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Abstract: Rapidly declining costs of renewable energy technologies have made solar and wind the
cheapest sources of energy in many parts of the world. This has been seen primarily as enabling
the rapid decarbonization of the electricity sector, but low-cost, low-carbon energy can have a great
secondary impact by reducing the costs of energy-intensive decarbonization efforts in other areas.
In this study, we consider, by way of an exemplary carbon capture and utilization cycle based on
mature technologies, the energy requirements of the “industrial carbon cycle”, an emerging paradigm
in which industrial CO2 emissions are captured and reprocessed into chemicals and fuels, and we
assess the impact of declining renewable energy costs on overall economics of these processes. In
our exemplary process, CO2 is captured from a cement production facility via an amine scrubbing
process and combined with hydrogen produced by a solar-powered polymer electrolyte membrane,
using electrolysis to produce methanol. We show that solar heat and electricity generation costs
currently realized in the Middle East lead to a large reduction in the cost of this process relative to
baseline assumptions found in published literature, and extrapolation of current energy price trends
into the near future would bring costs down to the level of current fossil-fuel-based processes.

Keywords: renewable energy transition; solar energy; carbon capture and utilization; hydrogen;
renewable methanol; technoeconomic analysis

1. Introduction

While the falling costs of renewable energy sources [1], particularly solar photovoltaics
and onshore wind, promise rapid and accelerating decarbonization of the electricity sector
in the near future, there remain many other sources of carbon dioxide (CO2) and other
greenhouse gas (GHG) emissions that must be mitigated in order to achieve deep decar-
bonization. At present, the technological capability exists to electrify much of the ground
transportation and building heating sectors, along with many industrial processes that cur-
rently rely on on-site combustion for process heat. However, there remain large “stubborn”
sources of emissions associated with activities central to the modern economy that cannot
be addressed via renewable electrification alone. Most of these emissions are associated
with heavy industry, including the production of metals (mainly iron and steel), petroleum
products, chemicals, and cement. Direct emissions from industrial facilities account for
about 20% of global CO2 emissions [2]. Of these, the most stubborn are process emissions
that are released from chemical reactions central to a given process, rather than from energy
production. These emissions inherently cannot be reduced by switching to alternative
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energy sources, and they account for about 6% of global GHG emissions [3]. Hence, the
scale of the process emissions “problem” compares to that of fuel consumption in buildings
and far exceeds that of air transportation, despite the substantially greater awareness of
both emission sources in the popular discourse.

The persistent problem of industrial process emissions presents perhaps the strongest
case for the implementation of carbon capture technology in the age of cheap renewable
energy. While studies increasingly indicate the declining viability of carbon capture and
sequestration (CCS) relative to renewable energy deployment as an approach to decarboniz-
ing electricity generation [4], it likely represents the most cost-effective and practical means
of decarbonizing industries that are large sources of process emissions, as it avoids the need
to fundamentally reinvent widely used processes to reduce their carbon emissions. The
feasibility of retrofitting industrial process units with carbon capture (CC) units employing
mature and commercially deployed amine scrubbing technology has been demonstrated in
numerous studies [5,6].

Due to the additional capital, operating, and energy costs, implementing carbon
capture will inevitably raise the cost of the process in which it is deployed. The implemen-
tation of a carbon tax or price has been widely discussed in policy circles as a means of
incentivizing this additional investment by appropriately counting the externalized cost
of industrial pollution [7]. However, implementing this concept on a sufficiently large
scale has proven more difficult as a political matter [8]. The currently dominant paradigm
of carbon capture and sequestration involves injecting captured CO2 into underground
reservoirs, where it is “sequestered” over long timescales. As injection alone represents
a cost which provides no economic benefit in the absence of a carbon price or carbon
capture credit, most captured CO2 is presently directed to the high-value application of
enhanced oil recovery (EOR), where CO2 is injected into oil reservoirs to enable additional
oil extraction and subsequently sequestered in the reservoir. However, this application
will inevitably decrease dramatically in scale and value if deep decarbonization pathways,
which depend on the near-elimination of fossil fuels as energy sources, are pursued [9].
Hence, it can be argued that the reprocessing of CO2 into useful products presents a clearer
opportunity to gain economic value from captured emissions over the longer term.

We turn, therefore, to another, potentially more sustainable and more far-reaching
approach to mitigating the cost of carbon capture, which has an element of thermodynamic
elegance on its side: the reuse of captured CO2 in carbon capture and utilization (CCU)
processes as a feedstock for the production of industrially useful substances including
chemicals and fuels, which at present are primarily produced from fossil sources with
considerable lifecycle emissions [10]. Implementing CCU for industrial process emissions
on a large scale, based on concepts of industrial symbiosis that are increasingly being
considered in the planning of industrial parks, could lead ultimately to the creation of a
circular carbon economy or “industrial carbon cycle” where industrial carbon sources are
balanced by a combination of industrial and natural sinks [11].

2. Capture and Industrial Utilization Pathways for Industrial CO2

The pathways via which CO2 is captured and utilized in industrial processes have
been heavily discussed by other authors and are summarized here without attempting an
exhaustive overview. In Figure 1, global industrial process emissions are broken down by
source. Process emissions can be defined as direct emissions from an industrial facility that
do not result from the combustion of fuel. A small number of industries are responsible
for the majority of process emissions. The iron and steel industry, a major global emitter,
is responsible for approximately 5% of all global CO2 emissions, although the majority of
these are from combustion primarily in blast furnaces [12]. The largest source of process
emission is the cement industry [13], accounting for approximately one-quarter of the total
industrial carbon emissions, of which around two-thirds are process emissions from the
transformation of CaCO3 to CaO to produce clinker (Figure 1) [13].
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Figure 1. Industrial process emissions (Mt CO2/year) and CO2 content (vol.%) from different
industries: (a) [14], (b) [15], (c) [16], (d) [17], (e) [18], (g) [19], (h) [20], (f) ethanol (fermentation)
emissions calculated using emission factor of 6.29 lbs CO2/gallon ethanol [21] and ethanol production
data [22].

Oil refineries have the third highest industrial CO2 emission contribution [23]; how-
ever, as all decarbonization pathways include dramatic reductions in the use of fossil fuels
in the near future, emissions from oil and gas processing should be expected to decline
over the near term if decarbonization targets are met. Overall global CO2 emissions from
hydrogen production via steam reforming of methane are estimated at 830 Mt/year; H2
is primarily used as a feedstock in the chemical industry today but has widely discussed
potential as an energy carrier [24]. Lastly, ethanol produced by fermentation of sugar
releases a pure CO2 stream, which does not require any separation step, accounting for
~45 MtCO2/year in the US alone [25]. There are differences in the concentration of CO2 in
the emissions streams from each process, which directly effects the energy requirement for
CO2 separation (Figure 1).

Post-combustion CO2 capture from exhaust gas via amine absorption/regeneration
is mature carbon capture technology applied to power plants, and numerous studies
have been undertaken to evaluate its application to industrial processes [26]. Industrial
reuse pathways for captured CO2 include production of building materials via mineral
carbonation [27], CO2-to-fuel processes, and CO2-to-chemical pathways ranging from
highly mature processes such as the production of urea for synthetic fertilizers [10] to a
variety of experimental processes only now being developed in laboratories [28]. CO2-to-
fuel pathways provide an indirect reduction in CO2 emissions if they are used to displace
fossil fuels; if the produced fuels are used for stationary combustion, the emissions can also
be directly sequestered via CCS at the combustion facility. Methanol has received particular
interest as a stable liquid chemical which can be used as fuel and as feedstock for obtaining
ethylene, dimethyl ether, and other industrial chemicals.

The data shown in Table 1 illustrate the demand for different chemicals and the
potential to capture and utilize carbon dioxide if those chemicals are made using captured
emissions. However, projections indicate that these applications could expand to have
combined utilization potential of more than 5 GtCO2/year by 2050, offsetting essentially
all current industrial process emissions [29]; as many of the applications are fuels, these
products would need to replace fossil fuels in order to realize an overall reduction in
CO2 emissions. Taking into account CO2 capture, synthesis of the final product, and
the production of other inputs such as hydrogen, the energy requirements of a circular
carbon economy would be substantial. Figure 2 displays the energy of formation of various
end-products, representing the absolute minimum energy requirement; the technology
readiness level (TRL) for each product is also indicated.
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Table 1. CO2 utilization potential for different reuse pathways [30].

Chemical Production Year Mt of Product/Year Ton CO2 Required/Ton of
Product

CO2 Utilization Potential
Mt CO2/Year

Urea 2019 [31] 180.9 0.735 132.9

Methanol 2020 [32] 83.8 1.373 115

Methane 2017 1100–1500 2.75 3000–4000

Calcium carbonate 2020 [33] 90 0.439 39.51

Ethanol 2018 80 1.911 152.8

Sodium carbonate 2018 62 0.415 25.73

Dimethyl ether 2020 [34] 9 1.911 17.2
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3. Carbon Capture and Utilization with Low-Cost Renewable Energy
3.1. Carbon Capture and Utilization

To gain a clearer picture of the energy requirements of the industrial carbon cycle, we
consider an exemplary CCU pathway consisting of a particular “stubborn” emission source
and a nearly mature process for its reuse. For good measure, we consider a product than
can, in principle, be fed back into the original “source” process, in this case as a fuel for
combustion. We consider possibly the most stubborn emissions source, the cement industry.
With consumption stable, two-thirds of emissions coming from the process [5], fairly high
CO2 concentrations in the exhaust streams and major process modifications unlikely in the
conservative and cost-sensitive construction industry, emissions from cement production
are an ideal target for carbon capture. We consider the capture of CO2 emissions via amine
scrubbing of cement plant exhaust gas, for which technical analysis was performed in
depth by previous authors [6,37]. We assume the use of solar thermal energy to meet the
requirements of the amine regeneration process [38]. CO2 capture cost is based on the
inputs shown in Table 2, which were obtained using data presented in [5], and the captured
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CO2 is directed to the production of methanol [39]. Methanol and its derivatives can
work as fuel on existing engines with little or no modification and can play an important
role in the adoption of carbon-neutral fuels for transportation and aviation sector [40].
Methanol′s stability at ambient conditions, with a higher energy content per unit volume
when compared to H2 and favorable logistics, gives it an advantage as an energy storage
medium; existing global supply chains for conventional fuels can be used for methanol
storage and transportation [41]. Methanol is produced by catalytic hydrogenation of CO2, a
process consisting of three reactions; in reaction (R1), methanol is formed by hydrogenation
of CO2; the CO formed in reaction (R2), which is not desired, is then reacted with H2 to
produce more methanol (R3) [42,43].

CO2 + 3H2 
 CH3OH + H2O. (R1)

CO2 + H2 
 CO + H2O. (R2)

CO + 2H2 
 CH3OH. (R3)

Table 2. Cost inputs for CO2 capture from cement plant from [5].

IRR % Clinker Production t/h Capacity Factor CO2 Captured (kg/ton of
Clinker)

Economic
Life Years

8 120.65 0.9 761 25

Total Plant Cost—Carbon Capture
System—Capex (M USD) 91.8

Opex (M USD/year) 41.5

V
ar

ia
bl

e
O

pe
x

Elect. consumption (kWhel/kg CO2 removed) 0.144 Electric cost (USD/MWh) 70

Therm. consumption (kWhth/kg CO2 removed) 1.05 Heat cost (USD/MWh) 30

MEA make up (kg/kg CO2) 0.001 MEA solvent USD/t 1740

NaOH solution for desulfurization (kg/kg CO2) 0.001 NaOH sol. USD/t
desulfurization 444

Process water make up (kg/kg CO2) 0.473 Process water cost USD/m3 8

Cooling water makeup (m3/year) 1,670,995 Cooling water cost USD/m3 0.468

Additional ammonia solution for NOx removal
(kg/kg CO2) 0.0002 Ammonia solvent USD/t 487.2

Fi
xe

d
O

pe
x

Annual labor + maintenance cost for carbon
capture (M USD) 4.45

Annual insurance and location taxes (M USD)
(the annual insurance and location taxes,
including overhead and miscellaneous regulatory
fees are set to 2% of Capex)

1.83

Fi
xe

d
O

PE
X

—
La

bo
r

C
ha

rg
es

Total Plant Cost—Carbon Capture System—Capex (USD) M USD 91.8
Maintenance cost (% of TPC) 2.50%
Maintenance cost M USD/year 2.30
Number of persons Persons 20
Cost of labor k USD/year per person 72.48
Operating labor M USD/year 1.44
Maintenance labor (% of Maintenance Cost) 40%
Maintenance labor M USD/year 0.92
Administrative and support labor (% Oper. and maint labor) cost) 30%
Administrative and support labor M USD/year 0.71
Labor cost (operating labor + administrative labor) M USD/year 2.16
Total cost = labor cost + maintenance cost M USD/year 4.45
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A total of 41,000 std·m3/h CO2 is supplied at ambient temperature and pressure,
and H2 is fed at a pressure of 25 bar and ambient temperature with a flow rate of
123,000 std·m3/h to the reactor. The temperature and pressure in the reactor are kept
at 76 bar and 210 ◦C; in this catalytic hydrogenation process, Cu/ZnO/Al2O3 is used
as a catalyst [43]. This process requires H2, which we assume to be “green” hydrogen
produced by solar-powered electrolysis (Table 3). This introduces additional cost and
energy consumption inputs, which we posit according to the current state of the art. A
more thorough assessment of the economic prospects of green hydrogen production can be
found elsewhere [44–46] and will be further addressed in future work.

Table 3. Cost input for methanol production from [43].

Annual Production kt MEOH/Year Capacity Factor Levelized Cost of Methanol (LCOM)
(USD/Ton CH3OH Produced)

440 0.9 1173

H2 Required (tons/day) CO2 Required (tons/day) WACC/IRR

239.89 1760 0.08

Capex (M USD) 264
Opex (M USD/year) 491.49

V
ar

ia
bl

e
O

pe
x

Electricity consumption (MWh/tMeOH) 0.169 Electricity cost (USD/MWh) 70

Heating requirement (MWh/t MeOH) 0.439 Heat cost (USD/MWh) 30

Water consumption (t H2O/t MeOH) 26.39 Water cost (USD/ton) 0.03

Catalyst consumption per year (kg) 44,500 Catalyst cost (USD/kg) 95.24

Consumption CO2 (t/t MeOH) 1.46 CO2 (USD/ton) 69.3

Consumption H2 (t/t MeOH) 0.199 Hydrogen cost (USD/ton) 4776

Fi
xe

d
O

pe
x

Fixed annual cost (labor, etc.) (M USD) 13.2

3.2. Determining Renewable Energy Cost

We now consider the impact of current solar energy prices in the United Arab Emi-
rates, one of the leading markets for low-cost, large-scale solar energy projects, which is
increasingly expanding into solar fuel production and a solar-driven industry. All thermal
energy or steam requirements are assumed to be provided from the solar heat system;
electricity requirements are provided by a mix of photovoltaic (PV) and concentrated solar
power (CSP). This recognizes that the facilities being considered are expected to run at
high capacity factors (>90%), whereas the AC capacity factor for solar photovoltaics in the
region is only 30–35% (as modeled at 32% in a previous study) [47]. CFPV and CFProcess are
the capacity factors of the PV power facility and the process being powered, respectively.
PPV and PCSP represent prices of photovoltaic (PV) and concentrated solar power (CSP)
electricity. CSP with overnight thermal storage is used to cover any energy demand that
cannot be covered by PV. We assume that the plant operates at full capacity when PV is
available to take advantage of the cheapest electricity. The overall electricity price can, in
principle, be lowered by reducing operations at night; in this case, there will be a tradeoff
between lower electricity prices and slower payback of capital costs.

Therefore, we rely on a mix of PV and concentrated solar thermal power plant with
thermal energy storage (CSP + TES) electricity, where the electricity price (Pel) is given by

Pel =
CFPV PPV +

(
CFprocess − CFPV

)
PCSP

CFprocess
(1)
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In the models used in this study, capacity factors of 90% are initially assumed for
all components of the system (cement, hydrogen, and methanol plants). In setting solar
thermal and electric prices, we use the power purchase agreement (PPA) prices as bench-
marks for most recently awarded contracts in two solar technologies: 1.35 US cents/kWh
for daytime electricity from photovoltaics (Abu Dhabi’s 2GW Al Dhafrah project) and
7.3 US cents/kWh for overnight electricity from CSP + TES in Dubai’s Mohammed bin
Rashid Al Maktoum solar park [48]. We can also make an estimate of the cost of 24 h
solar heat collected from a parabolic trough array and stored by noting that the power
block at present represents about 25% of the total cost of a CSP + TES plant, according
to the latest available data, and that solar-to-thermal efficiency under local conditions
is about 3× greater than solar-to-electric efficiency, giving a cost of solar heat of 1.8 US
cents/kWh. Bottom-up analysis by Widyolar et al. suggested that lower-temperature solar
heat could be provided by a non-imaging collector array coupled to a thermal storage block
at <1.5 US cents/kWh [49]. We carry these values through the carbon capture, hydrogen,
and methanol process models.

Taking the PV plant capacity factor as 32%, we have a weighted average electricity
cost using Equation (1).

Pel =
0.32× 1.35 + (0.90− 0.32)7.3

0.9
= 5.18 US cents/kWh.

In the first scenario, energy costs for all the models are set to an electricity cost of
7 US cents/kWh and a steam/heat cost of 3 US cents¢/kWh. In the second case, electricity
costs of 5.2 US cents/kWh and 1.8 US cents/kWh for solar steam are assumed (case 2). We
subsequently apply our cross-model harmonization to financing costs as well, considering
a discount rate (r) of 4%, close to that estimated for solar energy projects in the UAE, across
the entire project (case 3). The discount rate can be taken as internal rate of return (IRR)
or weighted average cost of capital (WACC) for a project with known financing terms.
We then consider possible future scenarios as renewable technology costs continue to fall
as the overall electricity price drops to 1.5 US cents/kWh and heat price drops to 0.5 US
cents/kWh (Table 4).

Table 4. Different scenarios for CCU.

Case IRR Pel (USD/MWh) Ph (USD/MWh) Scenario

1 8 70 30 Baseline

2 8 52 18

3 4 52 18 Current

4 4 30 10

5 4 15 5 Future

3.3. Levelized Cost of CO2 Capture and Methanol

To model the dependence of methanol production costs on energy costs, we imple-
ment an integrated model of CO2 capture via amine scrubbing from a Portland cement
production facility, hydrogen production by PEM electrolysis, and methanol synthesis via
the pathway described by Van-Dal and Bouallou [42]. The capital and operational costs
of the methanol synthesis process are taken from the work of Perez-Fortes et al. [43], and
those for CO2 capture are taken from the CEMCAP technoeconomic model first presented
by Gardarsdottir et al. [5]. These cost components were implemented in a levelized cost
model where the levelized cost of captured CO2 is given by

LCOCO2 =
CapEx + ∑N

i=1
O&Mi
(1+r)i + ∑N

i=1
Ei

(1+r)i

∑N
i=1

Ci
(1+r)i

, (2)
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where O&Mi is the operation and maintenance cost, Ei is the total energy cost, r is the
discount rate, and i represents the year, ranging from 1 to N, where N is the life of project
in years, and Ci represents CO2 captured in year i.

The levelized cost of methanol is given by

LCOM =
CapEx + ∑N

i=1
Oi

(1+r)i + ∑N
i=1

H2 i
(1+r)i + ∑N

i=1
CO2 i
(1+r)i + ∑N

i=1
Ei

(1+r)i

∑N
i=1

Mi
(1+r)i

, (3)

where Oi is the operating cost, H2i the cost of hydrogen inputs, and CO2i is the cost of CO2
inputs in year i. Ei is the total energy cost in year i, which can be further divided into an
electrical and thermal component. Mi represents the total methanol production in year
i, and r is the discount rate. Thermal energy dominates the energy consumption of CO2
capture, while both thermal and electrical energy inputs are significant in the methanol
synthesis process. Both electrical energy and thermal energy are assumed to derive from
thermal sources, and the price per kWh of each of these energy components is set according
to real-world experience with large-scale solar projects in the United Arab Emirates. The
discount rate r encompasses financing costs and can be understood as the interest rate on
a debt-financed project, the internal rate of return on an equity-financed project, or the
weighted average cost of capital combined debt and equity financing. The studies used
for our base case described uses a discount rate of 8%; however, we reduce this to 4% in
later cases in keeping with recent global experience in renewable energy finance. The cost
of H2 production is separately determined using an NREL model for a PEM electrolysis
system producing 250 metric tons of H2 per day [50], for which model inputs are listed in
Table 5, and the full set for model input methanol production and carbon capture is listed
in Tables 2 and 3.

Table 5. H2 production plant specifications.

Average production rate kg H2/day 250,000

Hours per stack life h/life 55,188

Total system input power (peak) MW 653.281

Total system cost M SD 272.8

Discount rate % 4

Operating capacity factor % 0.9

Total system electrical usage kWh/kg H2 55.5

System efficiency % 60

Total system cost USD/kW 460

4. Results and Discussion
4.1. Declining Cost of Renewable Methanol

In order to establish a baseline case, we harmonize the energy costs of the CC, H2, and
methanol synthesis models to an electricity cost of 7 US cents/kWh and a steam cost of
3 US cents/kWh; carrying these values through the model gives baseline costs for CO2
capture, H2, and CH3OH of 69, 4776, and 1173 USD/ton respectively, at a discount rate
of 8%. For methanol, this compares to a market price of 300–500 USD/ton as of March
2021 [51].

In the second case, the discount rate is kept the same, but energy costs are matched to
what is currently being seen in UAE; an electricity cost of 5.2 US cents/kWh and a steam
cost of 1.8 US cents/kWh are applied to the model, giving costs for CO2 capture, H2, and
CH3OH of 54, 3743, and 937 USD/ton respectively. To take into account the current state in
renewable energy finance, especially in the Middle East, the discount rate is brought down
to 4%, while energy costs are kept at the same level as previous case. With these parameters
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applied to the model, the costs achieved for CO2 capture, H2, and CH3OH are 54, 3743, and
937 USD/ton, respectively; with both energy and finance parameters comparable to what
is seen in UAE, this case can be seen as representing the current situation.

In the last scenario with a decline in the cost of renewable energy electricity cost to
1.5 US cents/kWh and a steam cost of 0.5 US cents/kWh, the cost of CO2 capture falls to
31 USD/ton, and the cost of methanol synthesis falls to 416.99 USD/ton, comparable to
current market prices. This is without considering likely future reductions in capital and
operating costs for carbon capture, electrolysis, and methanol synthesis in the future as
these technologies become more mature. The model outputs for the different conditions
above are displayed in Table 6.

Table 6. Model outputs for different discount rates, as well as electricity and heat prices.

Case CO2 Capture
(USD/Ton)

H2 Cost
(USD/Ton)

CH3OH Cost
(USD/Ton) Parameters (%, USD/MWh, USD/MWh)

1 69.29 4776.16 1173.25 r = 8, Pel = 70 Ph = 30

2 54.10 3743.08 937.17 r = 8, Pel = 52 Ph = 18

3 50.33 3541.92 873.85 r = 4, Pel = 52 Ph = 18

4 38.77 2295.38 601.67 r = 4, Pel = 30 Ph = 10

5 31.36 1445.46 416.99 r = 4, Pel = 15 Ph = 5

The National Energy Technology Laboratory (USA) reported methanol production
costs using coal and natural gas within the range of 396–469 USD/t for coal and
311–345 USD/t for natural gas (NG at 6 USD/MMBtu). They also noted, through a detailed
breakdown of methanol production costs, that the fuel costs account for ~60% of the selling
price of methanol [52]. Another notable study [53] established the production cost of
methanol in different geographies (Europe, Middle East, and America) and also noted the
significant contribution of feedstock costs to the overall methanol production cost [54]. We
consider natural gas-based SMR production of methanol as our point of comparison. We
note the historic ranges of natural gas prices over the last 25 years (2–12 USD/MMBtu) and
consider a median price of 8 USD/MMBtu, which was observed in 2022. This corresponds
to a methanol price in the range of 400–450 USD/t. Several other technoeconomic studies
also used this range as the benchmark price range for economic viability when making
comparisons for alternative production routes [43,55].

It is worth noting that that largest single contributor to methanol production cost
is actually the price of hydrogen. This is expected as 1 kg of CH3OH requires 0.199 kg
of H2 and 1.49 kg of CO2 to produce, giving a ratio of ~7.5 between CO2 and H2 for
producing methanol, whereas the unit cost of H2 production is ~70× greater than that for
CO2 capture. In Figure 3, we show the breakdown of methanol synthesis cost for fixed
(Capex + maintenance/upkeep + financing), H2, CO2, and direct electric and direct heat
costs. This makes clear the impact of hydrogen production costs on the viability of this
pathway for CO2 reuse. Briefly, considering a scenario in which all electricity comes from
PV and the electrolysis facility is operated only when electricity is available (CF = 32%), the
H2 production cost climbs to 2.42 USD/kg H2 and the MeOH cost climbs to 611 USD/ton,
when the electricity price is 1.35 US cents/kWh. In a possible near-future scenario where
the electricity price falls to 1 US cents/kWh and the capacity factor climbs to 40%, for
example by the inclusion of short-term battery storage in the PV plant, the H2 and MeOH
costs would become 1.90 USD/kg and 504 USD/ton, respectively. This benchmark is
already being approached in the Middle East, with Saudi Arabia’s recent announcement of
a 0.0104 USD/kWh price for a 600 MW PV project [56].
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4.2. Energy and Hydrogen Costs in the Circular Carbon Economy

In this analysis, we considered the production of methanol from captured CO2 as it
is a mature process with a high technology readiness level of 9; the process of methanol
production using captured CO2 is well understood and can be rigorously modeled on the
basis of real-world experience. CRI (Carbon Recycling International) successfully set up an
industrial-scale CO2-to-methanol plant in Iceland, where captured CO2 from a geothermal
plant is converted to methanol. The annual CO2 recycling capacity from this plant is
5500 MT. A similar setup is being designed by CRI for coke oven gas production facility in
Henan Province, China. Once completed, the plant is estimated to recycle 160,000 MT of
CO2 every year [57]. The strong dependence on the cost of hydrogen production slightly
obscures the CO2-related aspects of the study; however, this itself is instructive and can be
straightforwardly removed if desired. Figure 4 shows the breakdown of MeOH, CO2, and
H2 costs for “baseline”, current, and near-future target renewable energy costs as modeled
above. The CO2 and H2 capture/production costs themselves have strong dependence
on the heat and electricity costs, respectively, and the direct dependence of the methanol
synthesis process on energy cost is substantially less. Approximately 83% of total cost in
production of green hydrogen is spent on electricity requirements, whereas 43% of total
cost in the MEA-based carbon capture system for a cement plant is spent on fulfilling the
thermal energy requirement. The share of direct electricity and heat in the production of
methanol is around 1%, but energy costs have a strong indirect impact on methanol costs,
as hydrogen accounts for 81% of the total cost of methanol.
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While not the largest cost contributor in this scenario, the issue of CO2 capture costs is
worth considering specifically. Previous analysis, on which the CO2 capture component of
our model is based, assumed a levelized cost of steam of roughly 3 US cents/kWh, for a
modeled cost of CO2 capture of 69 USD/ton (CO2). Dropping this steam price to 1.8 US
cents/kWh as described previously brings the cost of capture to 54 USD/ton; lowering
this further to 1 US cents/kWh (a reasonable near-future target) gives 38 USD/ton. These
values can be considered in the context of carbon taxes [58]. At present, the carbon tax
of Norway (one of the world’s highest) sits at about 70 USD (2021) and is expected to
reach 240 USD by 2030 [59]. Capturing CO2 under the baseline assumptions would be a
break-even proposition at best. However, falling energy costs stand to make the proposition
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far more attractive in general. This is before considering the potential to add value through
reprocessing of carbon into useful products.

When considering the economics of CO2 reuse, the strong dependence on the price
of hydrogen in our exemplary system is not a sidenote but in fact a common feature that
must be considered in many applications. While uses of CO2 exist that do not involve
hydrogen, such as carbon-curing of building materials or carbon fertilization of biomass,
in addition to well-established enhanced oil recovery methods, many of the potentially
most valuable applications, including production of urea, methanol, and other chemicals
and fuels, depend heavily on it. Furthermore, hydrogen production by electrolysis is the
primary way that electricity prices enter into the model; both CO2 capture and MeOH
synthesis are primarily driven by thermal energy, which we assume in this analysis to come
from solar thermal collectors. From the solar energy perspective, it should be noted that
there is another potential source of solar heat, which is simply to couple electric boilers to
an oversized PV array and “curtail” the excess electricity produced by running the boilers
to produce heat, which is then stored for use as needed. While this requires more land area
than capturing solar heat directly (due to the lower efficiency of PV modules), it has the
advantage of being able to generate heat at the point of use using an on-site boiler. Current
economics and the specific requirements of different projects will dictate the appropriate
solution for a given system.

4.3. Effect of Electrolyzer Efficiency, Cost and Stack Life, and Electrolyzer on Cost of
Methanol Production

Using our integrated CCU model, we evaluate the effects of improvement in various
parameters related to H2 production on the cost of renewable methanol. PEM electrolyzer
efficiency is expected to reach 70% by 2030 and close to 80% in the longer term [16]; an
improvement of 20% could result in methanol cost declining by 15% assuming all other
factors remain constant (see Figure S1). PEM-type electrolyzers are likely to reach a price
of close to 200 USD/kW by 2050 on account of improvements in technology and use of
cheaper materials [16]; a drop in electrolyzer cost from 460 USD/kW which is assumed
in our integrated model to 200 USD/kW would result in a decrease in cost of methanol
by 10%. Electrolyzer stack life is expected to double by 2050 [16]; an improvement in
electrolyzer stack life from 70,000 h to around 150,000 h will also reduce the cost of green
methanol, but not to the same extent as improvements in electrolyzer efficiency and cost,
as shown in Figure S3.

5. Conclusions

The presence of “stubborn” CO2 emissions throughout the global economy, which
cannot be straightforwardly mitigated by switching from fossil fuels to renewable energy
sources, presents a challenge for deep decarbonization. We discussed how capture and
utilization (CCU), in which CO2 is used as a carbon source for other processes, can derive
additional value from the CO2, but at substantial energy cost. While a large body of work
has focused on the technoeconomic analysis of specific CO2 utilization pathways, this
study sought to gain a general understanding of the impact of falling energy prices on
the cost of CCU. This question is gaining particular relevance as the growth of solar and
wind technologies increasingly drives energy prices toward historic lows. The exemplary
system studied here illustrates the various ways in which energy costs enter into the
overall cost of industrial CCU, and how current energy price trends can be expected to
modify these costs in the near future. Assuming solar heat produced by a parabolic trough
array and 24 h solar electricity produced by a combination of photovoltaics (PV) and
CSP with thermal energy storage, we find that current trends in solar energy generation
costs lead toward methanol production from captured industrial CO2 and electrolytically
produced hydrogen becoming economically viable, considering current market prices, in
the foreseeable future. As an exemplary case of industrial carbon capture and utilization,
this serves as an indication of how rapid changes in the economics of renewable energy
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generation have the potential to make the circular carbon economy a reality. We additionally
note, however, that the strongest impact of falling energy costs is through the energy-
intensive hydrogen electrolysis process. As hydrogen is a critical input of many high-value
CO2 products, our results additionally point to the importance of expanding and lowering
the cost of green hydrogen production, not only for the traditional reason of displacing
carbon-based fuels, but also to enable the more effective capture and use of CO2 emissions
from the most stubborn industrial sources.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/en15145181/s1. Figure S1. Cost of methanol with change
in electrolyzer efficiency (electricity—30 USD/MWh, heat—10 USD/MWh, discount rate—4%,
electrolyzer cost—460 USD/kW). Figure S2. Cost of methanol with change in electrolyzer cost
(electricity—30 USD/MWh, discount rate—4%, system efficiency—60%, electrolyzer cost—460
USD/kW). Figure S3. Effect of electrolyzer stack lifetime on methanol cost (PV electricity—13.5USD,
CSP + storage—73 USD/MWh, heat—18 USD/MWh, discount rate—4%, system efficiency—60%,
electrolyzer cost—460 USD/kW). Figure S4. Effect of capacity factor on price of electricity (PV
electricity—13.5 USD/MWh, CSP + storage—73 USD/MWh). Figure S5. Effect of capacity factor on
methanol (PV electricity—13.5 USD, CSP + storage—73 USD/MWh, heat—18 USD/MWh, discount
rate—4%, system efficiency—60%, electrolyzer cost—460 USD/kW.
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