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Abstract: Wind energy is a valuable source of electric power as its motion can be converted into
mechanical energy, and ultimately electricity. The significant variability of wind speed calls for
highly robust estimation methods. In this study, the mechanical power of wind turbines (WTs) is
successfully estimated using input variables such as wind speed, angular speed of WT rotor, blade
pitch, and power coefficient (Cp). The feed-forward backpropagation neural networks (FFBPNNs)
and recurrent neural networks (RNNs) are incorporated to perform the estimations of wind turbine
output power. The estimations are performed based on diverse parameters including the number
of hidden layers, learning rates, and activation functions. The networks are trained using a scaled
conjugate gradient (SCG) algorithm and evaluated in terms of the root mean square error (RMSE)
and mean absolute percentage error (MAPE) indices. FFBPNN shows better results in terms of RMSE
(0.49%) and MAPE (1.33%) using two and three hidden layers, respectively. The study indicates the
significance of optimal selection of input parameters and effects of changing several hidden layers,
activation functions, and learning rates to achieve the best performance of FFBPNN and RNN.

Keywords: wind turbine; feed-forward back propagation neural network; recurrent neural network

1. Introduction

Electricity is a major infrastructural prerequisite for developing nations and a key
factor in most human activities. Electrical energy can help flourish many other sectors such
as food, health, education, security, transportation, and industrial production. Modern
energy services are a vital driving force for economic development toward sustainable
growth. The more efficiently a developing country is able to utilize available energy, the
faster it will grow and achieve overall better progress. That is why the socioeconomic
development of a nation is measured by per capita energy utilization. Statistically, 73.8% of
global electricity output in 2018–2019 was from non-renewable energy sources, while only
26.2% from renewable sources [1]. However, the trend toward clean energy is on a steady
rise these days. In 2019, a high annual increase was recorded globally in renewable energy
generation—almost 181 GW [2]. Most of the mentioned percentage of renewable electricity
was obtained from hydropower which generated 15.8%, with other sources including wind
5.5%, bio-power 2.2%, solar-PV 2.4%, and 0.4% from geothermal and concentrated solar
power (CSP) [3].

Wind is the most abundantly available natural energy resource, present everywhere
and waiting to be harvested, providing the most reliable option for clean energy produc-
tion [4]. Wind speed and wind power can be estimated accurately if an appropriate dataset
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is available. The accuracy of wind speed and wind power estimation depends upon the
quality of past data on wind speed and wind power at the given wind turbine (WT) site.
The accurate estimation of WT output power requires careful consideration of stochastic
factors such as wind speed and power coefficient (CP). Different input factors are consid-
ered in the estimation, including wind speed, wind direction, temperature, air density, etc.,
but CP has not been considered by most of the researchers. The main purpose of this study
is to accurately estimate WT power output based on maximal stochastic factors. Wind
energy is cheap and environment friendly. But efficiently use of wind as a viable source of
energy requires accurate estimates of annual power output (kWh per year) to determine
whether a particular WT will produce sufficient electricity to meet the relevant energy
demand. Such estimations prove extremely helpful in power generation planning and
energy management. They are also indispensable in the efforts to replace conventional
non-renewable energy resources with multi-GW wind farms. However, the quality of such
estimations depends on the availability of reliable and comprehensive data for the given
WT site. Erroneous estimates due to unreliable datasets or wrong methodology can be
detrimental to correct load management. Different input factors are used in the context of
WT output power estimation, e.g., wind speed, air pressure, temperature, air density, WT
characteristic curve, etc.

There are three primary types of methods of power estimation: physical, statistical,
and learning [5–7]. Physical methods rely on weather modeling to estimate effective wind
speeds and then use WT characteristic curves for wind power estimation. However, this
method requires considerable computation due to its computational complexity. Statistical
methods use historical wind data, but this method is only effective for small datasets and a
limited number of inputs. Learning methods establish the relationship between inputs and
outputs using artificial intelligence, which makes these methods very useful and highly
effective. Different deep learning algorithms are developed for this purpose and are widely
used in a variety of applications [8].

Several software solutions have been developed to study WT characteristics and
behavior in different weather conditions using simulations and soft-computing algorithms.
For instance, Jinhua Zhang et al. [9] proposed a long short-term memory (LSTM) network
algorithm using a deep learning network for short-term estimation of the output power
of three WTs and used a Gaussian Mixture Model (GMM) for the uncertainty analysis of
the WTs power while using wind speed and wind direction as input factors. A short-term
network was trained in [9] and employed the expectation-maximization (EM) algorithm
for the estimation of parameters that were then used by the GMM. RNN was used for
wind power estimation by Z. O. Olaofe et al. [10], who estimated wind power generation
in real-time over the one-hour horizon of up to 288 h ahead based on the time series data
on a 1.3 megawatt (MW) WT, obtained from a 50 m hub, and using wind speed, wind
direction, temperature, atmospheric pressure, wind distribution, and WT characteristic
curve as input parameters. In [10], the authors first calculated the electric power output of
the WT generator relative to the efficiency of gearbox and generator, and then utilized the
WT characteristic curve for the estimation. It is pertinent to mention that wind speed is the
most used input parameter in wind power estimation because WT output power depends
upon the cube of wind speed [6].

In [11], Iulian Munteanu et al. used a 24-h model-based wind park simulator to esti-
mate the output power of an off-shore wind farm. The data used in the study was collected
by meteorological masts, and the stochastic input parameters used in the estimation were
wind speed and wind direction. The wake effect and effective wind speed for every tur-
bine were considered while estimating the output power of each WT. However, [8] made
assumptions about certain parameters including the location of the WTs, the effect of park
wakes, wind speed, pitch angle, and wind power. M. Hayashi et al. [9] first estimated the
wind speed, and then used that data to project WT power output using the Jacobian Matrix
Estimation Method (JMEM). The time series analysis and estimation were done using the
deterministic chaos approach (chaos fractal). The data structure was analyzed using fractal
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dimensional analysis and Lyapunov spectrum analysis. Another study [12] used historical
wind speed data collected from multiple areas around the targeted WT site and estimated
wind speeds for periods from several hours to up to 24 h ahead. Next, the data were used
along with the WT power curve for the estimation of the WT output power. As wind speed
increases with altitude, the data used for the estimation of any WT’s output power should
be in accordance with its hub height.

In [13], a sparsified vector auto-regressive (VAR) model was introduced by
Miao He et al. for the short-term estimation of a wind farm’s output power in a mul-
tivariate time series model developed by VAR for wind power generation. The sparse
structure of the autoregressive coefficient matrix was taken into account while obtaining the
parameters of the VAR model based on the most likely estimation of real-time measurement
data. The authors of [13] considered the hub height of a WT while collecting data and used
wind speed and wind direction at that height to improve their estimation. They compared
their results with autoregressive (AR) and multiple autoregressive (MAR) models and
measured the accuracy of singular estimations relative to the mean absolute error (MAE),
MAPE, and RMSE, and used continuous rank probability score (CRPS) for probability
estimations. Saeed Zolfaghari et al. [14] suggested that the estimation of a WT’s power
output yields several inaccuracies if the characteristic curve provided by the manufacturer
is used. Hence, they proposed a new method employing power probability distribution
functions (PPDFs) instead of the characteristic curve when estimating the output power of
a WT. First, the PPDFs-based actual data on speed and corresponding wind power for each
WT is used to calculate the individual output power. Then, the output power of the wind
farm is computed probabilistically by assigning statistical spatial distribution (i.e., Poisson
distribution) for wind speeds over the wind farm based on the calculated PPDFs.

A method of short-term estimation of wind power was suggested by
Shuang Hu et al. [15], in which multivariate variables such as wind speed, wind direction,
temperature, and air pressure were converted into low dimensional variables using a
principal component analysis (PCA) to obtain a simplified network. Then, Elman artificial
networks were used to train and optimize the network path, and final estimations were
calculated. M. M. BA et al. [16] measured wind speed frequency distribution using Weibull
probability density function and assessed wind speeds based on experimental data collected
over five years and estimated the output power of small WTs in urban areas. The authors
used raw data on wind speed and wind direction recorded using data loggers, which
they then compared to experimental results using RMSE. Mantas Marciukaitis et al. [17]
used five months of data on the direction and speed of wind to determine a WT power
curve using a non-linear regression model and concluded that wind direction was not a
significant factor in terms of accuracy of the estimation [17].

In [18], 24-h input data on wind speed and power measured in 10-min intervals were
used by G.W. Chang et al. for short-term estimation of wind speed and wind farm power,
which employed an improved radial basis function neural network-based model with an
error feedback (IRBFNN-EF) scheme. They verified the accuracy of the method using MAPE
and RMSPE, and compared their results with other neural network methods. In [19,20],
Aamer Bilal Asghar et al. used aerodynamic simulations in FAST code, and estimated
WT CP and effective wind speed, respectively, using TSR, β, and rotor speed as input
parameters processed in an adaptive neuro-fuzzy inference system (ANFIS). In [21], the
author estimated optimal rotor speed for MPPT of a variable-speed WT using previously
estimated effective wind speed.

As follows from the above analysis, WT mechanical power has already been well
explored and estimated using input factors such wind speed, wind direction, WT character-
istic curve, temperature, pressure, and wind distribution. There is no doubt that wind speed
is the most important factor in the calculation of the WT mechanical power as the output
power is directly proportional to the cube of wind speed. However, as wind speed data
is recorded by an anemometer placed on the nacelle, the wind reaching the anemometer
is turbulent as it first passes through the WT blades. Thus, the recorded wind speed data
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cannot be considered highly accurate. The same goes for wind direction, because wind
direction data are recorded by a wind vane which is also placed over the nacelle, beside
anemometer, and faces the turbulent wind coming from the WT blades. WT characteristic
curve is also unreliable in terms of WT output power estimation as such information is
provided by the WT manufacturer and gathered in controlled environmental conditions,
without considering any practical issues such as stochastic weather conditions that may
include wind gusts and sudden variations in wind speed [22].

Incident wind power depends on air density, rotor swept area, and the cube of effective
wind speed. A WT converts this incident wind power into mechanical power, where the
ratio of this mechanical power and incident power is CP and never exceeds a certain limit.
The power coefficient is expressed as a non-linear function of tip speed ratio (TSR) and
collective blade pitch angle (β). TSR is the ratio of the instantaneous velocity of the rotor
blade tip to the wind speed. CP reaches its maximum value CPmax at the optimum value of
TSR (λopt), i.e., the optimal operating point of the WT. This means that a change in wind
speed can cause a change in TSR and β, which in turn can affect CP.

It can therefore be concluded that the mechanical power of a WT depends on
two variables that are constantly changing, i.e., wind speed and CP. This is exactly why
the WT output power is so difficult to estimate and why electricity generated by WTs
is relatively hard to manage. The accuracy of wind speed and wind power estimations
depends on the quality of historical wind speed and wind power data collected at the given
WT site.

Hence, unlike other works discussed above, this paper proposes a methodology that
includes PM estimation using additional stochastic input factors including wind speed,
rotor speed, collective pitch angle, and power coefficient of WT. Different variants of neural
networks are employed for this purpose in MATLAB to conduct simulations and compare
results. The main features of the proposed methodology are as follows:

• This study presents the optimal selection of several hidden layers, activation functions,
and learning rates to achieve the best performance of FFBPNN and RNN.

• It is characterized by very low computational complexity.
• It does not require environmental inputs such as air pressure, temperature, air density

etc., which reduces sensor cost as well as overall system complexity.

The following text is organized as follows: The basic working concept of WTs and
characteristics of NREL 5 MW offshore WTs with the dataset are explained in Section 2. Section 3
elaborates the basic concepts of FFBPNN and RNN. Results and discussion are presented in
Section 4. Finally, Section 5 summarizes the work and outlines future research directions.

2. Background
2.1. Wind Turbine Operation

The kinetic energy (KE) of the wind depends on its speed. As explained in [22–24], a
WT’s rotor blades absorb this KE and convert it into mechanical energy, which a generator
then converts into electricity. An anemometer along with wind vane is installed on the
nacelle of a WT to measure wind speed and direction. The wind speed and wind direction
data are fed to the controller that regulates yaw drive, pitch angle, and brakes. The wind
first interacts with the blades of the rotor which rotates if the wind speed exceeds the cut-in
speed and remains below the cut-out speed. A low-speed shaft connects the rotor to the
gearbox which converts the rotor’s low revolutions per minute (rpm) into high rpm that is
then fed to the generator via the high-speed shaft. The generator is connected to the power
electronic converter that enables efficient conversion of the variable frequency output of
the generator to a constant frequency output which is suitable for the grid or load. The
gearbox, shafts, and generator are enclosed in the nacelle mounted on the top of a tower
with a yaw drive to keep plane of turbine rotor perpendicular to the wind direction based
on feedback from the controller. The pitch angle of the rotor blade is kept constant if the
wind speed range remains between the cut-in and rated speed. Under those conditions,
maximum power is achieved by controlling the rotor speed and torque. If wind speed is
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above rated speed, rotor speed and torque reach their respective maxima and the pitch
is modified by the controller to keep the turbine working within safe limits. If the wind
speed exceeds the cut-out speed of 25 ms−1, brakes are applied and the rotor is stopped to
avoid wind gust damage, as shown in Figure 1. It is noteworthy that Matayoshi et al. [25]
introduced a pitch angle controller and a rotational speed control system for Permanent
Magnet Synchronous Generator (PMSG) based Wind Energy Conversion Systems (WECS),
which enables power generation for wind speeds up to 35 ms−1.
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The mechanical power “PM” of a WT is represented as:

PM = 0.5ρSAv3CP (1)

where ρ is the air density (kgm−3), usually taken as 1.225 kgm−3 at standard temperature
and pressure (STP), SA is the rotor swept area (m2), v is the velocity (ms−1) of the incident
wind, and power coefficient “CP” of a WT is the measure of efficiency with which wind
power “PW” is converted into mechanical power “PM”. The value of CP never exceeds
0.593 (a value known as the Betz Coefficient or Betz Limit).

Mathematically:
CP = PM/PW (2)

CP is also represented as the non-linear function of “TSR (λ)” and collective blade
pitch angle “β” (◦). Generally, it can be expressed as:

CP = (λ, β) (3)

where λ is the tip-speed ratio defined as the ratio of the instantaneous velocity of the tip of
the WT blade to wind speed.

λ =ωrR/v (4)

where “ωr” is the rotor speed (rad/s) and “R” is the rotor radius (m). CP changes with λ
and β. CP reaches its maximum value CPmax for the optimum TSR (λopt) referred to as the
optimal operating point of the WT. Here, λ is also a stochastic factor because it is dependent
on wind speed fluctuations. Thus, CP must be considered when estimating PM.
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Consequently, the mechanical power of a WT depends on two variables that are
constantly changing, i.e., wind speed and CP. This is exactly why the WT output power is
so difficult to estimate and why electricity produced by WTs is relatively hard to manage.
The accuracy of wind speed and wind power estimations depends on the quality of
historical data on wind speed and wind power collected at the given WT site.

2.2. Dataset

Research in the field of wind energy and WT requires data on wind speed, rotor speed,
collective pitch angle, wind power etc., and due to the limited availability of functional
WTs, such data are not easily available. This problem has been solved by the National
Renewable Energy Laboratory (NREL) USA that developed a simulation-based, 5 MW
variable speed offshore WT reference model using FAST (Fatigue, aerodynamics, structures
and turbulence) code, which has enabled researchers to study aerodynamics, structure,
and control properties of WTs [19,20,25–45]. Table 1 presents the characteristics of this
baseline WT. The dataset was collected from FAST code simulations and is further used
to train neural networks (NN). This collected data contain 2297 data samples which are
further divided into training data, test data, and validation data. A total of 1608 data
samples (about 70%) are used to train the network, 465 data samples (about 20%) are used
to test the trained network and check its performance, while cross validation is done using
224 data samples (about 10%).

Table 1. NREL 5 MW offshore WT characteristics.

WT Parameter Value

Rated Power 5 MW
Rotor configuration Upwind, 3 blades

Rotor diameter 126 m
Hub diameter 3 m

Hub height 90 m
Cut-in wind speed 3 m/s
Rated wind speed 11 m/s

Cut-out wind speed 25 m/s
Cut-in rotor speed 6.9 rpm
Rated rotor speed 12.1 rpm

Rated generator speed 1174 rpm
Peak power coefficient (CPP) 0.4868

TSR at CPP 7.55
Collective blade pitch angle at CPP 0◦

The data samples are divided with great care and due consideration of the data
statistics shown in Table 2. Here, the negative value of power coefficient represents the
motoring effect of WT which in result leads to negative value of output mechanical power.
Load, turbulent oil flow, and heat caused by internal friction decrease the efficiency of
gearbox of WT because of which the output power of WT is reduced. Power losses in geared-
transmission can also be ascribed to gear-mesh and bearing-contact frictional effects and
the interaction of rolling element bearings and gears with the lubricating medium [46,47].
All these factors result in limiting the output electrical power of WT to be about 5 MW.

The training data must include all the features and core information on the dynamic
WT model. At the same time, while test data should be related to training data, it should
never overlap with the same. If data division is not done carefully, it may lead to over-
fitting. Therefore, the data samples were divided in such a way so as to ensure that all the
behavioral characteristics are included in the training dataset, as the trained network must
be able to estimate optimal output under all possible variations of nonlinear input data.
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Table 2. WT data statistics.

WT Parameters Minimum Value Maximum Value Average Value

Wind speed (m/s) 3 25 10.17
Rotor speed (rad/s) 0.105 1.571 0.793

Pitch angle (◦) −5 +5 0
Power coefficient −5.498 0.487 0.166

WT output mechanical
power (MW) −1.134 25.609 2.305

2.3. Power Estimation

Electricity is the most widely used form of energy and its use is exponentially increas-
ing with the increase in population and advancement in technology. As such, economic
dispatch and resource planning are critical to ensuring the uninterrupted supply of electricity.
However, effective resource planning and economic dispatch requires complete information
about the output capacity of all energy sources, as even a small error in this respect can lead
to major problems such as overloading and load shedding, causing voltage fluctuations and
potentially damaging electrical equipment. In order to effectively include wind energy in an
economic dispatch, one must have access to accurate wind energy output estimations.

As follows from Equations (1), (3) and (4), the dependence on variable factors such
as wind speed, collective pitch angle, TSR, and power coefficient makes it difficult to
effectively estimate the output power of a WT. Other natural factors including wind
direction, air pressure, temperature, and air density may also affect WT output to some
extent. Physical, statistical, and learning methods [5–7] have all been considered in efforts
aimed at accurate WT power estimation. This paper focuses on learning methods due to
several key advantages they offer:

• Handling large datasets,
• Finding complex relationships between dependent and independent variables,
• Detecting all possible interactions between predictor variables,
• Sequence modeling of data,
• Ability to work with partial data,
• Better generalization capability.

3. Methodology

Estimation requires a comprehensive dataset to understand the complete behavior
of all the variables involved. An artificial neural network (ANN) is an effective tool
that can be used for this purpose due to its ability to handle large datasets. ANN is an
algorithm especially useful in the field of power engineering as it facilitates process control,
tuning of controllers, sensor validation, monitoring, forecasting, fault diagnosis, etc. The
algorithm also supports tuning of fuzzy logic controllers based on the operating conditions
of electric power plants. NNs have been proven extremely useful in image processing and
voice recognition but have also made renewable energy more accessible owing to accurate
estimations of insolation or wind speeds.

Two variants of ANN are used in the evaluation of WT output power, namely FFBPNN
and RNN. These variants can be utilized under twenty different training conditions, each based
on the learning rate, number of hidden layers, and activation functions used in each layer.

3.1. Feedforward Back Propagation Neural Networks

Feedforward networks are often shallow or deep NNs with the output layer consisting
of a linear activation function capable of giving results outside the range of −1 to 1. Hidden
layer neurons contain the sigmoid activation function. The sigmoid function can never be
used for the output layer as it limits the output range to 0–1 in the case of a log-sigmoid
function, and −1–1 in the case of tan-sigmoid function. The linear activation function
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can never be used in hidden layers as it turns a deep NN into a single-layer NN, i.e., it
eliminates the effects of hidden layers [48].

Backpropagation calculates the error gradient of the network to the network’s modi-
fiable weights, and this gradient is then used in a stochastic gradient descent algorithm
to find weights that minimize the error. A shallow FFBPNN with a single neuron in the
hidden and output layers is shown in Figure 2. The input layer transfers the input data to
the adjacent hidden layer. Each node in the hidden layer then initializes weight (w) and
bias (b) with some random value, and after adding the weighted input and bias, passes it
through the activation function. This output is then forwarded to the output layer, where
it is multiplied by the layer weights and added with bias, before it proceeds through the
activation function to produce the final output. This final output is then compared to
the actual output, the error is backpropagated to the previous layers, and weights are
readjusted. This process is repeated in each epoch until the desired output is achieved or
the maximum number of epochs is reached. The main advantage of using FFBPNN is that
the dataset is not required to be sequential or time-dependent.
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3.2. Recurrent Neural Networks

A generalized form of an Elman recurrent NN or a layer recurrent network was used
for the estimation of the WT output power due to its ability to generate and recognize
temporal and spatial patterns. RNN uses a feedback loop in the hidden layers, where each
hidden layer generates the output from the activation function and sends it back to its input
with a unit delay. The basic architecture of a vanilla RNN with a single node in the hidden
and output layers is shown in Figure 3.
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The mathematical model of this network was explained in [49]. The hidden layer
containing a node with a sigmoid activation function accepts the input from the input layer
and initializes the weights and biases. The weighted input is added to bias and passed
through the activation function. The resulting value is then forwarded to the next (output)
layer and the hidden layer input with unit delay. Hence, each layer receives more data for
comparison and estimation in each successive epoch. The input layer transfers the input
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data to the adjacent hidden layer. Each node in the hidden layer then processes weight (w)
and bias (b) for some random value and, after adding the weighted input to bias, forwards
the result to the activation function.

This output is then passed to the output layer, where it is multiplied by the layer
weights, added to bias, and passed through the activation function to yield the final output.
This final output is then compared to the actual output, the error is backpropagated through
the previous layers, and weights are readjusted as needed. This process is repeated in
each epoch until the desired output is achieved or the maximum number of epochs is
reached. The activation function for each layer is selected carefully according to the output
requirement. The input layer only passes the input data to the adjacent hidden layer, so
there is no need for weights, biases, or activation functions for input layer nodes. The
hidden layers contain the sigmoid activation function. The linear activation function is not
used in the hidden layers as it eliminates the effects of the hidden layers.

If all hidden layers are assigned with a linear activation function (purelin), then a deep
NN behaves as a single-layer NN, i.e., the hidden layers become ineffective. If the desired
output ranges between −1 and 1, then the output layer should be assigned with a sigmoid
activation function, otherwise purelin should be used in the output layer to take advantage
of its ability to generate outputs outside the range of 1 and −1 [48]. The main advantages
of RNN include its ability to process inputs of any length. The network model size does
not increase despite increase in input size. A RNN model remembers information, which
improves the network performance.

3.3. FFBPNN and RNN in WT Output Power Estimation

For this study, the networks were modeled under five different conditions using
several hidden layers, activation functions assigned to each hidden layer, and different
learning rates. Four non-linear parameters were used as inputs, namely wind speed, rotor
speed, collective blade pitch angle, and WT power coefficient. The training algorithm used
in each case was the SCG algorithm as the relevant dataset was large. Each output layer
contained one node with a linear activation function because the estimated output range
was outside the range of −1 to 1. The networks were modeled using MATLAB simulations
and the results were collected. The best performance was evaluated using RMSE and
MAPE. In this paper, the unit of RMSE was MW, however it is dimensionless if expressed as
a percentage (%). RMSE indicates the accuracy of the estimation, and it is a very important
criterion of fit, especially in the case of estimation models. Lower RMSE values indicate better
fit. MAPE is the mean or average of the absolute percentage of estimation errors. Its advantage
is that it expresses errors as a percentage of actual data, i.e., it provides an intuitive way of
judging the incidence of errors. The smaller the MAPE, the better is the estimation.

4. Results and Discussion

The output power estimation was performed for a NREL 5 MW WT using 2297 data
samples. Four nonlinear parameters were selected as inputs due to their stochastic nature
and included wind speed, rotor speed, pitch angle, and power coefficient of the WT. Results
were collected through MATLAB simulations.

The PC used for this purpose was Intel® Core™ i5-7200U CPU at 2.50 GHz (4 CPUs),
~2.7 GHz with 8 GB RAM, and Windows 10 Pro operating system. Each network was
trained under five different conditions based on the number of hidden layers and activation
functions assigned to each hidden layer, at four different learning rates; thus, generat-
ing twenty different results for each variant. The input layer in each case consisted of
four nodes as four nonlinear parameters were used in the training, i.e., wind speed, angular
speed of the rotor, blade pitch angle, and power coefficient of the WT. There were no
weights, biases, or activation functions associated with this layer because the function of
this layer was only to transfer input data to the hidden layers. The output layer in each
case contains one node with a linear activation function.

The training conditions designed for the estimation were as follows:
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Case 1: The network consisted of two layers, i.e., one hidden layer with 100 nodes
and a single-node output layer. The hidden layer was assigned a tan-sigmoid (tansig)
activation function.
Case 2: A three-layer network was designed with 100 nodes in the first hidden layer and
50 nodes in the second hidden layer. The activation functions assigned were tansig and
logsig, respectively. The output layer contained a single purelin node.
Case 3: The network consisted of a four-layer network. The first hidden layer contained
100 tansig nodes, the second hidden layer contained 50 logsig nodes, and the third hidden
layer contained 25 tansig nodes. The output layer had a single purelin node.
Case 4: This was similar to case 3 with one alteration, i.e., the second hidden layer was
assigned with a tansig activation function, and the third hidden layer was assigned with a
logsig function.
Case 5: The designed network contained five layers with four hidden layers and an output
layer. There were 100 nodes in the first hidden layer, 50 nodes in the second hidden
layer, 25 nodes in the third hidden layer, and 12 nodes in the fourth hidden layer. The
first and second hidden layers were assigned with a tansig activation function, and a
logsig activation function was assigned to the third and fourth hidden layers. The above
five cases are summarized in Table 3.

Table 3. Neural network configurations designed for each case.

Layers Nodes
Activation Functions

Case 1 Case2 Case 3 Case 4 Case 5

Hidden
Layer 1 100 tansig tansig tansig tansig tansig

Hidden
Layer 2 50 — logsig logsig tansig tansig

Hidden
Layer 3 25 — — tansig logsig logsig

Hidden
Layer 4 12 — — — — logsig

Output
Layer 1 purelin purelin purelin purelin purelin

Each case was repeated at four different learning rates, i.e., 0.05, 0.03, 0.01, and 0.005.
Thus, 20 results were recorded for each variant, yielding a total of 40 outcomes. Both
networks were trained for 10,000 epochs under similar conditions and their performance
was compared using MAPE and RMSE the primary testing factor and training time as
the secondary factor. The target error was set to e−7 in each case, and the criterium for
ending the training (learning) process was either the achievement of the target error or the
completion of 10,000 epochs, whichever came first. Each network was trained using the
SCG algorithm due to its smaller memory requirement. The Levenberg-Marquardt (LM)
algorithm is faster than SCG, but it is only feasible for smaller data samples (i.e., about
100) and also requires more memory [50]. The Bayesian regularization (BR) algorithm is
suitable for the small and noisy datasets and requires more training time.

Therefore, SCG was selected for this study. The MAPE and RMSE values were cal-
culated while training the network, in each case to check the training performance of
the respective network. After training the network with 70% data, a remaining 20% of the
data was used to test the network performance, and the last 10% to validate and test of the
calculated MAPE and RMSE values. The results recorded for each case are discussed below.

Case 1:
In the first case, a two-layered network was designed for FFBPNN and RNN with

100 tansig nodes in the hidden layer and one purelin node in the output layer. Both
networks were trained at four learning rates, i.e., 0.05, 0.03, 0.01, and 0.005. The networks
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were trained with approximately 70% of the training data samples for 10,000 epochs, then
tested with 20% of the testing data samples and validated using the remaining 10%.

The trained network was tested using the sim command in MATLAB to obtain the
estimated values of WT output mechanical power. The estimated values were then com-
pared to the actual values of output mechanical power in test data samples, and errors
were plotted in Figure 4. The performance of the networks was verified by calculating the
MAPE and RMSE for the estimated test data results-the results are shown in Table 4. It can
be seen that the test MAPE of 5.59% was the lowest in the case of FFBPNN for the learning
rate of 0.005.
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Table 4. Training and testing results of FFBPNN and RNN for Case 1.

NN
Variant

Learning
Rate

Training
Time

RMSE
Testing

RMSE
Validation

MAPE
Testing

MAPE
Validation

FFBP

0.05 46:17 0.0140 0.0129 0.12844 0.07556
0.03 0:55 0.0145 0.0138 0.11141 0.07465
0.01 0:53 0.0132 0.0116 0.07872 0.05921

0.005 0:50 0.0136 0.0147 0.05595 0.08372

RNN

0.05 5:28 0.0156 0.0148 0.06694 0.06375
0.03 1:49 0.0160 0.0147 0.08192 0.0574
0.01 18:52 0.0135 0.0134 0.07125 0.09701

0.005 24:12 0.0135 0.0134 0.07125 0.09701

The RMSE of 1.32% was the lowest in the case of FFBPNN for the learning rate of 0.01.
RNN showed the best performance with the MAPE score of 6.69% and the corresponding
RMSE of 1.56%, for the learning rate of 0.05. With RMSE of 1.35%, RNN performed best for
the learning rates of 0.01 and 0.005, but shorter training time is required for the learning rate
of 0.01, which is why this learning rate was preferable. In terms of MAPE, the training time
for the learning rate of 0.005 in the case of FFBPNN was also shorter, hence, this learning
rate was selected for training.

It is evident that for a two-layered network trained with the SCG algorithm, the
learning rate of 0.005 yielded the best performance for FFBPNN in terms of testing MAPE,
while for RMSE, the learning rate of 0.01 returned the best performance for both FFBPNN
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and RNN, but FFBPNN performed better than RNN in terms of testing RMSE and training
time. FFBPNN also outperformed RNN regarding training time. Hence, FFBPNN proved
overall superior to RNN in this case.

Case 2:
Three-layered FFBPNN and RNN models were designed for this case. Each network

contained 100 tansig nodes and 50 logsig nodes in their first and second hidden layers,
respectively. Both networks contained a single node in the output layer with a linear
activation function. Both networks were trained with the SCG algorithm using training
data samples for 10,000 epochs and the training process was repeated at four learning rates.
The eight trained networks were then tested against the test data samples, validated, and
the estimated values of WT mechanical output power were generated. The estimates were
then compared to the target values of mechanical power, and the inconsistencies between
estimated values and the target values are plotted in Figure 5. The performance estimate
was verified by calculating the MAPE and RMSE between the estimated and target values
of the test data, and the results are presented in Table 5.
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Table 5. Training and testing results of FFBPNN and RNN for case 2.

NN
Variant

Learning
Rate

Training
Time

RMSE
Testing

RMSE
Validation

MAPE
Testing

MAPE
Validation

FFBP

0.05 1:34 0.0065 0.0062 0.02707 0.02267
0.03 1:41 0.0056 0.0053 0.02198 0.02251
0.01 18:50 0.0049 0.0051 0.02626 0.01986

0.005 43:41 0.0071 0.0074 0.03041 0.01071

RNN

0.05 3:06 0.0059 0.0058 0.02105 0.02173
0.03 2:56 0.0060 0.0058 0.0188 0.0243
0.01 3:10 0.0052 0.0052 0.01737 0.01967

0.005 25:41 0.0052 0.0052 0.01737 0.01967

It can be observed by comparing Tables 4 and 5 that increasing a hidden layer in the
network substantially improved the results, i.e., MAPE and RMSE values were significantly
decreased. In the case of FFBPNN, the best result for testing data with the lowest RMSE
of only 0.49% was recorded at learning rate of 0.01. In terms of MAPE, the best result for
FFBPNN was achieved at the learning rate of 0.03, where MAPE was 2.19%. The RMSE of
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0.49% for testing data was significantly lower than the lowest value of RMSE achieved in
case 1, i.e., 1.32%recorded at the learning rate of 0.01 but the training time was increased in
this case. MAPE also improved as compared to case 1 where it was 5.59% for the learning
rate of 0.005. In the case of RNN, the best result was recorded for the learning rates of 0.01
and 0.005 where the value of RMSE was 0.52%.

For MAPE, RNN showed better result as compared to FFBPNN for the learning rates
of 0.01 and 0.005, but the training time for the learning rate 0.01 is shorter, rendering this
result better. It is very interesting to observe that for RNN, in case of the learning rates of
0.01 and 0.005, other test and validation parameters such as gradient, MAPE, and RMSE
were similar, but the training time required at the learning rate of 0.005 was approximately
eight times longer relative to the learning rate of 0.01.

This shows that the learning rate can significantly affect the training time of the
network. Hence, the learning rate should be chosen wisely. In Figure 5, the yellow and black
graphs representing the learning rates of 0.01 and 0.005 for RNN overlap completely, that is
why the yellow graph is not visible. This verifies the data shown in Table 5. Consequently,
in this case, FFBPNN showed better performance (for RMSE) than RNN, while RNN
performed better in terms of MAPE.

Case 3:
In this case, a new hidden layer with 25 nodes was added in both networks. Thus,

each network consisted of four layers. The first, second, and third hidden layers contained
100, 50, and 25 nodes, respectively, and the activation functions assigned were tansig,
logsig, and tansig, respectively. The output layer contained a single purelin node. The
networks were trained with the SCG algorithm at four different learning rates and the
training continues for 10,000 epochs.

After training, the networks were tested against the 465 test data samples and validated
using the sim command in MATLAB to obtain the estimates. These estimations were then
compared to the target values of the test data samples and the errors were plotted in a
graph, as shown in Figure 6. The RMSE and MAPE of the test results were calculated and
presented in Table 6.
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Table 6. Training and testing results of FFBPNN and RNN for case 3.

NN Learning
Rate

Training
Time

RMSE
Testing

RMSE
Validation

MAPE
Testing

MAPE
Validation

FFBP

0.05 32:29 0.0069 0.0063 0.0307 0.0193
0.03 5:24 0.0063 0.0062 0.0207 0.0191
0.01 2:02 0.0057 0.005 0.01902 0.02215

0.005 2:47 0.0055 0.0038 0.0194 0.01223

RNN

0.05 4:32 0.0075 0.0078 0.0285 0.0335
0.03 3:27 0.0069 0.0063 0.0218 0.0203
0.01 3:20 0.0059 0.0057 0.0243 0.0325

0.005 20:00 0.0059 0.0057 0.0243 0.0325

In the case of FFBPNN, the best result was obtained for the learning rate of 0.005 with
the RMSE of 0.55%. The best result for MAPE, i.e., 1.9%, was recorded for the learning
rate of 0.01. For RNN, the best performance was achieved at the learning rates of 0.01 and
0.005, where RMSE was 0.59%, and MAPE was 2.18%, achieved for the learning rate of
0.01. Again, it can be observed that in the case of RNN, the network’s behavior was similar
to case 2. In both instances, at the learning rates of 0.01 and 0.005, the values of gradient,
testing, and validation results for RMSE and MAPE were the same.

For the learning rate of 0.005, approximately six times more training time was required
with no improvement in performance. Those data can also be verified against Figure 6,
where the yellow graph for the RNN learning rate 0.01 and the black graph for the RNN
learning rate 0.005 overlap completely. Therefore, the yellow graph is not visible in Figure 6.
The learning rate of 0.01 appears to have been the best choice for both FFBPNN and RNN
in the case of MAPE. From these results, it can be concluded that FFBPNN performed better
in this case in terms of both MAPE and RMSE.

Case 4:
The networks designed in this case contained four layers each. The first and second

hidden layers contained 100 and 50 tansig nodes, respectively. The third hidden layer
contained 25 nodes with a log-sigmoid activation function, and the fourth layer was
the output layer with a single purelin node. The networks were trained using the SCG
algorithm for 10,000 epochs at the four learning rates mentioned above.

After training, the networks’ performance was tested and validated, and the estimated
WT mechanical output power was calculated. The results were then compared to the actual
values of WT mechanical output power from the test data samples, and the errors were
plotted in the graph shown in Figure 7. The value of RMSE relative to the estimated and
actual values of WT mechanical output power was calculated for every tested network and
the results are presented in Table 7.

The results displayed in Tables 6 and 7 are for networks with a similar number of
hidden layers, the same number of nodes in each layer, and trained with the same algorithm
for an equal number of epochs. There was only one difference between these two cases,
i.e., the assigned activation functions. Specifically, the activation functions for the second
and third hidden layers in the respective cases were swapped. By comparing the data in
Tables 6 and 7, it can be observed that the results improved in case 4 for both FFBPNN
and RNN. This shows the importance of assigning activation functions to each layer of the
network. In the case of FFBPNN, the best performance was achieved at the learning rates
of 0.05 and 0.01 where the value of RMSE was 0.5%. Of the two, the training time for the
learning rate of 0.01 is lower, hence was preferable. The best value of MAPE (1.33%) was
also achieved for the learning rate of 0.01. In the case of RNN, the best performance with
RMSE of 0.6% and MAPE of 2.69% was recorded for the learning rate of 0.03. Once again,
a repetition of RNN results for the learning rates of 0.01 and 0.005 was observed. This
behavior was also verified with the graph shown in Figure 7, where the yellow and black
graphs representing the learning rates of 0.01 and 0.005, respectively, overlap in the case of
RNN, hence rendering the yellow graph invisible. This behavior shows that for cases 2, 3,



Energies 2022, 15, 5210 15 of 22

and 4, decreasing the learning rate does not affect the output of the RNN network. Overall,
FFBPNN outperformed RNN in this case.
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Table 7. Training and testing results of FFBPNN and RNN for case 4.

NN
Variant

Learning
Rate

Training
Time

RMSE
Testing

RMSE
Validation

MAPE
Testing

MAPE
Validation

FFBP

0.05 15:15 0.0050 0.0045 0.0216 0.0212
0.03 2:05 0.0051 0.0051 0.0215 0.0226
0.01 1:58 0.0050 0.0051 0.0133 0.0211

0.005 2:05 0.0062 0.00058 0.0237 0.0241

RNN

0.05 30:12 0.0065 0.0064 0.0365 0.0361
0.03 3:27 0.0060 0.0062 0.0269 0.0287
0.01 3:20 0.0063 0.0057 0.0337 0.0286

0.005 3:48 0.0063 0.0057 0.0337 0.0286

Case 5:
In the final case, five-layered networks were designed for FFBPNN and RNN. The

first and second hidden layers contained 100 and 50 nodes, respectively, with a tan-sigmoid
activation function, and the third and fourth hidden layers contained 25 and 12 nodes,
respectively, with a log-sigmoid activation function. The fifth layer was the output layer
with a single purelin node. The training process in both networks was repeated at four
learning rates. The networks were trained using the SCG algorithm and the performance
of every trained network was tested and validated to obtain the estimated value of WT
output mechanical power. This estimated result was then compared to the actual values
of mechanical power and the errors were plotted in the graph shown in Figure 8. The
performance of the networks was evaluated by calculating RMSE and MAPE in each case.
The training and testing results are shown in Table 8.



Energies 2022, 15, 5210 16 of 22Energies 2022, 15, 5210 17 of 23 
 

 

 
Figure 8. Testing error between estimated and target values for case 5. 

Thus, in this case, a 0.06% error can be absorbed if training time is a critical factor. to 
the ultimate choice will depend on the priorities applicable to the given practical situation. 
In the case of RNN, the best performance with the lowest value of RMSE (0.55%) was 
achieved for the learning rate of 0.05. This was the only case where RNN actually outper-
formed FFBPNN by 0.01%, with a training time for the learning rate of 0.05 approximately 
twenty times shorter compared to FFBPNN. In terms of MAPE, RNN yielded the best 
result for the learning rate of 0.05, with MAPE at the level of 2.86%, which was higher than 
the 1.81% observed in case of FFBPNN. 

Table 8. Training and testing results of FFBPNN and RNN for case 5. 

NN Variant Learning Rate Training Time RMSE Testing RMSE Validation MAPE Testing MAPE Validation 

FFBP 

0.05 1:20:56 0.0056 0.0059 0.0213 0.0185 
0.03 4:23 0.0079 0.0084 0.0181 0.0157 
0.01 1:35:10 0.0069 0.0066 0.0331 0.0303 

0.005 2:06 0.0062 0.0056 0.0227 0.0175 

RNN 

0.05 4:07 0.0055 0.0051 0.0286 0.0257 
0.03 3:49 0.0062 0.0059 0.0331 0.05 
0.01 4:39 0.0074 0.0068 0.0435 0.0311 

0.005 41:23 0.0070 0.0067 0.0418 0.0266 

As follows from the above discussion, FFBPNN performed better in the first four 
cases, while RNN yielded better results only in the last case, with a 0.01% improvement 
in RMSE value. As for MAPE, FFBPNN also performed better in four out of the five cases. 
Table 9 summarizes all the results sorted by the learning rate. It must be noted that the 
performance of different NNs depends upon the complexity of the dataset, so these results 
can only be generalized for cases where there are four input parameters and a single out-
put variable. Based on the above, it can be concluded that the performance of the NNs 
depended on various factors that include several hidden layers, assigned activation func-
tions, and different values of learning rates. The number of nodes assigned to each layer 
also affected the performance, but this aspect was not considered in this study and will be 
elaborated in future research. 

Five different cases were examined with a view to finding the best estimation achiev-
able using two different NN variants, i.e., FFBPNN and RNN. The effect of changing the 

Figure 8. Testing error between estimated and target values for case 5.

Table 8. Training and testing results of FFBPNN and RNN for case 5.

NN
Variant

Learning
Rate

Training
Time

RMSE
Testing

RMSE
Validation

MAPE
Testing

MAPE
Validation

FFBP

0.05 1:20:56 0.0056 0.0059 0.0213 0.0185
0.03 4:23 0.0079 0.0084 0.0181 0.0157
0.01 1:35:10 0.0069 0.0066 0.0331 0.0303

0.005 2:06 0.0062 0.0056 0.0227 0.0175

RNN

0.05 4:07 0.0055 0.0051 0.0286 0.0257
0.03 3:49 0.0062 0.0059 0.0331 0.05
0.01 4:39 0.0074 0.0068 0.0435 0.0311

0.005 41:23 0.0070 0.0067 0.0418 0.0266

In the case of FFBPNN, the best performance was achieved for the learning rate of
0.05 where the value of RMSE was 0.56%. The best result for MAPE was 1.81% recorded at
the learning rate of 0.03. The second-best performance, in this case, was observed for the
learning rate of 0.005 with the RMSE value of 0.62%. Although there was a 0.06% performance
discrepancy, the corresponding difference in training time was quite substantial. The training
time for the learning rate of 0.05 was forty times longer than that in the case of 0.005.

Thus, in this case, a 0.06% error can be absorbed if training time is a critical factor. to the
ultimate choice will depend on the priorities applicable to the given practical situation. In
the case of RNN, the best performance with the lowest value of RMSE (0.55%) was achieved
for the learning rate of 0.05. This was the only case where RNN actually outperformed
FFBPNN by 0.01%, with a training time for the learning rate of 0.05 approximately twenty
times shorter compared to FFBPNN. In terms of MAPE, RNN yielded the best result for
the learning rate of 0.05, with MAPE at the level of 2.86%, which was higher than the 1.81%
observed in case of FFBPNN.

As follows from the above discussion, FFBPNN performed better in the first four
cases, while RNN yielded better results only in the last case, with a 0.01% improvement
in RMSE value. As for MAPE, FFBPNN also performed better in four out of the five
cases. Table 9 summarizes all the results sorted by the learning rate. It must be noted
that the performance of different NNs depends upon the complexity of the dataset, so
these results can only be generalized for cases where there are four input parameters and a
single output variable. Based on the above, it can be concluded that the performance of the
NNs depended on various factors that include several hidden layers, assigned activation
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functions, and different values of learning rates. The number of nodes assigned to each
layer also affected the performance, but this aspect was not considered in this study and
will be elaborated in future research.

Table 9. Training and testing results of FFBPNN and RNN for all cases.

NN Variant Cases Training
Time Gradient RMSE

Testing
RMSE

Validation
MAPE
Testing

MAPE
Validation

FFBP with Lr = 0.05

Case 1 46:17 0.00211 0.0140 0.0129 0.12844 0.07556
Case 2 1:34 0.00109 0.0065 0.0062 0.02707 0.02267
Case 3 32:29 0.00111 0.0069 0.0063 0.0307 0.0193
Case 4 15:15 0.00235 0.0050 0.0045 0.0216 0.0212
Case 5 1:20:56 0.00194 0.0056 0.0059 0.0213 0.0185

FFBP with Lr = 0.03

Case 1 0:55 0.00230 0.0145 0.0138 0.11141 0.07465
Case 2 1:41 0.00204 0.0056 0.0053 0.02198 0.02251
Case 3 5:24 0.00274 0.0063 0.0062 0.0207 0.0191
Case 4 2:05 0.00149 0.0051 0.0051 0.0215 0.0226
Case 5 4:23 0.00167 0.0079 0.0084 0.0181 0.0157

FFBP with Lr = 0.01

Case 1 0:53 0.00145 0.0132 0.0116 0.07872 0.05921
Case 2 18:50 0.00116 0.0049 0.0051 0.02626 0.01986
Case 3 2:02 0.00148 0.0057 0.005 0.01902 0.02215
Case 4 1:58 0.00177 0.0050 0.0051 0.0133 0.0211
Case 5 1:35:10 0.00537 0.0069 0.0066 0.0331 0.0303

FFBP with Lr = 0.005

Case 1 0:50 0.00124 0.0136 0.0147 0.05595 0.08372
Case 2 43:41 0.00100 0.0071 0.0074 0.03041 0.01071
Case 3 2:47 0.00126 0.0055 0.0038 0.0194 0.01223
Case 4 2:05 0.000922 0.0062 0.00058 0.0237 0.0241
Case 5 2:06 0.000989 0.0062 0.0056 0.0227 0.0175

RNN with Lr = 0.05

Case 1 5:28 0.00789 0.0156 0.0148 0.06694 0.06375
Case 2 3:06 0.000558 0.0059 0.0058 0.02105 0.02173
Case 3 4:32 0.00297 0.0075 0.0078 0.0285 0.0335
Case 4 30:12 0.00308 0.0065 0.0064 0.0365 0.0361
Case 5 4:07 0.00384 0.0055 0.0051 0.0286 0.0257

RNN with Lr = 0.03

Case 1 1:49 0.0114 0.0160 0.0147 0.08192 0.0574
Case 2 2:56 0.00092 0.0060 0.0058 0.0188 0.0243
Case 3 3:27 0.00399 0.0069 0.0063 0.0218 0.0203
Case 4 3:27 0.00231 0.0060 0.0062 0.0269 0.0286
Case 5 3:49 0.00704 0.0062 0.0059 0.0331 0.050

RNN with Lr = 0.01

Case 1 18:52 0.004707 0.0135 0.0134 0.07125 0.09701
Case 2 3:10 0.00269 0.0052 0.0052 0.01737 0.01967
Case 3 3:20 0.000626 0.0059 0.0057 0.0243 0.0325
Case 4 3:20 0.00174 0.0063 0.0057 0.0337 0.0286
Case 5 4:39 0.00354 0.0074 0.0068 0.0435 0.0311

RNN with Lr = 0.005

Case 1 24:12 0.004707 0.0135 0.0134 0.07125 0.09701
Case 2 25:41 0.00269 0.0052 0.0052 0.01737 0.01967
Case 3 20:00 0.000626 0.0059 0.0057 0.0243 0.0325
Case 4 3:48 0.00174 0.0063 0.0057 0.0337 0.0286
Case 5 41:23 0.0126 0.0070 0.0067 0.0418 0.0266

Five different cases were examined with a view to finding the best estimation achiev-
able using two different NN variants, i.e., FFBPNN and RNN. The effect of changing
the number of hidden layers was best observed in case 1 and case 2 where the network
performance in the second case improved by over 50%. In the subsequent cases, the perfor-
mance of the networks was not significantly affected by further increasing the number of
hidden layers. This shows that if networks are modeled under similar conditions, better
performance can be achieved using two hidden layers.
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The importance of assigning a suitable activation function can be observed in
cases 3 and 4, where the second and third hidden layers were assigned with log-sigmoid
and tan-sigmoid activation functions for FFBPNN, and tan-sigmoid and log-sigmoid activa-
tion functions for RNN, respectively. The tan-sigmoid activation function limits its output
range to −1–1, while the log-sigmoid activation function gives the output in the range
from 0 to 1. Therefore, these activation functions are not assigned to the output layer if the
required output value lies outside said ranges. For that reason, the output node in every
case considered in this study was assigned with a linear activation function to allow for
outputs outside the range of −1 and 1. By swapping the activation functions for the second
and third hidden layers in case 3 and case 4, respectively, the results of FFBPNN improved
at the learning rates of 0.05, 0.03, and 0.01, while the learning rate of 0.005 yielded worse
result in case 4. For RNN, the learning rates of 0.05 and 0.03 showed improved performance
in case 4, while the learning rates of 0.01 and 0.005 showed better performance in case 3.
The value of the learning rate controls the rate of the network’s adaptation to the given
problem. Generally, this value lies between 0 and 1. Four different values of learning rates
were used in this study, namely 0.05, 0.03, 0.01, and 0.005. However, the changing learning
rates had a random impact on performance. In the case of FFBPNN, the performance of
the network was random for the first case. In the second case, the network performance
improved with the learning rates (Lr) decreasing from 0.05 to 0.01, but further decrease
deteriorated the network performance.

In case 3, the network performance improved with the learning rates decreasing from
0.05 to 0.005. Case 4 has showed the most promising results for the learning rates from
0.05 to 0.01 where the value of RMSE ranges from 0.5% to 0.51%.

However, further decrease of the learning rate had a negative impact on network
performance. In the fifth case, the best performance was observed for the learning rate of
0.05, but decreasing the value of the learning rate to 0.03 drastically degraded the network
performance. Further decrease of the learning rates somewhat improved the network
performance but never reaching the level recorded for the learning rate of 0.05. In the case
of RNN, the network performed randomly for the learning rates of 0.05 and 0.03. However,
it must be noted that in the first four cases, the networks showed similar behavior when
the learning rate was decreased from 0.01 to 0.005. In the fifth case, the testing results
deteriorated for learning rates from 0.05 to 0.01. A further decrease in the learning rate
showed some improvement in the quality of estimations results but not enough to outdo
the result achieved at the learning rate of 0.05.

Consequently, it can be concluded that RNN will not improve performance if the
learning rate is decreased beyond 0.01, provided that the network is designed for a similar
problem. In terms of FFBPNN, the best overall result was observed for the learning rate
of 0.01 using case 2 with two hidden layers comprising 100 tansig and 50 logsig nodes
in first and second hidden layers, respectively, where the value of RMSE was 0.49%. As
for MAPE, FFBPNN once again outperformed the alternative showing the best results in
case 4 with three hidden layers. A graph comparing the target and estimated values is
provided in Figure 9. It shows that the estimated results were very close to the actual
target values.

The second-best result was achieved for the same value of learning rate using case
4 with three hidden layers comprising 100 and 50 tansig nodes in the first and second
hidden layers, and 25 logsig nodes in the third hidden layer, where the value of RMSE was
0.5%. However, the training time for case 4 was approximately nine times shorter than in
case 2. Therefore, deepening on the priority applicable to a given situation, one can choose
between methods yielding the lowest values of RMSE, MAPE, or the shortest training time.
Notably, however, training time can be also improved if GPUs are used instead of CPUs.
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For comparison purposes, an advanced variant of RNN was also used, i.e., long short-
term memory (LSTM), for the estimations in all five cases, and the average test errors are
summarized in Table 10. The training times of LSTM for all five cases are recorded as 17:69,
20:28, 23:74, 29:69, and 32:34 s. The best LSTM result was recorded for case 1, where RMSE
was 0.36345 and MAPE was 118.273, i.e., considerably worse than the results of either
FFBPNN or RNN. As follows from the juxtaposition, FFBPNN overall outperformed both
RNN and LSTM.

Table 10. Testing results of FFBPNN, RNN, and LSTM for all cases.

NN
Variant FFBPNN RNN LSTM

Avg. Error RMSE MAPE RMSE MAPE RMSE MAPE

Case 1 0.01382 0.09363 0.01465 0.07284 0.3634515 118.2736
Case 2 0.00512 0.02643 0.00558 0.01865 0.3917926 805.1603
Case 3 0.00610 0.02246 0.00655 0.02472 0.3930577 126.0075
Case 4 0.00532 0.02002 0.00628 0.03270 0.3965067 124.8224
Case 5 0.00665 0.02380 0.00652 0.03675 0.3971354 129.4237

5. Conclusions

In this study, the mechanical output power of a WT was estimated using two variants
of NNs, namely FFBPNN and RNN. The soft computing techniques were chosen due to
their robustness and ability to develop non-linear relationships between stochastic input
and output variables. The input parameters used for this study included wind speed, rotor
speed, collective blade pitch angle, and WT power coefficient. Two variants of NNs are
then designed for five different cases based on several hidden layers, activation functions
assigned to each layer, and learning rates. For each case, both networks were trained using
the SCG algorithm at four different learning rates using training data, after which the
trained networks were used to estimate the output mechanical power of a WT based on the
testing data. Subsequently, the results were successfully validated. The best results were
achieved with the use of FFBPNN in case 2 where the value of RMSE was 0.49%, and in case
4 when MAPE was 1.33%. The second-best result was obtained for the same learning rate
in case 4—yielding RMSE of 0.5%. RNN produced the best estimation in case 2 with MAPE
of 1.73%, and in case 2 where RMSE was 0.52%. The present paper explored the effects
of changing several hidden layers, assigning different activation functions, and changing
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learning rates on the performance of these variants of NNs. Notably, this methodology
also reduces the need for sensors measuring atmospheric parameters such as air density,
temperature, humidity, etc. The models can be easily implemented using interfacing cards
such as dSPACE and NI cards. However, the main disadvantage of this methodology
is its dependence on detailed WT parameter data that were used here as inputs in the
estimations, as sometimes such parameters are not documented in sufficient detail over
long periods of time.

In future research, the estimated mechanical output power of a WT can be used to
determine the electrical power output of the WT. Further research on these models may
explore the effect of changing several nodes in each hidden layer and further changing the
activation functions. The models may be also used to further investigate other parameters
of WTs such as TSR, CP, or optimal rotor speed using MPPT. The future research may
also include the estimation of noise level in wind turbines and the study of wake effect in
off-shore and on-shore wind farms. Furthermore, the results may be compared using other
advanced and more complex soft computing techniques, e.g., GRU and ANFIS, or other
hybrid NN techniques.
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