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Abstract: Solar photovoltaic PV plants worldwide are continuously monitored and carefully pro-
tected to ensure safe and reliable operation through detecting and isolating faults. Faults are very
common in modern solar PV systems which interrupt normal system operation adversely affecting
the performance of the PV systems. When undetected, faults not only cause significant reduction in
the efficiency and life span of the PV system, but also result in damage and fire hazards compromising
their reliability. Therefore, early fault detection and diagnosis of photovoltaic plants is a necessity for
safe and reliable operation required for growing solar PV systems. Unfortunately, several recent fire
incidents have been reported recently caused by undetected faults in solar PV systems. Motivated by
this challenge, this paper, utilizing a proposed fuzzy logic algorithm, presents a novel technique for
detecting and classifying faults in solar PV systems. Furthermore, the proposed method introduces
fault indexing as a performance indicator that measures the degree of deviation from the normal
operating conditions of the photovoltaic system. Various signatures of each fault scenario are identi-
fied in the shape of corresponding current-voltage trajectories and their extracted parameters. The
effectiveness of the proposed technique is evaluated both in simulation and experimentally using
a 5 kW grid connected solar array. It is demonstrated that the proposed technique is capable of
diagnosing the occurrence of different faults with more than 98% accuracy.

Keywords: fuzzy logic controller (FLC); fault detection and diagnosis (FDD); machine learning (ML);
photovoltaic (PV) systems

1. Introduction

Over the past two decades, remarkable growth in the photovoltaic (PV) market has been
seen due to relatively increased efficiency and reduced cost of PV modules. Significant power
generation, around 115 GW, was recorded in 2019 [1]. With the increasing trend and reliance
on photovoltaic systems, fault detection and diagnosis techniques have been becoming more
critical for a safe and reliable operation of PV plants. Faults, such as crack, short-circuit,
and open-circuit faults, cause undesirable impacts on solar PV systems including reduced
efficiency and damage to PV facilities [2]. Short-circuit current and open-circuit voltage are
affected due to shading, open and short-circuit faults. In addition to that, the open-circuit
voltage can also be lower due to the effect of temperature. Additionally, the low short-circuit
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current may occur due to less irradiance, encapsulant damage, reduction in light trapping,
and/or it may occur due to cracks. However, in this research work, reduction in light
trapping and encapsulant damage are not considered because both are manufacturing and
accidental mechanical defects and require a lot of external sensors. Several fault detection
techniques have been proposed in the literature including a model-based approach, real-time
difference method, output signal analysis, and machine-learning-based techniques such as
deep-learning-based methods [3]. Among the listed methods, this paper focuses on machine
and deep-learning-based techniques which are considered faster with greater accuracy
reaching 91% [4]. The following reviews the literature of machine- and deep-learning-based
fault detection techniques and classification at both module and array levels.

1.1. Machine-Learning-Based Fault Detection

An ANN algorithm was proposed for shadowing fault detection and demonstrated
through a 3.15 kW PV system. A major limitation of the technique is its complexity and
inability to be utilized for other types of faults [5]. ANN requires a large data set based on
variations in input. In the case of open-circuit (OC) and short-circuit (SC) faults, the input
conditions for the ANN become closer to binary, i.e., “fault is present or is not present”. In
open circuit faults the current becomes zero while in short-circuit faults the voltage becomes
zero. ANN has a multi-layer operational procedure. The greater the input, the higher the
accuracy will be. Therefore, it is obvious that the ANN will be computationally underloaded
for detection of OC and SC faults because a lot of computational power and resources
might be wasted. A Bayesian belief network was also used to detect various faults in grid
tied PV installations in [6]. A fuzzy logic (FL)-based algorithm in [7] was presented for
several abnormalities such as shading, water infiltration, and damaged diodes in addition
to open-circuit, and line-to-line faults. The approach was evaluated and classified by the
application of decision trees (DT) achieving an accuracy of 98.9% [8]. An artificial neural
network (ANN) was also utilized based on three key parameters temperature, current, and
voltage at the maximum power in [9] to detect shading, degradation, and short-circuit
faults of a PV installation. An improved fuzzy logic approach was also proposed in [10]
relying on measured increases in series resistance (Rs) providing binary results (yes/no).

A method for detecting arc faults was also presented in [11] relying on peak detection,
frequency analysis, and observation of the operating point. In [12], module level temporal
faults are identified by using a new introduced technique based on ANNFL with over
86% accuracy. However, line-to-line, line-to-ground, and short-circuit faults remain difficult
to detect under low solar irradiance. In [13], shading, short circuits, and aging of PV
installation are classified by the application of radial basis function–extreme learning
machine (RBF-ELM) with an accuracy of 93.55%.

Short circuits and shading faults in PV installation are classified by using a fuzzy clas-
sifier based on theoretical parameters extracted from I-V curves in [14], with a classification
accuracy of 95.3%. Abnormal aging, open-circuit and short-circuit faults are classified by
using a LSSVM scheme in a Bayesian model and verified experimentally with an accu-
racy of 97.5% in [15]. In [16], the authors proposed a KELM procedure for identification
and classification of partial shading, open circuit, short-circuit, and degradation faults of
PV systems.

In [17], the authors proposed a multiclass SVM for identification and classification
of abnormal degradation and line-to-line faults occurred at module level by using two
different factors: fill factor (FF) and Kalman filter (KF). In [18], a PV system of 9.54 kW is
subjected to two different probabilistic NN classifiers trained on a dataset of 11,840 readings,
for detection of a disconnected and short-circuited panel through a reverse metering system.
In [19], the authors implemented a C4.5 DT procedure, a kind of supervised learning,
for detection and classification of short, circuited modules. In [20], a genetic algorithm
is employed for identification and localization of open-circuit and short-circuit faults;
however, its accuracy diminishes under different shading patterns. All the reviewed
techniques above are limited by the size of arrays.
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In [21], the authors employed a RFEL practice for detection and diagnosis of degrada-
tion, line–line, open-circuit, and partial shading faults. However, the proposed technique
is not able to localize faults. In [22], the authors discussed the application of the KNN
algorithm for detection and classification of partial shading, short-circuit, open-circuit, and
line-to-line faults for a PV system of size 3 × 3. A comparative analysis of ANN and FL
implemented on a 1.1 kW PV installation was presented in [23]. It has been concluded that
the detection accuracy of ANN is better than FL, which is approximately 92.1%.

In [24], a fuzzy-logic-based offline technique is proposed to automate classification
process of progressive faults such as delamination through thermal imaging techniques
and ethylene-vinyl acetate (EVA) discoloring which is a challenging task due to the camera
signal noise and atmospheric temperature variations. In [25], the authors proposed a
graphical exponentially weighted moving average (EWMA) technique based on Shewhart
and k-NN algorithms for detection of short-circuit, open-circuit, and temporary shading
faults based on various parameters such as the current, voltage and power at the maximum
power in addition to the irradiance and temperature. Short impacts of shading, open/short
circuits, and snow covering on a PV installation have been investigated and faults are
classified accordingly in [26], based on different parameters extracted from 720 I-V curves,
which is a very complex process. In [27], three different classes of cracks for PV modules
are detected and differentiated by using RF classifiers based on 735 electroluminescence
images. A summary of the ML based techniques for PV fault detection including key
contribution literature gaps is presented in Table 1.

Table 1. Applications of ML for PV installations.

Ref. Technique Contribution Fault Limitations/Research Gap

[6] BBN Detection AC and DC faults Multiple faults cannot be
detected at the same time.

[7] FL Identification Shading and
broken cells

False detection of LL and LG
fault under partial shading.

[8] DT Detection and
classification

Line-to-line, open
circuit, shading Works only in limited scenarios.

[15] LLSVM and Bayesian Classification Open circuit, short
circuit and aging Works only for small PV arrays.

[16] KELM Detection and
classification

Line to line and
open-circuit faults

Works better under
uniform irradiance.

[17] BPNN Identification Anomalies False detection of LL and LG
faults under partial shading.

[18] Modified MLP Identification Shading fault Not suitable for multiple
shading patterns.

[19] ANN Localization Short circuit

Takes lot of computational
power and is very complex.

Algorithm needs to be trained
every time.

[20] SVM-KNN Classification Short circuit Can classify two faults.

[21] ELM Classification Shading Cannot classify multiple faults
when occur at the same time.

[22] NF Detection Increase in RS It can only detect change in
output current.

[25] Fuzzy C mean Detection and
classification Shading It works only for shading faults.

[26] DT (C4.5) Detection and
classification

Line–line, short and
open circuits Works for small PV arrays only.



Energies 2022, 15, 5106 4 of 14

1.2. Deep Learning Techniques

DL procedures are employed to resolve various problems of detection and diagnosis
of faults, such as manual features extraction, single hidden layer, overfitting problems,
low performance, and shallow ANNs. Conventional deep learning techniques particularly
require large data sets of thermal or electroluminescence images [28–34].

Various DL algorithms have been found more effective in pattern recognition of fault
images and their classification accordingly. In [35], faults such as snail trails, yellowing,
delamination, gridline corrosion, and dust-shading are detected, classified, and localized
by the application of DCNN and SVM on 7560 PV images obtained through unmanned
aerial vehicles.

Line–line and open circuits of PV installation are identified on the basis of a dataset
obtained through 2D representation of PV voltage and current and achieved high accuracy
in [36]. In [37], partial shading, open-circuit, short-circuit, and degradation faults are
detected and diagnosed by using a CNN with 2D ResNet, but a large data set is required
for detection. Table 2 presents a brief overview of different deep leaning algorithms for
fault detection.

Table 2. Applications of DL for PV installations.

Ref. Technique Contribution Fault Limitation/Research Gap

[35] DCNN Classification,
localization

Yellowing, shadowing,
snail Large data set is required.

[38] CNN (VGG-16) Detection Anomalies Cannot detect multiple faults at
a time.

[39] DCNN- MC-SVM Detection,
identification

Yellowing, delamina-
tion, snail trails,

dust-shading

Cannot detect short-circuit and
open-circuit faults.

[37] RestNet Detection,
identification

Short circuit, open
circuit, degradation Large data set is required.

[40] DCGAN and CNN Identification Arc Works only for ARC faults.

[41] LSTM Classification Line-to-line, hotspot Does not work under different
shading patterns.

The major contribution of this research work is as follows:

• Faults are detected and classified in both series parallel and total cross tied configuration.
• Existing fuzzy logic techniques are employed for detection of a single fault at a time.

Our proposed approach addresses the issue by detecting multiple faults at a time.
• The proposed approach is applicable for large systems.
• This research work proposes, for the first time, a fault index based on a linear trend

line-based approach which makes detection accurate and simple.
• This research work establishes a data set of a PV system of different faults with

different severity levels.
• This technique classifies faults based on severity levels, so that the relevant protection

scheme can be adopted accordingly.

2. Methodology

This section presents the proposed fuzzy-based fault detection method which is illus-
trated in the flowchart of Figure 1. As shown, the first step for implementing the proposed
technique is the establishment of data sets both through simulation and experimentally.
The system used for this purpose consists of a 6 × 6 PV array connected to the grid. Each
module rating is 150 W with manufacturer datasheet parameters presented in Table 3. The
used PV modules are of the type “TDB125x125-72-P 150W” manufactured by Ningbo Solar
Electric Power.
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For data collection, different faults such as shading, open-circuit and short-circuit
faults covering a broad range of severity levels and locations are employed for the PV
system for two different configurations: series-parallel (SP) and total cross tied (TCT)
configurations. Specifically, three different severity levels of the stated faults are used.
Because the outputs of the array including the open-circuit voltage, short-circuit current,
and power are affected by the type, severity, and location of faults, the resulting outputs
are recorded accordingly under all fault scenarios creating a comprehensive dataset for
training. The data includes I-V trajectory collected for each fault scenario.

The same practice is repeated with the experimental setup of a 5 kW PV system
connected to the “Fronius” inverter, depicted in Figure 2, which is used for storing the
needed parameters. The data is collected with milli-scale variation. Shadow fault was
implemented through covering the system with different sheets of several opacity levels.
Open-circuit and short-circuit faults were applied through intentional cutting and shorting
of connections at multiple locations.
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Table 3. PV array block parameters (Ningbo solar electric power (Mono)).

Power (STC) 150 W Cells per Module 54

Open-circuit voltage 43.4 V Short-circuit current Isc 4.86 A
Voltage at MPP 35.2 V Current at MPP 4.26 A

Nominal cell
temperature 47.2 ◦C Temperature coefficient

of Isc 0.06

The second step is quantification and scaling of faults. The maximum and minimum
limits of design parameter are quantified and scaled. Voltage at the maximum power
point is taken as one parameter, because each fault results in different Vmpp for different
severity levels. In the proposed technique, I-V trajectories/curves of the PV array under
various faulty conditions are subjected to the calculation of a newly introduced parameter
‘fault index’. The value of ‘fault index’ is calculated through the linear interpolation of I-V
trajectories and power at the maximum point of the PV array.
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Critical analysis of I-V trajectories, while focusing the basic criteria of the curve fitting
technique, plays a pivotal role for the application of the proposed technique. A linear
trend line trajectory is employed prior to the maximum power point as the slope of the I-V
curve is insignificant near the short-circuit current and it decreases negatively towards the
bottom of the curve. The exponential trend line for the complete I-V curve of the PV array
requires higher order equations which can result in over fitting of the curve and increased
complexity; therefore, a linear trend line is preferred. Experiments were conducted on
an already installed PV system with a power rating of 5 kW and an open-circuit current
capacity of 40 Amps. The commercially available IV tracer has a current rating of 15 Amps.
In addition to the above-mentioned reason, our proposed methodology Vmpp is taken as
one of parameter which is directly taken from the inverter. Whereas the fault index is
formulated by multiplying Pmp with the slope of the IV trend line. The IV trend line is
established by manually changing the load for three instances.

The trend line against different fault scenarios can be calculated using (1) while the
value of the fault index is calculated through (2).

m =
instantenious change in current (∆n I)

total change in Voltage (∆V)
(1)

i = −m·Pmax (2)

where

i = fault index;
m = slope of trend line;
Pmax = maximum power of PV array;
m is the slope of the trend line.

The change in voltage is recorded against each instantaneous interval change in current.
The concept of linear interpolation is followed for establishing a trend line. After finding
slope of the trend line, it is multiplied with power at the maximum point yield’s fault index.
The fault index is the severity of a fault. This is variable is introduced for the first time.
The discerning values of fault indexes and power at maximum power point are the key
parameters which are subjected to the fuzzy logic controller for classification of various PV
faults. Slopes between each consecutive data point of the data set are taken and then added
incrementally until the maximum power point.

The third step includes producing input and output membership functions. Depend-
ing upon the variation pattern of the I-V trajectories, triangular membership functions
are used to represent mentioned parameters. Input membership functions consisting of
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different values of the fault index (i) and Vmpp are generated for fuzzy logic inference
engines. Output membership functions based on the diagnosis rules set are defined for
detection and classification of open-circuit, short-circuit, and shadowing faults.

Next, a set of rules are established where fuzzy “if–then” rules are defined in the fuzzy
editor based on the boundary range and quantity of membership functions. Apropos, fault
indexes are divided into four different classes including very low (VL), low (L), medium
(M), and high (H), whereas values of Vmpp are divided into three different sections including
low (L), medium (M), and high (H) for the formulation of fuzzy rule sets shown in Table 4.

Table 4. Fuzzy rule set.

R1 if (Fault_Index is M) and (Vmpp is H) then (PV_Fault is NF)
R2 if (Fault_Index is VL) and (Vmpp is L) then (PV_Fault is OCF)
R3 if (Fault_Index is H) and (Vmpp is M) then (PV_Fault is SF)
R4 if (Fault_Index is L) and (Vmpp is H) then (PV_Fault is SCF)

Finally, a defuzzification is conducted where the Mamdani algorithm of fuzzy logic
control with the ‘centroid’ defuzzification technique is employed. These steps guarantee
generating accurate results as they deal with ranges of the different parameters rather than
data points for shadowing faults which have different severity levels.

3. Results and Discussion

The output power of the standard PV array (6 × 6) harnessed using “Ningbo Solar
Electric Power TDB125x125-72-P 150W” connected in SP and TCT configurations, is approx-
imately 5.4 and 5 kW, respectively. Characteristic curves of PV arrays under different faulty
conditions are generated through MATLAB/Simulink to observe the impacts of faults in
SP and TCT configurations.

Fuzzy input membership functions are formulated by using the fault index ranging
from 19.16 to 130.82 and voltages at maximum power point ranging from 178.54 to 231.17.
The discerning values of the fuzzy output membership function obtained against respective
combinations of fault indexes and Vmpp can classify the operating condition of the PV array.
Output values of the fuzzy logic controller classifying the operating conditions of the PV
array are shown in Table 5. Moreover, the fuzzy rules view for classification of PV faults
is shown in Figure 3. Parameter ranges of the fault index (i) and Vmpp against different
operating conditions of the PV array are given in Table 5. Moreover Table 6. Shows the
results in tabular form.

Table 5. Classification of PV faults.

Type of Fault Fuzzy Results

SP Configuration
No Fault 11.3

Open-Circuit Fault 33.5
Short-Circuit Fault 50

Shading Fault 83.5
TCT Configuration

No Fault 5.9
Open-Circuit Fault 39.2
Short-Circuit Fault 58.6

Shading Fault 88.3

The results are shown in Figures 4 and 5, respectively. Figure 5c also shows examples
of data points for the calculation of “m”. Significant behavioral changes in characteristic
curves of PV arrays arranged in two different test scenarios are concluded as follows:

• SP Configuration: Short-circuit faults introduced in SP exhibit less impacts on power
and current values as compared to open-circuit faults. However, shading faults show
non-uniform behavior with abrupt reduction in both power and current values. In
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the case of open-circuit faults, short-circuit current reduces abruptly where during
short-circuit faults the open-circuit voltage decreases sharply. The SP configuration is
more susceptible to open-circuit faults than short-circuit as shown in Figure 5.

• TCT Configuration: Open-circuit faults cause a non-uniform pattern of reduction in
power, whereas abrupt voltage drops are observed due to short circuits. Moreover,
shading faults result in abrupt reduction of current and power with a high ripple effect.
Overall, the TCT configuration is less impacted by shading faults in comparison with
the SP configuration during shading.

Finally, it is important to mention that non-uniform distribution of collected current,
thermal runaway, and capacitive effects cause kinks in I-V and P-V curves. Whereas
shading produces multiple power peaks in the PV curve of normal PV arrays, but the
above-mentioned factors affect the shaded PV curve with kinks and uniform reduction.
There are multiple factors which deviate IV and PV curves such as insolation, tilt angle,
snail fault (cell cracks), failure of bypass diodes, interconnection failures (open circuit and
short circuits), and degradation. In this research work, three major factors are addressed
which underlay almost all other factors. For example, interconnection failures, cell cracks,
and bypass diode failures are subcategories of internal open-circuit and short-circuit faults.
In an open-circuit fault the connection/line breaks while in short circuit it shortens. While
external faults are inter- or intra-string/array faults.

Energies 2022, 15, x FOR PEER REVIEW  9  of  15 
 

 

Table 6. Classification of PV faults. 

Operating Condition  Fault Index (𝒊)  Vmpp 

Normal Operation  71.24  210.72 

Open‐Circuit Faults  19.16–49.93  178.54–231.17 

Short‐Circuit Faults  73.66–75.02  195.29–211.34 

Shading Faults  66.70–130.82  210.88–211.39 

 

 
(a) 

 
(b) 

Figure 3. Cont.



Energies 2022, 15, 5106 9 of 14
Energies 2022, 15, x FOR PEER REVIEW  10  of  15 
 

 

 
(c) 

Figure 3. Fuzzy rule view. (a) Open‐circuit fault. (b) Short‐circuit fault. (c) Shadowing fault. 

 
(a) 

 
(b) 

Figure 3. Fuzzy rule view. (a) Open-circuit fault. (b) Short-circuit fault. (c) Shadowing fault.

Table 6. Classification of PV faults.

Operating Condition Fault Index (i) Vmpp

Normal Operation 71.24 210.72
Open-Circuit Faults 19.16–49.93 178.54–231.17
Short-Circuit Faults 73.66–75.02 195.29–211.34

Shading Faults 66.70–130.82 210.88–211.39

Energies 2022, 15, x FOR PEER REVIEW  10  of  15 
 

 

 
(c) 

Figure 3. Fuzzy rule view. (a) Open‐circuit fault. (b) Short‐circuit fault. (c) Shadowing fault. 

 
(a) 

 
(b) 

Figure 4. Cont.



Energies 2022, 15, 5106 10 of 14
Energies 2022, 15, x FOR PEER REVIEW  11  of  15 
 

 

 
(c) 

Figure 4. Impact of fault on TCT configuration. Open‐circuit fault. (b) Short‐circuit fault. (c) Shad‐

owing fault. 

 
(a) 

 
(b) 

Figure 4. Impact of fault on TCT configuration. Open-circuit fault. (b) Short-circuit fault. (c) Shadowing fault.

Energies 2022, 15, x FOR PEER REVIEW  11  of  15 
 

 

 
(c) 

Figure 4. Impact of fault on TCT configuration. Open‐circuit fault. (b) Short‐circuit fault. (c) Shad‐

owing fault. 

 
(a) 

 
(b) 

Figure 5. Cont.



Energies 2022, 15, 5106 11 of 14Energies 2022, 15, x FOR PEER REVIEW  12  of  15 
 

 

 
(c) 

Figure 5. Impact of fault on SP configuration. (a) Open‐circuit fault. (b) Short‐circuit fault. (c) Shad‐

owing fault 

4. Conclusions 

The aim of this research work was to devise a novel and simple technique for detec‐

tion and classification of most common faults occurring in solar PV systems by using a 

fuzzy  logic controller. A novel technique based on  linearity of I‐V trajectories obtained 

through varying intensity and  location of faults  introduced  in a PV array was used for 

extraction of key parameters, which were further used for calculation of a newly intro‐

duced parameter ‘fault index’ which measures the degree of deviation from the normal 

operating conditions of the PV system. The electrical parameters extracted through the 

proposed technique were subjected to a fuzzy logic algorithm for classification of faults. 

It was verified through simulation and experimental setup of a 5 kW grid tied solar PV 

system that can detect and classify all common faults using the proposed technique. The 

proposed method  is efficient and quite easy  to  implement as  compared  to other  tech‐

niques which usually require a large data set for training of algorithms. 

The discerning values of fault index ranging from 19.16 to 130.82 obtained through 

the application of proposed technique remarkably diagnose the occurrence of various PV 

faults, achieving an accuracy of 98% with an average decreased error of 13% compared to 

other conventional fault diagnosis techniques.   

Author Contributions: Conceptualization,  I.H. and A.I.; methodology,  I.U.K., M.U.A.;  software, 

I.H. and A.I.; validation, M.S.C. and N.U.; resources, K.T. writing—original draft preparation, I.H. 

and T.I. writing—review and editing, N.U. and M.S.C.; funding acquisition M.S.C. and K.T. All au‐

thors have read and agreed to the published version of the manuscript. 

Funding:  This  research  was  supported  by  Prince  of  Songkla  University  from  grant  number 

ENV6502112N. This work also received support from Taif University Researchers Supporting Pro‐

ject number (TURSP‐2020/144), Taif University, Taif, Saudi Arabia.   

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data set available from authors is not shared. 

Conflicts of Interest: The authors declare no conflict of interest. 

Nomenclature 

AI  Artificial Intelligence 

ANN  Artificial Neural Network 

CNN  Convolutional Neural Network 

DL  Deep Learning 

Figure 5. Impact of fault on SP configuration. (a) Open-circuit fault. (b) Short-circuit fault. (c) Shadowing fault.

4. Conclusions

The aim of this research work was to devise a novel and simple technique for detection
and classification of most common faults occurring in solar PV systems by using a fuzzy
logic controller. A novel technique based on linearity of I-V trajectories obtained through
varying intensity and location of faults introduced in a PV array was used for extraction of
key parameters, which were further used for calculation of a newly introduced parameter
‘fault index’ which measures the degree of deviation from the normal operating conditions
of the PV system. The electrical parameters extracted through the proposed technique
were subjected to a fuzzy logic algorithm for classification of faults. It was verified through
simulation and experimental setup of a 5 kW grid tied solar PV system that can detect and
classify all common faults using the proposed technique. The proposed method is efficient
and quite easy to implement as compared to other techniques which usually require a large
data set for training of algorithms.

The discerning values of fault index ranging from 19.16 to 130.82 obtained through
the application of proposed technique remarkably diagnose the occurrence of various PV
faults, achieving an accuracy of 98% with an average decreased error of 13% compared to
other conventional fault diagnosis techniques.
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Nomenclature

AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolutional Neural Network
DL Deep Learning
DT Decision Tree
DCNN Deep Convolutional Neural Network
FLC Fuzzy Logic Controller
GNN Generative Adversarial Network
IoT Internet of Things
KELM Knowledge Enhanced Language Model
KNN k-Nearest Neighbor
LSTM Long Short-Term Memory
LSSVM Least Square Support Vector Machine
MPPT Maximum Power Point Tracker
MLT Machine Learning Technique
NF No Fault
OCF Open-Circuit Fault
OCPD Over Current Protection Device
PV Photovoltaic
ResNet Residual Neural Network
SP Series-Parallel
STC Standard Testing Conditions
SVM Support Vector Machine
SSTDR Spread Spectrum Time Domain Reflectometry
SCF Short-Circuit Fault
SF Shading Fault
TCT Total Cross Tied
TDR Time Domain Reflectometry
VGG Visual Geometry Group
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