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Abstract: Current electric utilities must achieve reliability enhancement of considerable distribution
feeders with an economical budget. Thus, optimal preventive maintenance planning is required
to balance the benefits and costs of maintenance programs. In this research, the proposed method
determines the time-varying failure rate of each feeder to evaluate the likelihood of future interrup-
tions. Meanwhile, the consequences of feeder interruptions are estimated using interruption energy
rates, customer-minutes of interruption, and total kVA of service areas. Then, the risk is assessed and
later treated as an opportunity for mitigating the customer interruption costs by planned preventive
maintenance tasks. Subsequently, cooperative game theory is exploited in the proposed method to
locate a decent balance between the benefits of reliability enhancement and the costs required for pre-
ventive maintenance programs. The effectiveness of the proposed method is illustrated through case
studies of large power distribution networks of 12 service regions, including 3558 medium-voltage
distribution feeders. The preventive maintenance plans resulting from the proposed method present
the best compromise of benefits and costs compared with the conventional approach that requires a
pre-specified maintenance budget.

Keywords: cooperative game theory; time-varying failure rate; optimization; prioritization; risk
assessment; reliability benefit; benefit–cost ratio; reliability-centered maintenance

1. Introduction

In most parts of the world, power distribution networks are still overhead feeders,
prone to being affected by various outage causes, such as tree contact, animal contact,
and equipment failure [1–3]. As a result, reliability concerns have been a critical issue
among electric utilities for several decades. In a competitive environment, electric utilities
are challenged to achieve reliability improvement of power distribution systems with
tight maintenance budgets. Therefore, cost-effective preventive maintenance must be
planned to mitigate power interruptions by fully exploiting data and information available
in organizations.

A number of electric utilities prioritize their feeders so that the critical feeders receive
appropriate and cost-effective maintenance [4–6]. To achieve this objective successfully, the
available resources must be optimally allocated [7]. In [5,6,8–11], the reliability-centered
maintenance (RCM) technique was employed to select cost-effective preventive mainte-
nance tasks for electric power systems.

Several risk-based approaches for maintenance planning were well adopted in a
wide range of power systems, for instance, hydroelectric power plants [12], generation
units in combined heat and power systems [13], and power distribution systems [14].
In addition, ref. [15] explored long-term risk-based maintenance optimization for power
distribution systems under hurricane hazards. In [16], a short-term maintenance strategy
was successfully implemented based on a risk-cost analysis of power transmission and
transformer equipment.
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Most research works [4–6,8–11,17] employed failure rates assumed to be invariant
with time in risk studies because of their simplicity and availability. However, such an
assumption may sacrifice some helpful information for risk assessment, for example, a
trend of failure rates [18–20]. Instead, the time-varying failure rate can be beneficial to the
risk assessment since its trend, either increasing or decreasing, indicates the likelihood
of future power interruptions [18,21]. This is very important since the effectiveness of
preventive maintenance planning depends on the accuracy of risk assessment.

In [17,22–25], optimal preventive maintenance planning was conducted for power
distribution systems under pre-specified maintenance budgets. In fact, policymakers often
question the assigned budgets about a reasonable balance between utility investment
and customer interruption costs. Admittedly, a larger budget will allow more reliability
improvement in power distribution systems, but it will lessen profitability for utilities. As
a result, finding the right figure for the budget can be problematic because an optimal
balance of benefits between utilities and customers needs to be sought.

In multi-objective optimization, it is difficult to pick one optimal solution that can
improve one objective without worsening the others. Recently, the cooperative game
theory approach has been applied in various areas because it can effectively find a balanced
solution with much less computational effort [26]. Some applications of game theory for
solving power system problems can be found in [27]. Examples of recent studies are on
allocating the transmission losses [28,29], allocating the small power producer losses [30],
allocating unit start-up costs of generators [31], constructing prosumer coalitions for energy
cost savings [32], maintenance planning [33], and applications in distribution system
expansion planning, including distributed generation [34].

This research proposed a methodology for the preventive maintenance planning of
power distribution systems using the time-varying failure rate and cooperative game theory.
The concept of the method is described as follows.

First, the risk likelihood and consequences are determined to perform the risk assess-
ment for individual distribution feeders. The time-varying failure rates, calculated from
the three-year interruption record data based on the Weibull distribution, are exploited
to indicate the likelihood of future interruptions. Subsequently, the consequences are
evaluated using the interruption energy rates, customer-minutes of interruption, and total
kVA of service areas. Accordingly, the risk of feeder interruptions can be assessed and later
considered as an opportunity for mitigating customer interruption costs by appropriate
preventive maintenance.

Secondly, preventive maintenance tasks corresponding to interruption causes are
listed for each feeder. Then, the cost of each task can be estimated. Later, the benefit–
cost ratio (BCR) of individual tasks is calculated to illustrate the cost-effectiveness. As a
result, all maintenance tasks can be ranked according to their BCR. This step is essential
because the tasks sorted by their BCR will simplify the problem formulation for optimal
maintenance planning.

Lastly, the method employs cooperative game theory to locate the budget amount,
resulting in an optimal balance between costs and benefits of preventive maintenance.
Then, the list of selected tasks can be obtained accordingly.

To demonstrate the practicability and effectiveness of the proposed method, exten-
sive overhead distribution networks of 12 service regions covering all provincial areas of
Thailand [4,35] are used as case studies. The networks consist of 3558 medium-voltage
distribution feeders with a total length of 318,349 circuit kilometers. The first case study
illustrates that the proposed method can successfully find the preventive maintenance
plan resulting in the optimal balance between costs and benefits. The second case study
highlights the accuracy of the presented method by revealing the reduced accuracy of
maintenance planning that neglects the time-varying failure rates.

This paper is organized as follows: Section 2 carefully describes the risk assessment;
in Section 3, the benefit–cost evaluation of preventive maintenance tasks is illustrated;
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Section 4 explains the cooperative game theory exploited in the method; then, the results
and discussion are illustrated in Section 5; and, finally, Section 6 provides the conclusions.

2. Risk Assessment

The risk assessment is the process to identify and evaluate hazards that deteriorate
the distribution system reliability. This section is divided into three subsections to explain
the presented concept. In the first subsection, power interruption causes are identified.
The second part analyzes the time-varying failure rates of distribution feeders. The last
subsection presents the evaluation of customer interruption costs.

2.1. Causes of Power Interruptions

As the overhead distribution feeders are exposed, they are vulnerable to damage from
a variety of external factors. In addition, most overhead distribution feeders in Thailand
are over 30 years old, so equipment failures due to aging and material degradation are
likely to occur. The most common causes of power interruptions found in outage event
records from 2004 to 2019 [36] are equipment failure, tree contact, and animal contact.
Table 1 shows customer-minutes of interruption categorized by their causes regarding the
overhead distribution systems in 2019 as calculated from [36]. According to the Pareto
principle (80/20 rule), which states that 80% of consequences come from 20% of the causes,
the most influential causes in Table 1 are equipment failure, tree contact, and animal contact,
all resulting in over 80% of the total customer-minutes of interruption. Consequently, this
research focuses solely on maintenance tasks that prevent outages caused by equipment
failure, tree contact, and animal contact.

Table 1. Causes of power interruptions and customer-minutes of interruption.

Rank Cause of Interruptions Customer-Minutes of Interruption %

1 Equipment failure 499,322,372 33.34
2 Tree contact 463,909,708 30.97
3 Animal contact 299,530,449 20.00
4 Environment 91,440,132 6.10
5 Vehicle 53,221,537 3.55
6 Foreign object 31,161,096 2.08
7 Others 21,693,792 1.45
8 Human 20,407,668 1.36
9 Natural disaster 16,073,329 1.07
10 Overload 1,069,261 0.07

Total 1,497,829,344 100.00

2.2. Feeder Failure Rates

The failure rate is one of the vital parameters describing the reliability characteristics of
components or systems. It expresses the frequency with which a component or system fails.
Superior to a constant or average failure rate [37], the time-varying failure rate can illustrate
its trend that can be exploited for preventive maintenance planning. After excluding all
feeders with no interruptions, this research determines the time-varying failure rates of
3112 distribution feeders with 3-year (2017–2019) interruption data based on the Weibull
distribution. The Anderson–Darling test showed that 2654 feeders, approximately 75%
of the total feeders, accepted the hypothesis, as categorized by the 12 service regions in
Table 2.
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Table 2. Results of the Anderson–Darling test categorized by 12 service regions.

Service
Region

Number of
Feeders

Accepted
A.D. Test

Rejected
A.D. Test No Event

1 258 214 18 26
2 257 226 8 23
3 198 177 12 9
4 257 189 29 39
5 253 213 32 8
6 250 200 21 29
7 533 388 61 84
8 454 275 76 103
9 389 258 56 75
10 221 156 52 13
11 286 203 58 25
12 202 155 35 12

Total 3558 2654 458 446

The Weibull distribution is commonly used in a two-parameter version, including
scale parameter α and shape parameter β. Both parameters are positive numbers [38].
From the statistics of power interruptions during the period 2017–2019, the data were
analyzed to find parameters α and β. Then, the time-varying failure rate λ(t) of each feeder
is determined by Equation (1) [38], where t is defined as the amount of time that the feeder
continuously supplies its customers. Accordingly, every time the feeder is back in service
after the last interruption, t is reset to 0.

λ(t) =
βtβ−1

αβ
(1)

From Equation (1), it can be observed that the failure rate decreases with t if the power
of t is negative (i.e., if β < 1). On the other hand, if β > 1, the failure rate increases with t. In
the case of β = 1, the failure rate is constant with t.

In Figures 1 and 2, t1 is the time when the maintenance planning is performed, usually
by the end of each year. Additionally, λ(t1), the failure rate at t = t1, implies the frequency
with which the feeder fails currently. From a planning point of view, it needs to look ahead
at least one year and consider a change in the failure rate. Hence, λ(t 2), the failure rate
at t = t2, where t2 is one year after t1, presents the anticipated frequency. As a result, the
failure rate tendency index kλ defined by Equation (2) can be used to predict how the risk
likelihood will change in the following year.

kλ =
λ(t 2)

λ(t 1)
(2)
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Figure 2. Decreasing failure rate, kλ < 1.

Figure 1 shows the increasing failure rate, resulting in a kλ value greater than 1. It
implies that the reliability will deteriorate if maintenance plans are not upgraded. In
Figure 2, the decreasing failure rate leads to kλ being less than 1. This indicates that the
reliability is likely to increase, although maintenance plans are not revised [38].

The calculation of kλ is performed for all feeders accepting the Weibull distribution
hypothesis. It is found that 1509 feeders have increasing failure rates (kλ > 1) and 720 feeders
have decreasing failure rates (kλ < 1). However, the other 425 feeders have almost constant
failure rates (kλ ≈ 1). As a result, the number of feeders in different types of failure rate
tendencies are shown in Table 3. In addition, kλ = 1 is assumed for the 458 feeders rejecting
the hypothesis.

Table 3. Number of feeders with different types of failure rate tendencies in each service region.

Service Region kλ < 1 kλ > 1 kλ ≈ 1 Total

1 63 103 48 214
2 13 196 17 226
3 29 137 11 177
4 58 101 30 189
5 21 155 37 213
6 50 124 26 200
7 163 133 92 388
8 98 123 54 275
9 59 170 29 258
10 77 56 23 156
11 53 115 35 203
12 36 96 23 155

Total 720 1509 425 2654

2.3. Evaluation of Customer Interruption Costs

This subsection explains the concept of evaluating the impacts of power interruptions.
The customer-minutes of interruption CMI is a quantity indicating the effects of power
interruptions in terms of the number of affected customers and interruption duration in
minutes. Although CMI is a rational index to express the reliability impacts, it is preferable
to convert this index into the customer interruption costs, which is more understandable
from an economic perspective.

First, the CMI in each zone of a feeder due to three influential causes (equipment
failure, tree contact, and animal contact) can be calculated by Equation (3) [39].

CMIc
z, f =

Nc

∑
i=1

Cc
zi × dc

i (3)
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where

CMIc
z, f is the customer-minutes of interruption in zone z of feeder f due to cause c;

Cc
zi is the number of customers in zone z affected by incident i due to cause c;

dc
i is the interruption duration of incident i due to cause c (minutes);

Nc is the number of interruptions due to cause c.

Subsequently, the outage rate of customers (THB/customer-minute) is proposed to
assess the impacts on customers when experiencing a power interruption. This value
depends on customer loads and interruption energy rates of customers in different zones
(industrial, metropolitan, urban, suburban, and rural) as presented in Table 4. Accordingly,
the outage rate of customers in each zone of a feeder can be calculated by Equation (4).

Oz, f =
kVAz, f×PF×UF

Cz, f
× IERz

60
(4)

where

Oz, f is the outage rate of customers in zone z of feeder f ;
kVAz, f is the installed kVA in zone z of feeder f ;
PF is the power factor;
UF is the utilization factor;
Cz, f is the number of customers in zone z of feeder f ;
IERz is the interruption energy rate of customers in zone z (THB/kWh) as presented in
Table 4 (Exchange rate: THB 1 = USD 0.028).

Table 4. Interruption energy rate of customers in different zones of each service region.

Service
Region

Zones

Industrial Metropolitan Urban Suburban Rural

1 125.12 65.52 72.65 103.07 94.25
2 154.54 80.92 89.74 127.30 116.40
3 * 71.56 79.35 112.57 102.93
4 * 48.26 53.52 75.92 69.42
5 * 45.25 50.17 71.18 65.09
6 121.42 63.58 70.50 100.02 91.45
7 79.83 41.80 46.35 65.76 60.13
8 77.64 40.66 45.08 63.96 58.48
9 104.34 54.63 60.59 85.95 78.59
10 110.61 57.92 64.23 91.12 83.32
11 * 44.80 49.68 70.47 64.44
12 105.16 55.07 61.07 86.63 79.21

* No industrial zone in service regions.

Then, the customer interruption cost can be obtained by multiplying the CMI by the
outage rate of the customers. Where Nz is the number of zones, the customer interruption
cost of feeder f due to cause c, CICc

f , is evaluated by using Equation (5).

CICc
f =

Nz

∑
z=1

CMIc
z, f × Oz, f (5)

3. Benefit–Cost Evaluation of Preventive Maintenance Tasks

This section illustrates the cost–benefit evaluation of preventive maintenance tasks. As
the three influential causes, including equipment failure, tree contact, and animal contact,
were identified previously, corresponding preventive maintenance tasks must be carefully
planned for reliability enhancement. In this research, the patrol and condition-based
maintenance, tree trimming, and installation of animal guards are selected accordingly.
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This section is divided into three subsections. The first and the second subsections explain
the evaluation of benefits and costs of preventive maintenance tasks, respectively. The third
part describes the benefit/cost analysis.

3.1. Benefits of Preventive Maintenance Tasks

Preventive maintenance can help to reduce the risk of power interruptions and lessen
customer interruption costs. When the preventive maintenance benefits are evaluated in
monetary terms, it is easier to understand and helpful for economic analysis. To achieve
this objective, it requires the maintenance effectiveness of each maintenance task. In this
research, the effectiveness factors of preventive maintenance tasks are obtained from the
field surveys. Hundreds of engineers, technicians, maintenance crews, patrolmen, and
skilled operators answered the questionnaires based on maintenance records, interruption
records, and field experience. In addition, the survey conclusions were confirmed by the
results of the maintenance model in [40]. Associated with the statistical comparison of
before and after performing each task, the effectiveness factors of preventive maintenance
tasks to prevent power interruptions due to equipment failure ηe, tree contact ηp, and
animal contact ηa are 0.05, 0.70, and 0.30, respectively.

The proposed method uses the effectiveness factor of maintenance tasks preventing
power interruptions due to cause c, ηc, and the failure rate tendency index, kλ, f , to assess
the opportunity for the corresponding maintenance task to mitigate the interruptions
due to cause c in the following year. Thus, the benefits of preventive maintenance tasks
corresponding to cause c for feeder f or bpmc

f can be described by Equation (6).

bpmc
f = kλ, f × ηc × CICc

f (6)

3.2. Costs of Preventive Maintenance

For each feeder, the costs of planned preventive maintenance tasks can be estimated
from the historical costs. Alternatively, the unit cost per kilometer of these preventive
maintenance tasks can be adopted to estimate the costs. Such information can be found in
the yearly maintenance budget plans [41] and the actual maintenance expenses recorded
in one fiscal year. In this study, the maintenance cost per feeder kilometer for patrol and
condition-based maintenance, me, is approximately THB 160 per kilometer. The unit costs
of tree trimming, mp, and installing animal guards, ma, are approximately THB 3200 and
1200 per kilometer, respectively.

Then, the costs of preventive maintenance tasks corresponding to cause c for feeder f
or cpmc

f can be estimated from the unit cost per kilometer, mc, multiplied by the length of
feeder f, L f , as expressed by Equation (7).

cpmc
f = L f × mc (7)

3.3. Benefit/Cost Analysis of Maintenance Tasks

Benefit/cost analysis of preventive maintenance tasks is an approach for evaluating
the cost-effectiveness of maintenance tasks by comparing the benefits with the costs in
terms of the benefit/cost ratio, BCR. Hence, the BCR of preventive maintenance tasks
corresponding to cause c for feeder f or BCRc

f can be given by Equation (8) [5]:

BCRc
f =

bpmc
f

cpmc
f

(8)

From the analysis of 3112 distribution feeders, 7587 or H preventive maintenance
tasks were initially suggested, as shown in Table 5. Then, the BCRc

f value of each task
was evaluated and all were sorted in descending order. According to the BCR ranking,
accumulating bpmc

f and cpmc
f of each task in a one-by-one fashion from j = 1 to H will

generate BPMj and CPMj as members of the datasets BPM and CPM, respectively, in Table 6.
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While BPMj and CPMj are defined as the benefit and cost of maintenance strategy j, the
method of cooperative game theory examines strategies for j = 1 to H to determine the
optimal preventive maintenance program, as explained in the next section.

Table 5. Number of preventive maintenance tasks categorized by maintenance type.

Service
Region

Patrol and
Condition-Based

Maintenance
Tree Trimming Installing

Animal Guards Total

1 200 204 201 605
2 213 222 220 655
3 169 176 168 513
4 126 107 109 342
5 224 246 230 700
6 137 132 140 409
7 311 303 311 925
8 294 302 293 889
9 263 249 260 772
10 184 182 182 548
11 237 221 243 701
12 176 176 176 528

Total 2534 2520 2533 7587

Table 6. BPMj and CPMj generated for strategy j from j = 1 to H.

BCR Ranking bpm cpm Strategy No. BPM CPM

1 bpm1 cpm1 1 BPM1 = bpm1 CPM1 = cpm1
2 bpm2 cpm2 2 BPM2 = bpm2 + BPM1 CPM2 = cpm2 + CPM1
3 bpm3 cpm3 3 BPM3 = bpm3 + BPM2 CPM3 = cpm3 + CPM2
...

...
...

...
...

...
j bpmj cpmj j BPMj = bpmj + BPMj−1 CPMj = cpmj + CPMj−1
...

...
...

...
...

...
H bpmH cpmH H BPMH = bpmH + BPMH−1 CPMH = cpmH + CPMH−1

4. Cooperative Game Theory

For multi-objective optimization, it is difficult to pick one optimal solution that can
improve one objective without worsening the others. According to game theory, optimiza-
tion seeks to find a solution that results in a Pareto optimum and satisfies the requirements
of all players. As investigated by previous research [42], the game theory approach is an
effective technique to find the best compromise answer with lower computing time than
combinatorial optimization.

In this work, cooperative game theory was employed to search for the most effective
preventive maintenance program that resulted in a decent balance between the preventive
maintenance costs and the benefits of reliability enhancement. The objectives to be opti-
mized are modeled as game players i = (1 . . . P), where P is the number of players. Thus,
this optimization has two players, which are BPM and CPM, called P1 and P2, respectively.

Each player has decisions d = (1 . . . D), where D is the number of decisions. In addi-
tion, decision d has a strategy set s =

{
sd,1, · · · , sd,j, · · · , sd,Hd

}
that presents all strategies

available to play. The number of strategies Hd may or may not be equal for each decision,
as shown in Figure 3.



Energies 2022, 15, 5172 9 of 19

Energies 2022, 15, 5172 9 of 19 
 

 

4. Cooperative Game Theory 
For multi-objective optimization, it is difficult to pick one optimal solution that can 

improve one objective without worsening the others. According to game theory, optimi-
zation seeks to find a solution that results in a Pareto optimum and satisfies the require-
ments of all players. As investigated by previous research [42], the game theory approach 
is an effective technique to find the best compromise answer with lower computing time 
than combinatorial optimization. 

In this work, cooperative game theory was employed to search for the most effective 
preventive maintenance program that resulted in a decent balance between the preventive 
maintenance costs and the benefits of reliability enhancement. The objectives to be opti-
mized are modeled as game players i = (1…P), where P is the number of players. Thus, 
this optimization has two players, which are BPM and CPM, called P1 and P2, respec-
tively. 

Each player has decisions d = (1…D), where D is the number of decisions. In addition, 
decision d has a strategy set s = ൛sd,1,⋯,sd,j,⋯,sd,Hdൟ that presents all strategies available to 
play. The number of strategies Hd may or may not be equal for each decision, as shown in 
Figure 3. 

 
Figure 3. Strategies in each decision. 

Subsequently, a combination of strategies played by each decision creates a scenario, 
Sk. Additionally, the number of all possible combinations, K, can be determined by Equa-
tion (9) [26]. 

K = ∏ Hd
D
d=1  (9)

In this research, the decisions represent the 12 service regions, so Hd is the total num-
ber of preventive maintenance tasks for service region d. According to the number of pre-
ventive maintenance tasks for each service region in Table 5, the number of possible sce-
narios K as calculated by Equation (9) is up to 2.56 × 1033. By constructing datasets for 
game-playing strategies, consistent with Table 6, this large number can be significantly 
reduced to only 7575 game scenarios. The number of game scenarios or matches, M, can 
be calculated by Equation (10), where D is the number of decisions, i.e., 12. 

M = ∑ Hd
D
d=1 - D (10)

Scenario Sk as a set of strategies played by service regions r = (1…R) creates a par-
ticular function value for player i, Fi(Sk). Therefore, the function values for players P1 
and P2 resulting from Sk can be determined by Equations (11) and (12), respectively. 

Figure 3. Strategies in each decision.

Subsequently, a combination of strategies played by each decision creates a scenario,
Sk. Additionally, the number of all possible combinations, K, can be determined by
Equation (9) [26].

K =∏D
d=1 Hd (9)

In this research, the decisions represent the 12 service regions, so Hd is the total number
of preventive maintenance tasks for service region d. According to the number of preventive
maintenance tasks for each service region in Table 5, the number of possible scenarios K as
calculated by Equation (9) is up to 2.56 × 1033. By constructing datasets for game-playing
strategies, consistent with Table 6, this large number can be significantly reduced to only
7575 game scenarios. The number of game scenarios or matches, M, can be calculated by
Equation (10), where D is the number of decisions, i.e., 12.

M = ∑D
d=1 Hd − D (10)

Scenario Sk as a set of strategies played by service regions r = (1 . . . R) creates a
particular function value for player i, Fi(S k). Therefore, the function values for players P1
and P2 resulting from Sk can be determined by Equations (11) and (12), respectively.

F1(S k) =
R

∑
r=1

BPMr,kr (11)

F2(S k) =
R

∑
r=1

CPMr,kr (12)

where

F1(S k) is the function value for player 1 in scenario Sk;
F2(S k) is the function value for player 2 in scenario Sk;
Sk is a set of strategies sr,kr played by service regions r = (1 . . . R);
R is the number of service regions;
BPMr,kr is the regional benefit of preventive maintenance tasks in strategy sr,kr ;
CPMr,kr is the regional cost of preventive maintenance tasks in strategy sr,kr .

If function values for players are not in the same unit, they can be normalized to a
per-unit value using the sigmoid function. The normalized value is defined as a utility
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value that presents a player’s profit for a considered scenario. For player i, a profit in
scenario Sk, ui(S k) can be evaluated from the utility function shown in Equation (13) [42].

ui(S k) =
1

1 + eε[Fi(Sk) − Fi(S0)]
(13)

The adjustment multiplier for the sigmoid function, ε, should be a near-zero value.
If the objective of player i is maximized, ε must be a positive value. On the other hand,
if the objective is minimized, ε must be a negative value. However, they must have the
same magnitude value for all players involved [26]. At the beginning of the game, the
base scenario has been defined as the collection of the first strategies from all individual
service regions as S0 = {s1,1, s2,1, . . . , sr,1, . . . , sR,1}. As a result, the utility function of
each player in the base scenario produces ui(S 0) = 0.5 by using Equation (13). For each
successive match, service region r is allowed to shift its strategy step by step from j = 2
to Hr, as shown in Table 7, where Sr(j) is the scenario in which service region r plays its
strategy j, while the other service regions use their strategies given in S0.

The global utility is a value that represents the outcome of the cooperation among
players. The global utility in scenario Sk, uG(S k) is the summation of individual profits of
all players divided by the number of players, P, as expressed by Equation (14) [42].

uG(S k) =
∑P

i=1 ui(S k)

P
(14)

In Table 7, the best strategy for service region r, sr,Br , can be found when its global
utility uG(S r(j)) is maximized. Accordingly, the best scenario, SB, is the collection of the best
strategies for all individual service regions, i.e., SB =

{
s1,B1 , s2,B2 , . . . , sr,Br , . . . , sR,BR

}
as

summarized in the last row of Table 7. Then, the global utility value of the best scenario,
uG(S B), can be calculated by Equation (15) [42].

uG(S B) =
∑P

i=1 ui(S B)

P
(15)

Finally, the optimal balance between the benefits and costs of preventive maintenance
tasks resulting from the best scenario SB produces the function values of players 1 and 2, as
expressed in Equations (16) and (17), respectively.

F1(S B) =
R

∑
r=1

BPMr,Br (16)

F2(S B) =
R

∑
r=1

CPMr,Br (17)

where

F1(S B) is the function value of player 1 in the best scenario SB;
F2(S B) is the function value of player 2 in the best scenario SB;
SB is the collection of the best strategies for all individual service regions;
R is the number of service regions;
BPMr,Br is the regional benefit of preventive maintenance tasks in strategy sr,Br ;
CPMr,Br is the regional cost of preventive maintenance tasks in strategy sr,Br .
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Table 7. Game scenarios and global utilities.

Match Scenario
Service Regions Utility Values of Players Global

Utilities

1 2 . . . r . . . R u1(S k) . . . ui(S k) . . . up(S k
)

uG(S k)

Base S0 s1,1 s2,1 . . . sr,1 . . . sR,1 0.5 0.5 0.5 0.5 0.5 0.5

1 S1(2) s1,2 s2,1 . . . sr,1 . . . sR,1 u1(S 1(2)) . . . ui(S 1(2)) . . . up(S 1(2)) uG(S 1(2))

2 S1(3) s1,3 s2,1 . . . sr,1 . . . sR,1 u1(S 1(3)) . . . ui(S 1(3)) . . . up(S 1(3)) uG(S 1(3))

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... S1(j) s1,j s2,1 . . . sr,1 . . . sR,1 u1(S 1(j)) . . . ui(S 1(j)) . . . up(S 1(j)) uG(S 1(j))

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... S1(H1)
s1,H1 s2,1 . . . sr,1 . . . sR,1 u1(S 1(H1)

) . . . ui(S 1(H1)
) . . . up(S 1(H1)

) uG(S 1(H1)
)

... S2(2) s1,1 s2,2 . . . sr,1 . . . sR,1 u1(S 2(2)) . . . ui(S 2(2)) . . . up(S 2(2)) uG(S 2(2))

... S2(3) s1,1 s2,3 . . . sr,1 . . . sR,1 u1(S 2(3)) . . . ui(S 2(3)) . . . up(S 2(3)) uG(S 2(3))

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... S2(j) s1,1 s2,j . . . sr,1 . . . sR,1 u1(S 2(j)) . . . ui(S 2(j)) . . . up(S 2(j)) uG(S 2(j))

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... S2(H2)
s1,1 s2,H2 . . . sr,1 . . . sR,1 u1(S 2(H2)

) . . . ui(S 2(H2)
) . . . up(S 2(H2)

) uG(S 2(H2)
)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... Sr(2) s1,1 s2,1 . . . sr,2 . . . sR,1 u1(S r(2)) . . . ui(S r(2)) . . . up(S r(2)) uG(S r(2))

... Sr(3) s1,1 s2,1 . . . sr,3 . . . sR,1 u1(S r(3)) . . . ui(S r(3)) . . . up(S r(3)) uG(S r(3))

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... Sr(j) s1,1 s2,1 . . . sr,j . . . sR,1 u1(S r(j)) . . . ui(S r(j)) . . . up(S r(j)) uG(S r(j))

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... Sr(Hr)
s1,1 s2,1 . . . sr,Hr . . . sR,1 u1(S r(Hr)

) . . . ui(S r(Hr)
) . . . up(S r(Hr)

) uG(S r(Hr)
)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... SR(2) s1,1 s2,1 . . . sr,1 . . . sR,2 u1(S R(2)) . . . ui(S R(2)) . . . up(S R(2)) uG(S R(2))

... SR(3) s1,1 s2,1 . . . sr,1 . . . sR,3 u1(S R(3)) . . . ui(S R(3)) . . . up(S R(3)) uG(S R(3))

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... SR(j) s1,1 s2,1 . . . sr,1 . . . sR,j u1(S R(j)) . . . ui(S R(j)) . . . up(S R(j)) uG(S R(j))

...
...

....
...

...
...

...
...

...
...

...
...

...
...

SR(HR)
s1,1 s2,1 . . . sr,1 . . . sR,HR u1(S R(HR)

) . . . ui(S R(HR)
) . . . up(S R(HR)

) uG(S R(HR)
)

Best SB s1,B1 s2,B2 . . . sr,Br . . . sR,BR u1(S B) . . . ui(S B) . . . up(S B
)

uG(S B)

The flowcharts, as shown in Figures 4 and 5, summarize the proposed approach.
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5. Results and Discussions

Two situations were stipulated for optimal preventive maintenance planning to in-
vestigate the effectiveness of the proposed methodology. In the first situation, called BCR
prioritization, the cost-effective preventive maintenance tasks were selected according to
their benefit-per-cost ratios under pre-specified different maintenance budgets. In the other
situation, the proposed method was employed to find the most appropriate preventive
maintenance tasks that balanced the benefits and costs.
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According to the BCR prioritization, preventive maintenance plans can be achieved
when a maintenance budget is assigned. This technique cost-effectively spends the budget
to reach the most benefits of preventive maintenance. When the budget amount is varied
with a step of THB 100 million (MB) from 100 MB to 700 MB, the most cost-effective plan
for each amount is obtained as its CPM and BPM are plotted in Figure 6. However, one
remaining question for the management is how much the budget should be specified to
achieve a decent balance between the costs and benefits.
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To answer the question above, the proposed method extended from the BCR prior-
itization exploits cooperative game theory to locate the budget amount, resulting in an
optimally balanced solution. It can be found where the global utility plotted against CPM
reaches the maximum, as shown in Figure 6. In this case, the maximum global utility value
or the global utility value of the best scenario uG(S B) is 0.51074848, and the total cost of the
preventive maintenance plan equals 201.85 MB. To highlight the results, three comparable
plans (budget ≤ 100 MB, 200 MB, and 300 MB) of the BCR prioritization are selected to
illustrate their global utility values against the proposed method in Table 8. In addition, the
benefits, BPMr, costs, CPMr, and the number of selected tasks, Br, by service region are
also compared among those plans in Table 9.

Table 8. Comparisons of results between BCR prioritization and the proposed method.

Approach
Best Strategies by Service Region Utility Values Global

Utility

1 2 3 4 5 6 7 8 9 10 11 12 u1(Sk) u2(Sk) uG(Sk)

BCR prioritization

CPM ≤ 100 MB s1,310 s2,50 s3,117 s4,102 s5,131 s6,158 s7,62 s8,526 s9,325 s10,234 s11,250 s12,220 0.522597 0.497490 0.510044

CPM ≤ 200 MB s1,383 s2,72 s3,181 s4,172 s5,213 s6,203 s7,126 s8,621 s9,411 s10,358 s11,323 s12,301 0.526493 0.495001 0.510747

CPM ≤ 300 MB s1,461 s2,116 s3,264 s4,229 s5,328 s6,264 s7,203 s8,699 s9,492 s10,430 s11,413 s12,363 0.528242 0.492503 0.510372

Proposed method

Best scenario s1,384 s2,72 s3,182 s4,173 s5,219 s6,206 s7,131 s8,626 s9,414 s10,363 s11,327 s12,307 0.526543 0.494954 0.510748



Energies 2022, 15, 5172 15 of 19

Table 9. Preventive maintenance plans obtained from the BCR prioritization and the pro-
posed method.

Service
Region

Budget ≤ 100 MB Budget ≤ 200 MB Budget ≤ 300 MB Best Scenario

BPMr CPMr Br BPMr CPMr Br BPMr CPMr Br BPMr CPMr Br

1 120.77 17.10 310 131.78 23.91 383 141.11 37.21 461 131.78 23.91 384
2 1.20 0.17 50 1.86 0.64 72 3.85 3.61 116 1.86 0.64 72
3 28.77 4.04 117 42.93 13.54 181 51.61 25.85 264 42.93 13.54 182
4 18.35 3.24 102 33.63 13.15 172 38.90 21.51 229 33.64 13.16 173
5 23.09 4.21 131 42.43 16.51 213 53.80 33.01 328 42.77 16.85 219
6 46.37 5.28 158 55.06 11.13 203 61.64 20.15 264 55.29 11.36 206
7 0.59 0.11 62 0.98 0.35 126 1.48 1.02 203 1.01 0.38 131
8 233.08 17.60 526 247.09 26.42 621 251.87 33.58 699 247.29 26.63 626
9 84.01 6.22 325 93.64 12.60 411 97.11 17.34 492 93.67 12.62 414

10 131.32 20.00 234 171.59 44.35 358 180.34 56.64 430 172.11 44.86 363
11 44.31 5.68 250 49.07 8.85 323 52.46 13.57 413 49.38 9.15 327
12 171.68 16.34 220 190.74 28.52 301 196.70 36.41 363 190.98 28.75 307

Total 903.54 99.99 2485 1060.80 199.97 3364 1130.87 299.90 4262 1062.71 201.85 3404

According to Table 9, when the budget rises from 100 MB to 300 MB, or triples, the
benefit BPM increases by only 25.16% ((1130.87–903.54)/903.54). Such a result shows that an
increase in preventive maintenance budgets may not offer worthy reliability improvement.
On the other hand, the plan with the budget of 100 MB results in the highest BCR, but
the increased reliability may be unsatisfactory for the customers. Consequently, the plan
resulting from the proposed method, which is located by the maximum global utility, is the
optimally balanced solution.

After the budget amount of the preventive maintenance plan is obtained, the percent-
age of allocated CPM for each service region is shown in Figure 7. The results show a wide
range of variation in CPM among all regions because individual regions have different
degrees of risks to mitigate. As presented in the risk assessment section, the time-varying
failure rates of feeders can illustrate the likelihood of future interruptions. The proposed
method utilizes the failure rate tendency index kλ as introduced in Equation (2) to describe
a change in the failure rate at one year ahead. To be more explicit, kλ > 1 presents the
increasing failure rate, and kλ < 1 indicates the decreasing failure rate. In the case of kλ = 1,
the failure rate does not change with time or is constant.
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Assuming the failure rate is constant when it is really not eases the failure rate com-
putation. Yet, it may sacrifice some helpful information for risk assessment, such as the
likelihood of future interruptions. To clarify this statement, the failure rates of all feeders
are assumed constant (kλ = 1). Then, the proposed method is employed to reproduce the
new results for kλ = 1 to compare with the previous results in Figure 7. The comparison of
CPM by service region shows differences between both cases, which imply the reduced
accuracy of preventive maintenance planning when the time-varying failure rates are
disregarded. For instance, CPM is excessively allocated to service region 3, while service
region 10 should have received more expenditure. Similar to Figure 7, the numbers of
selected preventive maintenance tasks by service region are compared in percentage terms
in Figure 8. The differences between both cases are consistent with those presented in
Figure 7. In addition, the number of tasks by service region does not necessarily depend
on the allocated CPM because the costs of individual preventive maintenance tasks can
be widely different due to a variety of circuit lengths and unit costs of various preventive
maintenance activities.
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6. Conclusions

This research presents a methodology of optimal preventive maintenance planning
for power distribution systems using the time-varying failure rates and cooperative game
theory. For each feeder, the time-varying failure rate was determined, and its trend was
analyzed to assess the likelihood of future interruptions. Meanwhile, the risk consequences
were estimated using the interruption energy rates, customer-minutes of interruption, and
total kVA of service areas. Then, the assessed risk of feeder interruptions was considered
as an opportunity for mitigating the customer interruption costs by proper preventive
maintenance tasks. Thus, it was defined as the benefits of preventive maintenance tasks.
Subsequently, the BCR of each task was calculated so that all tasks could be ranked accord-
ing to their BCR in descending order.

According to the BCR prioritization, the most cost-effective plan can be obtained by
gathering the top-ranked tasks as many as possible under a given budget. However, a
challenge for the management is how much the budget should be specified to achieve
a decent balance between the costs and benefits. In this research, the proposed method
extended from the BCR prioritization exploits cooperative game theory to set the budget
amount that results in an optimally balanced solution.

To illustrate its practicability and effectiveness, the proposed method was applied
to the extensive distribution networks of the 12 service regions covering all provincial
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areas of Thailand. The time-varying failure rates were computed from three-year historical
outage records for more than three thousand overhead distribution feeders. Then, the
costs and benefits of preventive maintenance tasks corresponding to the outage causes
were evaluated.

The BCR prioritization was performed by varying the budget from 100 MB to 700 MB.
The most cost-effective plan for each amount was obtained, as its CPM and BPM were
plotted in Figure 6. However, those results could not show how well the CPM and BPM
were balanced. On the other hand, the proposed method successfully located the best-
balanced solution where the global utility value was maximum. This global utility value
was compared with those resulting from the BCR prioritization to confirm the results.

In the proposed method, cooperative game theory was directly applied to the strategies
obtained from the ranked maintenance tasks. This problem formulation substantially
reduced the search space or the number of scenarios, so it required less computational
effort to explore the optimal result.

Furthermore, the case study assuming all the failure rates were constant (kλ = 1) was
conducted to illustrate the other contribution of the proposed method. By comparing
the allocated CPM by service region for kλ = 1 with the proposed method using the time-
varying failure rates, the differences between both cases implied the reduced accuracy of
preventive maintenance planning that neglects the time-varying failure rates.

The highlighted results discussed above have strengthened the contributions of the
proposed method in aspects of practicability and effectiveness for preventive maintenance
planning. Moreover, the presented method fully exploits utilities’ available information
to reach the best decision making with light computational effort. Therefore, this method
appeals to current electric utilities that strive to achieve efficient investment and become
data-driven organizations.
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