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Owczarek, T.; Siwy, J.; Sojda, A.;

Wolny, M. Analysis of Business

Customers’ Energy Consumption

Data Registered by Trading

Companies in Poland. Energies 2022,

15, 5129. https://doi.org/

10.3390/en15145129

Academic Editors: David Borge-Diez

and Izabela Jonek-Kowalska

Received: 2 June 2022

Accepted: 11 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Analysis of Business Customers’ Energy Consumption Data
Registered by Trading Companies in Poland
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Abstract: In this article, we analyze the energy consumption data of business customers registered by
trading companies in Poland. We focus on estimating missing data in hourly series, as forecasts of
this frequency are needed to determine the volume of electricity orders on the power exchange or
the contract market. Our goal is to identify an appropriate method of imputation missing data for
this type of data. Trading companies expect a specific solution, so we use a procedure that allows
to choose the imputation method, which will consequently improve the accuracy of forecasting
energy consumption. Using this procedure, a statistical analysis of the occurrence of missing values
is performed. Then, three techniques for generating missing data are selected (missing data are
generated in randomly selected series without missing values). The selected imputation methods are
tested and the best method is chosen based on MAE and MAPE errors.

Keywords: electricity consumption data; missing data imputation; effective energy management;
data quality; time series

1. Introduction

Time series analysis is widely used in many management systems, in the areas of:
transport systems, including urban transport [1–4] environment [5–8], medical data [9–15]
and energy [16–21]. In this work, we analyze data on electricity consumption. As empha-
sized by Wang et al. [21], economic development causes an increase in electricity demand,
and thus generates the need to save energy, i.e., better and better energy management
systems. Such systems are mainly dedicated to electricity consumers, but effective energy
management is also crucial for electricity trading companies. In their activities, in addition
to commercial problems and challenges, such companies must often purchase energy on the
wholesale market and then distribute it to individual customers. There is a need to ensure
continuous and accurate balancing of electricity demand and production in this process.
This is due to, among other things, the inability to store the purchased product, as well as
the need to balance the demand for electricity with the supply at any time. Therefore, it is
very valuable to know about electricity demand in the near and far horizon, i.e., energy
consumption schedules. Such schedules can be defined as a set of data specifying the
amount of electricity planned to be introduced or taken from the grid for particular periods
(e.g., day, week, month or year). Standardization of such a schedule leads to developing a
profile characteristic for a given recipient or group of recipients. Therefore, it is important in
this context to increase the accuracy of forecasting electricity consumption, which depends
on the quality of the collected data [7,22].

The specificity of electricity trading requires the analysis of hourly data, because
forecasts of such frequency are needed to determine the volume of electricity orders on the
power exchange or contract market, and then, if necessary, to correct these orders. Despite
the intensive development of smart metering and the installation of an increasing number
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of meters ensuring the possibility of transmitting hourly values, only a dozen or so percent
(a small percentage) of concluded contracts are settled based on these measurements. In
most cases, electricity distributors only provide the seller with the total amount of energy
consumed by the consumer during the load period, which varies from a few days to a year.
Periodic readouts are then distributed in the time series with an hourly gradation using
standard profiles developed by distributors. Execution of a new contract with the customer
requires preparing a consumption forecast for its whole term. To create the forecast, the
data of energy consumption by the customer in preceding periods or the declared energy
consumption for a new building is required. However, the acquired historical data is not
often complete and contains missing values. This is a common problem when data is
measured and recorded [23,24]. Various reasons lead to a lack of values in the time series.
In the case of energy consumption data, these can be communication errors, sensor failures,
or power outages [25], but also missing values due to the lack of readings (values are then
not measured).

The extensive literature on the imputation of missing data shows algorithms for re-
placing missing data with estimates [26]. The most common data imputation techniques
rely on correlations between attributes to estimate values for missing data. These include:
Multiple Imputation [27], Expectation-Maximization [28], Nearest Neighbor [29], and
Hot Deck [30]. Many studies show examples of multidimensional time series imputa-
tion [1,4,31–35]. However, in the case of univariate series, there are no additional attributes,
therefore imputation algorithms specially adapted to such data should be used [23]. For
example, Bokde et al. [25] propose the ‘imputePSF’ method, which is a modification of
the pattern sequence based forecasting (PSF) method, while Demirhan and Renwick [5]
compare the performance of the methods available in the ‘imputeTS’ package, which are
dedicated to univariate time series with irregular intervals.

An important element to pay attention to when using imputation methods is the type
of data. Depending on the field from which they originate, the data may be characterized
by the presence of a trend, seasonality or randomness, or property known as the effect
of volatility clustering (volatility in one subperiod depends on the volatility realized in
preceding periods). Since series from different fields have distinct characteristics, different
imputation methods give better results for the series.

In our study, we analyze anonymised data from Polish energy trading companies.
These companies buy electricity wholesale and then sell it to direct customers. It should be
emphasized that the trading company does not have direct access to measuring devices
and does not read them. The owner of the metering devices (energy meters) from which
the readings of energy consumption come is the distribution network operator (DNO).
The DNO is obliged to provide the trading company with data on the consumption of the
recipient for whom this company provides services related to the sale of energy. Based on
these data, the trading company accounts for energy recipients and balances supply and
demand on the energy market. Intensive work is underway in Poland to ensure that most
of the data for billing comes from smart meters in the form of hourly readings, but at the
moment, it is still a problem.

After analyzing many of the previously cited works on the imputation of missing
values, we noticed a certain limitation in the applicability of the widely discussed methods
and techniques to the analysis of our data. This limitation is the type of data we received
from trading companies, which had the form of one-dimensional series and did not contain
additional attributes (we only know energy consumption at a given point of electricity
consumption—PPE). Therefore, we decided to develop a procedure adapted to the received
data, which would allow us to choose the appropriate method of the imputation of the
missing value, which could be used by trading companies.

Our procedure allows you to select the best of the tested imputation methods along
with the error evaluation, and requires the use of a series with both missing values and
no gaps. First, we perform a statistical analysis of the occurrence of missing values in the
series to select the techniques for generating missing data. We then use these techniques to
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generate missing data in randomly selected series without missing data. The selected meth-
ods and variants of imputation are compared based on MAPE (mean absolute percentage
error) and MAE (mean absolute error) errors calculated for individual points of electricity
consumption (PPE) based on real values and imputed values. A detailed description of
the procedure is provided in Section 3.4. The results of our research will allow for more
accurate forecasts and thus for better planning of purchases by trading companies. The
presented research focuses mainly on business customers due to the frequency of readings
from energy meters. For this group of customers, data are provided from smart meters sim-
ilar to other European countries. The results of our work may therefore also be interesting
for other energy trading markets.

2. Data

The quality of electricity consumption data is a critical issue in mining big data relating
to the energy industry [22]. Thanks to the analysis of this data, it is possible to extract
valuable knowledge to increase the level of profitability of energy companies as well as
electricity trading companies. Electricity data quality issues can be divided into three
categories: noise data—including logical errors and inconsistent data, incomplete data, and
outlier data [22]. The problem faced by trading companies that provided data primarily
concerns incomplete data, i.e., data containing missing values. As mentioned earlier, the
specificity of the electricity market requires paying particular attention to hourly data and
such series are discussed in this article.

Data of business customers in Poland from tariff groups B and C were analyzed in
detail, as the recipients of these tariffs account for 79% of all customers of trading companies
that agreed to provide data for the research. Tariff B is the Medium Voltage used by large
enterprises (excluding the largest recipients such as mines or large factories), while Tariff C
is the Low Voltage dedicated to small and medium-sized enterprises (mainly service and
trade companies). The data of individual customers were excluded from the study, because
for them, energy readings are carried out at large intervals (even every few months) and,
as indicated, are not the main customers of the surveyed trading companies.

Finally, a database consisting of 3236 data series (data from 3236 PPE in 2019) was
selected for the analysis with the following characteristics:

• the length of a single sequence of missing data (gaps) not longer than 48 h in one
sequence,

• no more than 576 h with missing data during the year,
• no more than 20% of profile consumption (these are values estimated based on profiles

prepared by trading companies in the event that the energy consumption readings
occur in periods longer than every hour, e.g., once a day or once a week).

Missing Values Analysis

In a database of 3236 data series, 210 series (210 PPE) contained the missing values.
For these series, a statistical analysis of the occurrence of missing data was performed.
The number of missing values, the number of gaps (a gap is defined as one or more data
missing in succession), the longest sequence of missing values, the shortest sequence of
missing values, and the average length of gaps were analyzed. Details are provided in
Table 1.

As shown in Table 1, only 5% of PPE has missing values in more than 58 reading posi-
tions. For the indicated points, the number of missing values is not uniformly distributed
across all PPE. The number of missing observations is characterized by large right- skewed
asymmetry and the presence of outliers (relatively large deviation). The distribution of the
number of gaps is a consequence of the distribution of the number of missing observations
and is also characterized by large right-skewed asymmetry. In at least 50% of PPEs, the
number of gaps does not exceed four (see Table 1, the median for ‘longest gap’ is 4). Lengths
of data gaps were also analyzed. As can be seen in Table 1, the longest missing substring of
data was 48 (according to the criteria for selecting PPE for imputation).
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Figure 1 shows the distribution of the number of missing values (without taking
into account the most extreme value). The histogram of the distribution of the number of
missing values confirms the earlier comments resulting from the statistical analysis of the
occurrence of missing data; a large right-skewed asymmetry can be seen.

Table 1. Basic statistics of missing data.

Statistics Number of
Missing Values

Number
of Gaps

The Longest
Sequence of

Missing Values

The Shortest
Sequence of

Missing Values

Average Length of
Gaps

min. 1.00 1.00 1.00 1.00 1.00
perc05 1.00 1.00 1.00 1.00 1.00
perc10 1.00 1.00 1.00 1.00 1.00
perc25 3.00 1.00 2.00 1.00 1.00
median 9.00 2.00 4.00 1.00 1.00
perc75 24.00 5.00 13.75 2.75 2.75
perc90 41.50 14.00 24.00 24.00 24.00
perc95 58.20 24.55 24.00 24.00 24.00
max. 463.00 456.00 48.00 48.00 48.00

average 18.80 7.62 9.47 6.00 6.00
std. dev. 37.10 32.82 11.22 10.27 10.27
skewness 8.55 12.26 1.61 2.27 2.27

Source: own elaboration.
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Then, the distribution of missing data in terms of the moment of their occurrence was
examined. It was noticed that:

• most, because there were as many as 19 cases, of the missing data concerned 3:00 a.m.
on 27 November 2019—the time change point (it is worth noting that on this day, the
day has 25 h). However, in the second point of the time change on 31 March 2019 at
2 o’clock, no data appeared in the 14 PPE. The problems with the missing values at
the time of the time change affected 29 different PPEs, but in only four cases, they
occurred simultaneously in the same PPE;

• on 26 January 2019 from 1:00 to 24:00, no data appeared in 15 PPEs;
• when examining the distribution of missing values in the indicated set of 210 PPEs,

it was found that out of 8760 measurement items—in 6371 (72.7%), there were no
missing values in any PPE.

Examples of how missing data can be distributed in the series of consumption are
shown in Figures 2–4. The figures contain hourly data from three different PPEs with
missing values marked (magenta). Collection point PPE-Example1 is an example containing
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103 data gaps that occur throughout the analyzed year (see Figure 2). The course of the
series for which the number of missing values is 49, and they occur over a period of about
one month as shown in Figure 3, while Figure 4 contains the data for the collection point
for which there are 48 missing values and they form one gap of 48 h.
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When analyzing the processes of the formation of missing data, three mechanisms of
their formation can be distinguished [13,24,36]:

• MCAR—missing completely at random—the process of the occurrence of missing data
is considered to be completely random (there is no specific mechanism for creating
missing values)

• MAR—missing at random—in the process of data occurrence, it is possible to link the
occurrence of data with observable variables (there are other variables that affect the
existence of missing values, and the probability of their occurrence is independent of
the value itself)

• MNAR—missing not at random—in this process, missing data is related to unob-
servable variables (the probability of a missing value is related to the missing value
itself).

It is very important to distinguish between the types of mechanisms that cause missing
data because depending on the type of mechanism involved, different methods of imputa-
tion missing data will be effective to a different extent. In the case of the data provided, it
can be assumed that the mechanism of missing data is of the MCAR or MAR type. Both
of these mechanisms allow missing values to be assigned without knowing the specific
reasons for their formation.

Taking into account the characteristics of the analyzed series and the adopted mecha-
nism of the occurrence of MCAR or MAR missing data, three techniques for generating
artificial missing data were selected:

• Random generator—single points—set (1—single). For each of the selected PPEs,
58 locations of missing data were randomly selected. The determined number of
missing data was because, for 95% of PPEs with missing data, the number of missing
data was not greater than 58 (see Table 1).

• Random generator—continuous data gap—set (2—continuous). For each of the se-
lected PPEs, one gap with a length of 48 was created randomly, i.e., the longest
observed missing data (see Table 1).

• Generator based on set 210—set (3—from the set). For each of the selected PPEs
with complete data, one PPE was selected at random from a set of 210 imputation
candidates. Missing data were inserted in the selected PPE with complete data in the
places of their occurrence in the randomly selected PPE from the set of 210.
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Missing data generated by the three techniques described above were used in further
analyses to test imputation methods.

3. Methods

Many different techniques can be used to deal with missing values [13,37]. These
include case deletion, mean substitution, and model-based imputation. According to Strike
et al. [38], when a dataset contains less than about 10–15% of missing data, it can simply be
removed from the dataset. However, it should be noted that not every dataset is subject
to such rules [39], and small amounts of missing data can have a significant impact on
the final result of the analysis. This is the problem we deal with in the case of given
electricity consumption. As indicated earlier, the quality of such data is of great importance
in increasing the accuracy of forecasting, as time series forecasts solely depend on historical
data. The proper approach to dealing with missing values in the analyzed case is therefore
imputation, which is one of the most reliable ways of dealing with missing values [5].

Depending on the type of data and the field from which the data comes, we have many
methods of replacing missing values with estimated values. In the presented research, we
have data on energy consumption, provided by energy trading companies, in the form
of univariate time series. As emphasized by Moritz et al. [40], univariate time series is
a particular challenge in the field of imputation research, and the time series literature
focuses almost exclusively on multivariate datasets (as mentioned in the Introduction).
Overall, techniques enabling imputation for univariate time series can be divided into three
main categories by Moritz et al. [40]:

• One-dimensional algorithms that work with one-dimensional inputs but do not typi-
cally use time series characteristics (e.g., mean, mode, median, random sample).

• Univariate time series algorithms that can work with one-dimensional inputs but use
time series characteristics. These are algorithms such as last observation carried for-
ward, next observation carried forward, arithmetic smoothing and linear interpolation,
and more advanced methods based on structured time series models that deal with
seasonality.

• Multivariate algorithms on lagged data, which generally cannot be used for univariate
series, but it is possible to add time information as covariates, which allows the use of
multivariate imputation algorithms. This can usually be done by using lags (which
take the value of another variable from the preceding period) and ‘leads’ (which take
the value of another variable in the next period).

In this article, we are looking for solutions that will make the imputation task simple
for practitioners (in our case, for trading companies). Therefore, we tested imputation
methods that are dedicated to univariate data series, and for testing, we used the R package
called ‘imputeTS’ [23].

As mentioned earlier, the subject of the study is the time series of electricity con-
sumption in enterprises. These series are characterized by seasonality, which is related to
the cyclical nature of the work of enterprises. The seasonality of the analyzed series was
confirmed using the ‘seastests’ package in R. From the set of 3026 series with complete
data, 500 series were selected at random. The conducted tests showed that all series were
characterized by seasonality.

Analyses based on the characteristics of the tested time series (PPE consumption)
prompted us to finally choose three methods of the imputation of missing data: the
calendar method, the imputation method by separating the phases of seasonal cycles
and the imputation method using seasonality decomposition. Each of the methods was
used in three variants related to the seasonality of the time series and the method of taking
into account the information used for imputation. Variants of each method relied on the
use of a moving average with different ways of incorporating the information ‘closest’ to
the time of the missing values.
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3.1. Method 1—Calendar Method and 2k Weighted Moving Average Method

The main assumption of this method is taking into account the calendar and dividing
the year into subseries. Each subseries refers to a specific time on a specific working day of
the week or a specific time of a non-working day (the so-called ‘red’ days). Thus, a single
subseries is, e.g., 1 p.m. on working Mondays or 5 p.m. on non-working days.

The moving average algorithm implemented in the ‘imputeTS’ package of the R
program was used to impute the missing values. This package is recommended for
imputing missing values in time series. The algorithm imputes the missing data with
the mean value of the k nearest values ’before’ and ‘after’ the missing values in the series
(2k values in total). It was decided that the information necessary for imputation should
cover a period of approximately one or two months, therefore k = 2 or k = 4 was adopted.
The analyses conducted for other values of this parameter confirmed the validity of the
findings.

All available methods of weight determination were used in the conducted analyses.
The moving average method was with Exponential Weighted Moving Average, Linear Weighted
Moving Average and Simple Moving Average.

Exponential weights use the information ageing principle and decrease exponentially
with the distance from the missing values—‘observations directly next to the central value
i, have a weight of 1

2 , the observations one further away (i − 2, i + 2) have a weight of(
1
2

)2
etc.’. The value of i denotes the number where there is the missing value in the series.

Standardized values of exponential weights are determined according to the following
Formula (1):

wj,exponential = 2−(j+1)

(
k

∑
j=1

2−j

)−1

(1)

where j is the distance from the missing value (in the immediate vicinity j = 1). For k = 2,
w1,exponential = 0.333, w2,exponential = 0.167. For k = 4, w1,exponential = 0.267, w2,exponential =
0.133, w3,exponential = 0.067, w4,exponential = 0.033.

Linear weighted moving averages also use the information ageing principle, with
the denominators of non-standard weights increasing arithmetically—‘the observations
directly next to a central value, have weight 1/2, the observations one further away (i − 2,
I + 2) have a weight 1/3, etc.’. Therefore, the following weights have the following values:
1
2 , 1

3 , 1
4 . . . The values of the standardised weights (the number of weights is 2k) can be

determined according to the Formula (2):

wj,linear =

[
2(j + 1)

k

∑
j=1

(j + 1)−1

]−1

(2)

For k = 2, w1,linear = 0.300, w2,linear = 0.200. For k = 4, w1,linear =0.195, w2,linear =
0.130, w3,linear = 0.097, w4,linear = 0.078. In the case of a simple moving average, the weights
are the same for each value: wj,simple = [2 · k]−1. For k = 2,w1,simple = 0.250, w2,simple = 0.250.

For correct operation, the algorithm requires at least two real observations to impute a
missing value. In the analyzed series, a special series was the series in which the missing
value was 7200th hour of the year (25th hour on the day of the time change). In the event
of a missing value at that hour, imputation was performed using the moving average
algorithm for the entire series. Therefore, in this special situation, the first two values from
the hours before the missing value and the first two values after the missing value were
taken into account (always k = 2).

3.2. Method 2—Imputation Using Seasonally Splitted Missing Value Imputation

This method relies on imputation by splitting the phases of the seasonal cycles and is
implemented in the ‘ImputeTS’ package as the ‘na_seasplit()’ function. Its idea is to split the
time series into subseries defined by the phases (seasons) of the seasonal fluctuation cycles,
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and then impute the values based on the separated seasons. In the conducted analyses, the
moving average algorithm was used with the same parameters as in the case of the calendar
method. After preliminary analyses, the number of phases was estimated at 168 (1 week
= 24 h × 7 days). Therefore, the application of this method consists in distinguishing
168 subseries related to a specific time of the week, and imputation of missing values on
the appropriate subseries and the weighted moving average method (k = 2 or k = 4).
Additionally, in this method, all three available weighting methods were considered.

3.3. Method 3—Imputation Using Seasonally Decomposed Missing Value Imputation

The third method used relied on decomposing the seasonal component from the time
series (in the form of a seasonality index), making imputations of missing data on the
series without a seasonal component, and then reconsidering the seasonal component.
This method is also implemented in the ‘imputeTS’ package as a ‘na_seadec()’ function.
Additionally, in this case, the number of phases was considered to be 168 and the weighted
moving average algorithm with the values k = 2 or k = 4 was adopted. As shown in the
preliminary analyses, a special feature of this method is the ability to generate values
outside the acceptable range of variation (negative values). This is due to the correction
of the imputed value with the value of the seasonality index. Therefore, in the conducted
analyses, a correction to the implemented method was taken into account. The correction
consisted in the fact that when the algorithm generated a negative imputed value, this
value was changed to zero.

3.4. Comparison of Selected Imputation Methods

The energy consumption data analyzed in this paper contain missing data in actual
values. The performance of the imputation methods used was therefore checked for simu-
lated missing data. The procedure for selecting the appropriate missing value imputation
method is shown in Figure 5 and can be described step by step as follows:

• Step 1. Select from database PPE with missing data.
• Step 2. Perform an analysis of missing data. Determine the number and distribution

of missing values.
• Step 3. Prepare techniques for generating missing data adequate to the results of the

analysis.
• Step 4. Select a random PPE group from the PPE database without missing data.
• Step 5. Generate missing data according to the generation techniques prepared in step 3.
• Step 6. Apply the selected imputation methods on the series from step 4.
• Step 7. Determine the accuracy of imputation methods based on MAE and MAPE

errors.
• Step 8. Select the data imputation method.

To sum up, the acquired database contained 3236 time series. Each of them came from
one of several energy suppliers for PPE. In the analyzed database, 210 series contained
missing values that had to be imputed. The time series of electricity consumption concerned
the B and C business tariffs. We did not have additional information about PPE, such as
geographic location or type of business activity. The analysis of the occurrence of missing
values in the series allowed for the determination of techniques for generating the missing
data. These techniques were used to generate missing values in 500 randomly selected time
series. We had information about the actual values in the locations of missing data, and
based on this, it was possible to evaluate the indicated imputation methods.

The experiments were carried out for three imputation methods, each method was
used in three variants (the moving average method with Exponential Weighted Moving
Average, Linear Weighted Moving Average and Simple Moving Average) and each variant was
tested for k = 2 for k = 4. This gave us 18 test cases for each technique of generating missing
data.
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The selected methods and variants of imputation were compared based on the MAPE
mean absolute percentage error and the MAE mean absolute error calculated for each
PPE based on the actual values and imputed values. These are commonly used metrics to
evaluate the performance of imputation methods for time series [21,41,42]. MAE measures
the mean size of the errors in the forecast set without taking into account their direction,
and MAPE is used to express the mean difference of the absolute errors between the actual
and the forecasted values as a percentage of the actual values.

The error MAPE was determined according to the Formula (3):

MAPE =
1

nImp0
∑

i∈Imp0

|Ri − Ii|
Ri

(3)

where:

Imp0—a set of indexes of readings for which data has been imputed, with no values for
which Ri = 0,
nImp0—number of inserted missing values with no values for which Ri = 0,
Ri—value of actual consumption for the generated missing data,
Ii—imputed consumption value.

The size shows by how much on average the imputed values differed from the actual
values for a given PPE, e.g., a value of 0.05 means that the imputed values differed on
average by 5%.

The error MAE was determined according to the Formula (4):

MAE =
1

nImp
∑

i∈Imp
|Ri − Ii| (4)

where:

Imp—a set of indexes of readings for which data has been imputed,
nImp—the number of inserted missing values,
Ri—value of actual consumption for the generated missing data,
Ii—imputed consumption value.
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The size informs by how much on average the imputed values differed from the actual
values for a given PPE, e.g., a value of 500 means that the imputed values differed on
average by 500.

4. Results and Discussion

As mentioned earlier, the variants of the imputation methods were compared based
on MAPE (mean absolute percentage error) and MAE (mean absolute error) errors. Error
statistics are presented for each variant of the adopted method divided into three imputation
methods. Designations of variants of the tested imputation methods were constructed as
follows: method_weights_period, e.g., Notation 2_linear_4 means method 2 (imputation with
phase/season split) with linear weights and k = 4 (4 closest values ’before’ and 4 nearest
values ’after’ missing)

Figure 6 shows the boxplots of MAPE values for individual methods and their variants
broken down into 3 methods of generating missing values. Extremely high values (outliers)
were removed from the plot for greater clarity.
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Figure 6 shows that in the case of the first set (1—single) and the third set (3—from
the set) of generated missing data, imputation method 3 is the most effective. The quartile
values for the MAPE error are clearly lower when it is used than for the other methods.
Moreover, the best variant of this method is the exponential weights and k = 2. For the
second set with missing data, the results are not so unambiguous (method 3 retains the
greatest stability for its various variants, but method 1 with the value of k = 2 gives a lower
error value).

Figure 7 shows the average values and the 95th percentile values of the MAPE error
for individual variants. Similar to earlier, in the case of the first and third method of
generating missing values, we can see greater efficiency of the imputation method 3. For
the second method of generating missing values (middle panel), there is a clear advantage
of imputation method 3 in terms of the average error value.
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Figures 8 and 9 present the distributions of MAPE and MAE errors for one variant
(exponential weights and k = 2) of each of the three imputation methods. A limited range
of X-axis values was presented because extremely high values (mainly for methods 1 and 2)
disturbed the readability of the figures. It can be read from both figures that for the missing
values sets 1—random and 3—from the set, the third method of imputation (the lowest row
of panels in Figures 8 and 9) has error values more concentrated around zero than the other
two methods. This confirms the previous results and proves lower average imputation
errors for this method. For the second missing data generation method (2—continuous),
the results are similar for all three imputation methods.
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Tables 2–7 show detailed statistics for errors MAPE and MAE for the three methods of
generating missing values.

Table 2. MAPE statistics for the first set of missing data (1—single).

Type Median Average Std. dev. Q1 Q3 P95 Maximum

1_exponential_2 0.0839 0.7079 6.7368 0.0558 0.1767 0.8863 138.7501
1_exponential_4 0.0928 0.8223 7.4717 0.0592 0.1851 1.0359 135.6493

1_linear_2 0.0862 0.7250 6.6871 0.0576 0.1804 0.9667 133.3940
1_linear_4 0.1015 0.9349 8.4721 0.0643 0.2132 1.0910 131.2762
1_simple_2 0.0897 0.7515 6.6847 0.0600 0.1824 1.0264 125.3621
1_simple_4 0.1112 1.0507 9.7079 0.0711 0.2287 1.2522 167.9605

2_exponential_2 0.1064 0.7271 6.3287 0.0726 0.2012 1.0732 128.1718
2_exponential_4 0.1119 0.8446 7.1924 0.0762 0.2221 1.1276 127.3939

2_linear_2 0.1086 0.7397 6.2139 0.0739 0.2066 1.0861 120.6060
2_linear_4 0.1225 0.9561 8.2146 0.0825 0.2371 1.1803 128.4239
2_simple_2 0.1126 0.7592 6.1360 0.0769 0.2128 1.1063 109.2599
2_simple_4 0.1315 1.0714 9.4580 0.0890 0.2558 1.2476 166.3510

3_exponential_2 0.0304 0.1039 0.3207 0.0185 0.0784 0.3926 5.3415
3_exponential_4 0.0328 0.1151 0.3604 0.0209 0.0805 0.4403 5.7078

3_linear_2 0.0311 0.1065 0.3305 0.0192 0.0791 0.4002 5.5401
3_linear_4 0.0368 0.1282 0.4067 0.0234 0.0903 0.4614 6.1266
3_simple_2 0.0323 0.1106 0.3457 0.0202 0.0820 0.4189 5.8393
3_simple_4 0.0411 0.1422 0.4548 0.0264 0.0951 0.5120 6.5195

Source: own elaboration.
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Table 3. MAPE statistics for the second set of missing data (2—continuous).

Type Median Average Std. dev. Q1 Q3 P95 Maximum

1_exponential_2 0.0610 1.1626 19.8305 0.0289 0.1462 0.6266 441.9988
1_exponential_4 0.0724 1.1232 18.0315 0.0349 0.1615 0.6530 400.9493

1_linear_2 0.0630 1.1907 20.2304 0.0304 0.1588 0.6275 450.7924
1_linear_4 0.0827 1.1089 16.9140 0.0396 0.1707 0.6889 374.9546
1_simple_2 0.0677 1.2332 20.8335 0.0311 0.1589 0.6162 463.9826
1_simple_4 0.0926 1.0946 15.8026 0.0472 0.1877 0.7717 348.6892

2_exponential_2 0.0687 1.2020 20.0952 0.0355 0.1687 0.6805 447.9329
2_exponential_4 0.0785 1.1615 18.2931 0.0432 0.1861 0.6788 406.8329

2_linear_2 0.0727 1.2307 20.5044 0.0384 0.1729 0.6833 456.9361
2_linear_4 0.0906 1.1467 17.1765 0.0502 0.1971 0.7504 380.8784
2_simple_2 0.0770 1.2742 21.1213 0.0413 0.1848 0.6754 470.4410
2_simple_4 0.1046 1.1321 16.0648 0.0541 0.2183 0.7750 354.6354

3_exponential_2 0.0748 0.4681 5.2281 0.0358 0.1891 0.7914 115.6622
3_exponential_4 0.0759 0.4679 5.2271 0.0360 0.1897 0.7871 115.6617

3_linear_2 0.0759 0.4589 5.1854 0.0356 0.1857 0.7638 115.0321
3_linear_4 0.0759 0.4589 5.1840 0.0355 0.1872 0.7619 115.0314
3_simple_2 0.0759 0.4579 5.1803 0.0357 0.1860 0.7581 114.9646
3_simple_4 0.0760 0.4583 5.1793 0.0353 0.1884 0.7667 114.9636

Source: own elaboration

Table 4. MAPE statistics for the third set of missing data (3—from the set).

Type Median Average Std. dev. Q1 Q3 P95 Maximum

1_exponential_2 0.0698 0.3369 3.1054 0.0341 0.1631 0.4969 67.0417
1_exponential_4 0.0761 0.3900 3.0152 0.0387 0.1736 0.5692 57.1944

1_linear_2 0.0711 0.3297 2.8744 0.0361 0.1623 0.5008 61.5542
1_linear_4 0.0856 0.4432 3.5166 0.0445 0.1936 0.5701 60.6301
1_simple_2 0.0771 0.3194 2.5339 0.0379 0.1623 0.5344 53.3229
1_simple_4 0.0974 0.5117 4.6669 0.0493 0.2088 0.6651 95.9030

2_exponential_2 0.0762 0.3644 3.0108 0.0380 0.1749 0.6030 63.3403
2_exponential_4 0.0847 0.4182 2.9820 0.0438 0.1851 0.7336 54.7014

2_linear_2 0.0795 0.3577 2.7827 0.0396 0.1762 0.6618 57.9167
2_linear_4 0.0925 0.4692 3.4848 0.0501 0.2008 0.7265 60.6301
2_simple_2 0.0810 0.3481 2.4475 0.0412 0.1768 0.6051 49.7812
2_simple_4 0.1022 0.5352 4.6400 0.0562 0.2197 0.7672 95.9030

3_exponential_2 0.0359 0.1926 1.3696 0.0173 0.0965 0.4283 28.9840
3_exponential_4 0.0381 0.2257 1.5628 0.0192 0.1041 0.4395 27.2371

3_linear_2 0.0370 0.1960 1.3779 0.0175 0.1011 0.4446 29.1219
3_linear_4 0.0394 0.2587 1.9901 0.0216 0.1127 0.4611 34.6183
3_simple_2 0.0371 0.1997 1.3880 0.0175 0.1021 0.4404 29.3057
3_simple_4 0.0441 0.2924 2.5204 0.0229 0.1200 0.5053 49.2378

Source: own elaboration.
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Table 5. MAE statistics for the first set of missing data (1—single).

Type Median Average Std. dev. Q1 Q3 P95 Maximum

1_exponential_2 192.1606 1435.9731 4922.151 6716.119 666.1800 6716.119 49,863.34
1_exponential_4 207.4420 1467.3281 4985.422 6669.177 701.3838 6669.177 48,732.12

1_linear_2 196.0299 1459.5901 5021.913 6540.056 686.6782 6540.056 50,309.75
1_linear_4 227.2977 1533.7125 5178.168 7153.797 734.2430 7153.797 51,900.50
1_simple_2 206.0445 1502.3407 5194.361 6641.748 714.4662 6641.748 51,531.03
1_simple_4 255.2485 1619.9814 5453.083 7181.493 812.5138 7181.493 55,188.93

2_exponential_2 244.8197 1606.4145 5679.998 6803.326 755.4154 6803.326 65,369.56
2_exponential_4 253.4706 1621.4475 5635.571 6836.370 784.0457 6836.370 64,811.75

2_linear_2 247.9669 1629.7881 5779.796 6632.659 766.1345 6632.659 67,139.35
2_linear_4 273.5827 1685.8397 5844.150 7064.499 830.4936 7064.499 69,261.74
2_simple_2 254.5287 1672.3070 5953.187 6776.913 785.7015 6776.913 69,962.12
2_simple_4 297.1194 1777.5822 6181.560 7149.959 887.0493 7149.959 75,569.45

3_exponential_2 80.0103 667.3803 2167.906 2906.804 332.5147 2906.804 26,231.43
3_exponential_4 85.5530 687.7242 2218.258 3009.515 352.9507 3009.515 25,449.99

3_linear_2 81.1205 676.9495 2193.493 2923.097 341.9984 2923.097 26,307.31
3_linear_4 93.9804 726.0771 2328.082 3090.166 383.9144 3090.166 25,450.96
3_simple_2 83.1870 694.8155 2245.569 2945.131 355.6474 2945.131 26,606.25
3_simple_4 100.0570 778.6808 2509.006 3271.714 401.5057 3271.714 26,981.26

Source: own elaboration.

Table 6. MAE statistics for the second set of missing data (2—continuous).

Type Median Average Std. dev. Q1 Q3 P95 Maximum

1_exponential_2 125.5122 1303.307 5915.684 6045.936 672.8637 6045.936 110,622.9
1_exponential_4 147.0003 1338.060 6168.844 6077.178 701.9186 6077.178 119,203.2

1_linear_2 124.7875 1305.832 5882.215 6098.225 675.9620 6098.225 110,724.1
1_linear_4 173.0705 1389.446 6405.333 6133.712 770.1902 6133.712 125,824.5
1_simple_2 135.5104 1316.439 5859.758 5914.193 690.8815 5914.193 111,086.7
1_simple_4 204.6888 1460.388 6706.472 6292.746 833.4499 6292.746 132,736.3

2_exponential_2 140.1250 1552.421 8579.709 6564.128 673.7960 6564.128 176,030.7
2_exponential_4 169.1431 1535.459 7920.725 6186.559 719.6874 6186.559 160,775.8

2_linear_2 150.9187 1537.193 8223.784 6471.902 696.2083 6471.902 167,956.6
2_linear_4 197.9992 1539.498 7264.910 6428.482 780.9942 6428.482 144,291.2
2_simple_2 166.2839 1520.573 7706.642 6316.463 737.4375 6316.463 155,845.3
2_simple_4 220.8806 1570.909 6783.569 6371.571 866.1808 6371.571 130,590.6

3_exponential_2 149.9771 1545.683 8837.987 6613.334 747.6411 6613.334 183,595.5
3_exponential_4 149.9898 1544.193 8834.488 6608.279 754.0734 6608.279 183,655.0

3_linear_2 149.8648 1546.627 9160.846 6533.728 744.0286 6533.728 192,179.4
3_linear_4 149.8723 1546.353 9159.699 6515.926 746.2735 6515.926 192,288.8
3_simple_2 149.6098 1546.969 9193.438 6556.608 737.3952 6556.608 193,132.0
3_simple_4 150.1604 1549.090 9195.696 6553.450 745.6235 6553.450 193,282.1

Source: own elaboration.



Energies 2022, 15, 5129 16 of 23

Table 7. MAE statistics for the third set of missing data (3—from the set).

Type Median Average Std. dev. Q1 Q3 P95 Maximum

1_exponential_2 134.9881 1814.0505 10,237.756 6070.180 615.6667 6070.180 197,800.00
1_exponential_4 153.0144 1851.1807 9985.260 6942.875 612.4934 6942.875 190,863.00

1_linear_2 135.6714 1827.7775 10,229.210 6479.405 626.6606 6479.405 197,200.00
1_linear_4 176.5047 1895.5239 9574.763 7516.181 705.8925 7516.181 178,201.82
1_simple_2 141.3125 1852.7049 10,232.072 6688.394 654.7261 6688.394 196,300.00
1_simple_4 197.4844 1967.2077 9241.462 8426.872 763.3424 8426.872 164,636.25

2_exponential_2 143.8694 2007.7018 10,737.351 7074.631 680.7083 7074.631 197,800.00
2_exponential_4 159.3135 2040.3169 10,506.338 7270.989 751.0931 7270.989 191,096.33

2_linear_2 150.3958 2019.7788 10,737.423 6940.350 723.1203 6940.350 197,200.00
2_linear_4 189.0303 2083.4211 10,163.768 8606.528 768.7449 8606.528 178,747.27
2_simple_2 157.3596 2042.6165 10,749.523 7308.142 762.7901 7308.142 196,300.00
2_simple_4 199.9375 2151.9671 9908.329 9159.259 798.1726 9159.259 165,511.25

3_exponential_2 81.1457 860.3691 2694.752 3578.629 370.9500 3578.629 31,575.38
3_exponential_4 89.3620 871.6876 2700.049 3635.239 380.0934 3635.239 30,548.94

3_linear_2 82.2700 871.9220 2717.038 3623.460 373.9550 3623.460 31,075.54
3_linear_4 92.8501 896.0751 2741.063 3683.842 380.8692 3683.842 29,327.73
3_simple_2 83.5511 888.1536 2752.627 3640.584 377.8576 3640.584 30,549.41
3_simple_4 98.7853 927.2893 2822.281 3703.337 417.6064 3703.337 28,478.29

Source: own elaboration.

The values presented in the tables show that in most cases, the lowest imputation
error is generated by imputation method 3 with exponential weights and k = 2. (Method
3_exponential_2).

Moreover, the results of the applied imputation methods were presented for two
selected PPEs: Example4 and Example5. These energy consumption points have been
selected to show the results of applying imputation methods for regular and irregular
consumption. Figure 10 shows the actual consumption in April and May for PPE-Example4.
It can be seen that the consumption is clearly cyclical with a cycle length of 1 week. The
values on Saturdays and Sundays are clearly lower, while disturbances in the cycle at the
beginning of May can be noticed.
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To show the performance of the imputation methods used, the missing values from 9
May to 12 May (Thursday–Sunday) were inserted in the 2019 series of data presented in
Figure 10, as shown in Figure 11. The dotted line shows the locations of missing data.
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Then the missing values were imported using the three imputation methods used, as
shown in Figure 12. The gray line is actual consumption, the red line is imputation using
method 1 (exactly), the yellow line is imputation method no. 2, the blue line is imputation
method no. 3.
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As shown in Figure 12, method 1 and method 2 give the same results on 9 May and
11 May (Thursday and Saturday)—in the chart, the yellow line covers the red line. On
Saturday and Sunday (11 May and 12 May), all three methods produce similar results.
However, there is a clear difference on Thursday and Friday (9 May and 10 May). On
Thursday (May 9), method 3 gives much better results than methods 1 and 2. However,
on Friday, method 1 has a slight advantage over method 3, but both are clearly better than
method 2.

To generalize the obtained results and determine the efficiency of the methods used in
the presented example, the values of the mean imputation errors (MAE and MAPE) were
calculated for each of the methods presented in Table 8. As shown in Table 8, the most
efficient imputation method for the case of regular electricity consumption presented above
(PPE-Example4) is method 3 (the MAE and MAPE error values are then the smallest).
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Table 8. MAE and MAPE error values for individual methods.

Method MAE MAPE

1 10.8802 0.0570
2 18.6528 0.0927
3 5.8157 0.0342

Source: own elaboration.

The second example presented is irregular consumption for PPE-Example5. For this
electricity consumption point, Figure 13 shows the actual consumption in April and May
2019. In this case (as shown in Figure 13), the consumption is irregular, and it is difficult to
distinguish clear cycles.
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As for the series with regular electricity consumption, missing data were inserted from
9 May to 12 May (Thursday–Sunday). The places of missing values are shown in Figure 14
(dotted line).
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Figure 14. Actual consumption of PPE-Example5 with missing values inserted. Source: own elaboration.

The missing values were again supplemented with the use of the three analyzed
imputation methods, as shown in Figure 15. The gray line is actual consumption, the red
line is imputation method 1, the yellow line is imputation method no. 2, and the blue line
is imputation method no. 3.
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In the case of irregular consumption (Figure 15), it is difficult to clearly visually
evaluate which method gives the best results. Mean imputation errors MAE and MAPE
were again used to evaluate the methods. The values of these errors are presented in
Table 9.

Table 9. MAE and MAPE error values for individual methods.

Method MAE MAPE

1 1062.1979 0.2130
2 1154.7951 0.2324
3 905.0303 0.2191

Source: own elaboration.

The smallest absolute error (MAE) was obtained for method 3, while in the case of
relative error (MAPE), methods 1 and 3 give very similar error values, and for this particular
analyzed data series (PPE-Example5), these values are better than for method 2.

In conclusion, we tested 3 methods of imputating data from the imputeTS package,
with different variants, which resulted in 18 test cases. We did not test all the available
algorithms in this package like Demirhan and Renwick [5] because we discovered seasonal-
ity in our time series. We also obtained different results from the previously mentioned
authors for the hourly series, but the solar irradiance series analyzed by them did not show
any seasonality, unlike the series of electricity consumption we analyzed.

The conducted analyses showed that the best performance in the case of univari-
ate time series related to electricity consumption is provided by the imputation method
with the use of seasonality decomposition with exponential weights and k = 2 (method
3_exponential_2).

5. Conclusions

There is extensive literature on electricity consumption data [21,22,43–46]. In most
cases, the analysis of such data is aimed at more accurate forecasting of energy consumption,
and thus at efficient and effective energy management. In this article, we also deal with
the problem of electricity consumption, but in the context of trading companies that are
responsible for ensuring a balance between the amount of energy purchased and the
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amount of energy sold to customers. Too little or too much of the purchased energy, in
relation to the sale, generates financial losses for the company. Moreover, efficient energy
management is essential throughout the economy as it enables costs to be reduced and the
activities of companies to grow sustainably.

Trading companies must determine the volume of electricity sales, and the basis in this
respect is the sum of forecasts from concluded contracts. However, by applying methods
based on historical data, it is not possible to improve the medium- or long-term demand
forecast of the trading company in relation to the total electricity consumption by customers.
The key, in this case, is the use of a method that improves the quality of individual forecasts
for individual energy consumption points (PPE). The barrier faced by trading companies to
increase the accuracy of forecasting for individual PPEs is missing values in the historical
data. In this case, an estimate of the missing values in the historical time series has to be
made and then the missing values should be replaced with these estimates, which is called
missing data imputation or gap filling. As shown earlier, there are many methods and
approaches for the imputation issue. However, it should be noted that univariate time
series require an individual approach to data imputation problems as they do not contain
additional attributes. We deal with this situation in the data analyzed by us, which does
not contain additional information, such as, for example, in studies [17], where weather
data was an additional attribute.

Therefore, we have proposed a procedure that allows to choose the appropriate
imputation method in the analyzed case. First, we performed a statistical analysis of the
occurrence of missing data and examined the distribution of missing data in terms of the
moment of their occurrence. Then we chose three techniques for generating missing data
Based on the analyses conducted, we also chose the methods and parameters of imputation.
The data analysis carried out showed seasonality in the analyzed time series, therefore, we
tested three methods of data imputation: the calendar method (Method 1), the imputation
method by separating the phases of seasonal cycles (Method 2), and the imputation method
using seasonal decomposition (Method 3). For each of the methods, we considered three
ways to determine the weights: the exponential weighted moving average method, with
the linear weighted moving average, the simple moving average, and two values of k = 2
and k = 4, which ultimately resulted in 18 variants of approaches to data imputation. The
next step was to compare the selected methods and variants of imputation based on MAPE
and MAE errors calculated for individual PPEs based on actual values and imputed values.
The effect of using the proposed procedure is the selection of the best imputation method
for the analyzed data. Detailed statistics of MAPE and MAE errors for the three methods
of generating missing values and their variants indicated that in most cases, the lowest
imputation error was generated by the third method using Seasonally Decomposed Missing
Value Imputation with exponential weights and k = 2 (method 3_exponential_2). ImputeTS
package was used because, as emphasized by Demirhan and Renwick [5], the use of this R
packet is appropriate for one-dimensional data series. The mentioned authors analyzed
the solar radiation intensity data, but their data, similar to the data analyzed in this article,
had no additional attributes. In the analyzed hourly data of electricity consumption in this
article, seasonality was detected, so not all methods of data imputation as in [5] were tested,
but three methods that take into account seasonality. As mentioned earlier, hourly data
were analyzed. Demirhan and Renwick did not detect seasonality for hourly data, hence
other imputation methods are more effective in the case of hourly data than in the work of
these authors.

Our research concerned data from trading companies and we hope that the conducted
analysis will provide them with tools (methods) to deal with missing values, and thus
contribute to the improvement of electricity consumption forecasts. In future research,
the presented results will be used to work on the detection of anomalies in electricity
consumption in relation to the forecasts. This will allow trading companies to better
manage electricity orders in the long term and to monitor the electricity consumption of
their customers on an ongoing basis. In this way, companies will be able to detect and
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observe excessive jumps/drops in consumption, increases and decreases in consumption
inconsistent with the forecasts, and correct them in such a way as to rationalize their own
electricity orders on the exchange.

Increasing the credibility of forecasts may, on the one hand, contribute to a more
precise balancing of electricity demand and production, and, on the other hand, may result
in trading companies being able to offer consumers more favorable purchase prices for
energy by minimizing part of the risk related to imbalance.
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