVDC side is about 1190 A and overshoot is about 0.09%, which is within the allowable
range. Under the condition of 50% rated power, the output current THDi is 1.76%, as
shown in Figure 12.
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side is about 750 V and overshoot is about 0.01%, and the peak value of transient overcur-
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80% to 100%. It can be seen that the dynamic response process of the HVAC AC side is 
less than 20 ms with no overshoot. The peak value of transient overvoltage at the LVDC 
side is about 750 V and overshoot is about 0.01%, and the peak value of transient overcur-
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Figure 12. HVAC grid current THDi (80% of rated power).

Figure 13 shows the simulation results of grid current, HVDC DC bus voltage, LVDC
DC bus voltage and LVDC DC current under the condition of battery power step from 80%
to 100%. It can be seen that the dynamic response process of the HVAC AC side is less
than 20 ms with no overshoot. The peak value of transient overvoltage at the LVDC side is
about 750 V and overshoot is about 0.01%, and the peak value of transient overcurrent at
the LVDC side is about 1455 A and overshoot is about 0.08%, which is within the allowable
range. Under the condition of 50% rated power, the output current THDi is 2.86%, as
shown in Figure 14.
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In conclusion, under the power step conditions of the PCS, the response of the HVDC
port is fast with no overshoot, the voltage overshoot of the LVDC port is small, and the
current overshoot is within the allowable range, which has little impact on the energy
storage battery. For the output current THDi of the HVDC, it reaches the optimum under
medium load, about 1.31%. With the increase in power, THDi increases and reaches 2.86%
under rated power, meeting the requirements of grid connection.

In conclusion, under the power step conditions of the PCS, the response of the HVDC
port is fast with no overshoot, the LVDC port has low overvoltage, and the current overshoot
is within the allowable range, which has little impact on the energy storage battery. The
output current THDi of the HVDC reaches the optimum under medium load, about 1.31%.
With the increase in power, THDi increases and reaches 2.86% under the rated power,
meeting the grid connection requirements.

5. Experimental Verification

An experimental prototype of the energy storage PCS with a rated power of 1 MW and
rated voltage of 10 kV was built, and the feasibility and effectiveness of the PCS proposed
in this paper were verified by comparison and analysis with simulation. The relevant
parameters of the prototype are consistent with the simulation parameters, as shown in
Table 1.
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Traditional silicon (Si) power devices cannot meet developmental needs in selecting
power electronic devices. In contrast, silicon carbide (SiC) power devices have lower
switching loss, higher operating frequency, smaller passive components and a simpler
cooling system design. Thus, they are more conducive to the development trend of high
efficiency, miniaturization, lightness and high frequency of power electronic systems [12].
Therefore, the prototype we built adopts a SiC-MOSFET device.

The PCS prototype can be shown as Figure 15, which adopts the SiC-MOSFET switch-
ing device with the model of CAS120M12BM2. The source drain voltage of the device is
Vds = 1.2 kV, and 15 modules are used for each phase in series for 18 kV, meeting the insula-
tion requirements of the 10 kV voltage level. The rated capacity of each module is 23.8 kW,
and the rated through current is about 34 A, with a sufficient through current margin.

Energies 2022, 15, x FOR PEER REVIEW 14 of 18 
 

 

posed in this paper were verified by comparison and analysis with simulation. The rele-
vant parameters of the prototype are consistent with the simulation parameters, as shown 
in Table 1. 

Traditional silicon (Si) power devices cannot meet developmental needs in selecting 
power electronic devices. In contrast, silicon carbide (SiC) power devices have lower 
switching loss, higher operating frequency, smaller passive components and a simpler 
cooling system design. Thus, they are more conducive to the development trend of high 
efficiency, miniaturization, lightness and high frequency of power electronic systems [12]. 
Therefore, the prototype we built adopts a SiC-MOSFET device. 

The PCS prototype can be shown as Figure 15, which adopts the SiC-MOSFET switch-
ing device with the model of CAS120M12BM2. The source drain voltage of the device is 
Vds = 1.2 kV, and 15 modules are used for each phase in series for 18 kV, meeting the 
insulation requirements of the 10 kV voltage level. The rated capacity of each module is 
23.8 kW, and the rated through current is about 34 A, with a sufficient through current 
margin. 

monitoring systemLVDC interface cabinetPower module

HVAC interface cabinet

 
Figure 15. PCS prototype. 

First, the power feedback test is carried out for two groups of modules (H-bridge and 
a DAB), in which the AC side and DC side are connected in parallel. Figure 16a shows the 
AC voltage, current and DC voltage waveforms of the module under 10 kW power; it can 
be seen that the stability can be restored within 50 ms, and the DC voltage is slightly over-
shot. Figure 16b shows waveforms of the module grid under 25 kW power, which shows 
that the module can recover stability within 50 ms, and the DC voltage is slightly overshot. 
Figure 16c shows the voltage and current waveforms of the power reversal test. It can be 
seen that the output current can reach stability within 20 ms without overcurrent. The 
above tests show that the module can meet the dynamic and steady-state requirements 
under different working conditions. 

Figure 15. PCS prototype.

First, the power feedback test is carried out for two groups of modules (H-bridge and
a DAB), in which the AC side and DC side are connected in parallel. Figure 16a shows
the AC voltage, current and DC voltage waveforms of the module under 10 kW power; it
can be seen that the stability can be restored within 50 ms, and the DC voltage is slightly
overshot. Figure 16b shows waveforms of the module grid under 25 kW power, which
shows that the module can recover stability within 50 ms, and the DC voltage is slightly
overshot. Figure 16c shows the voltage and current waveforms of the power reversal test.
It can be seen that the output current can reach stability within 20 ms without overcurrent.
The above tests show that the module can meet the dynamic and steady-state requirements
under different working conditions.

Through the power quality analyzer, the HVAC side current waveforms and THD
trend of the device prototype are observed. Under light load conditions (10% load
rate), Figure 17a shows the three-phase HVAC current waveform with slight distortion.
Figure 17b shows the three-phase THDi trend under a steady-state operation within 10 min.
It can be seen that THDi is relatively stable, between 2.4% and 2.8%.
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Figure 16. Double module power cycle test: (a) Power voltage, module current and DC voltage (10 
kW); (b) Single-phase average active power control block diagram (25 kW); (c) Power voltage and 
module current (20 kW). 
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Figure 16. Double module power cycle test: (a) Power voltage, module current and DC voltage
(10 kW); (b) Single-phase average active power control block diagram (25 kW); (c) Power voltage and
module current (20 kW).

Under heavy load conditions (80% load rate), Figure 17c shows the three-phase HVAC
current waveforms, which are relatively smooth. Figure 17d shows the three-phase THDi
trend under a steady-state operation within 10 min. It can be seen that THDi is relatively
stable, between 1.4% and 1.8%.

Figure 18 shows the efficiency curve of PCS under different charging powers. The
PCS efficiency can reach more than 98% under a 60% load rate and 98.6% under full
load conditions.
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Figure 17. Current output waveforms and THD trend of PCS: (a) Current output waveforms of PCS
(100 kW); (b) THD trend of PCS (100 kW); (c) current output waveforms of PCS (800 kW); (d) THD
trend of PCS (800 kW).
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Figure 18. Efficiency of PCS under different load rates.

The above analysis shows that the test results of the PCS are consistent with the
simulation results, which further proves the correctness and feasibility of the proposed new
topology of the energy storage converter.

Compared with the conventional topology [22,23], the energy-storage PCS proposed
in this paper is isolated by a high-frequency transformer, which can cancel the power
frequency transformer, reduce the volume of passive components, improve the power
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density of equipment, and reduce the insulation costs of energy storage battery. In addition,
the engineering prototype adopts SiC-MOSFET switching devices, which improves the
rated efficiency of the equipment.

6. Conclusions

In this paper, a high-frequency isolated high-capacity PCS is proposed. The power unit
adopts a DAB power module, which effectively suppresses the secondary pulsating current
and has higher applicability to the battery; SiC-MOSFET switching devices have been
applied, and the maximum efficiency of the equipment can reach 98.6%, with remarkable
high-efficiency characteristics. An HVAC and LVDC control strategy based on power
decoupling is proposed. Under the power step conditions of the PCS, the response of
the HVDC port is fast without overshoot, the voltage overshoot of the LVDC port is
small, and the current overshoot is within the allowable range. The output current THDi
of the HVDC port is less than 3% under various load rate conditions, meeting the grid
connection requirements. The simulation and experimental results show that the high-
frequency isolated PCS proposed in this paper is accurate. The engineering application of
the equipment in different scenarios, as well as the reliability and costs of the equipment
itself, still need to be further improved.
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