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Abstract: Rotor dynamic balancing is a classical problem. Traditional balancing methods such as 

the influence coefficient method and the modal balancing method, have low balancing efficiency 

because they need to run many times to add trial weights. Although the model-based balancing 

method improves the balancing efficiency, it cannot accurately identify the position, amplitude and 

phase of each unbalance fault for rotors with multi-disc structures, so it is difficult to apply it to 

actual balancing. To solve the above problems, based on the traditional modal balancing theory, this 

paper deduces that the continuous and isolated unbalance in the rotor-bearing system can be rep-

resented by isolated unbalance on several balancing planes approximately. The model-based 

method is used to identify the above-mentioned equivalent isolated unbalances, and then the cor-

rected mass is added to the balancing planes so as to complete the balance of multiple flexible rotor 

without trial weights. Considering the practical situation, the proposed balancing method includes 

two steps: low-speed balancing and high-speed balancing. The proposed balancing method is veri-

fied using three and four-disc rotors. The simulation results show that the balancing method can 

effectively reduce the vibration of the flexible rotor after low-speed and high-speed balancing, and 

the amplitude at the measurement point is reduced by 79.74~97.60%, respectively. 

Keywords: rotor-bearing system; unbalance identification; vibration; balance 

 

1. Introduction 

Rotating machinery is one of the most critical types of machinery in the industry, and 

its long-term reliable and safe operation is essential. Vibration caused by an imbalanced 

rotor is the main reason for the abnormal operation of rotating machinery. Rotor dynamic 

balancing is the main method to reduce the vibration caused by unbalancing fault, and it 

is an important topic of long-term concern in industry and academia. Numerous scholars 

have reviewed dynamic balancing methods [1,2]. The classical methods of rotor dynamic 

balancing mainly include the influence coefficient method and the modal balancing 

method, which are widely used because of their simplicity and stable performance. How-

ever, in the process of balancing, many trial runs are needed, which reduces the economic 

benefits of the unit. In addition, because of the complexity of the process, the application 

of the balancing methods based on artificial intelligence [3,4] and empirical technology 

[5] is limited. To improve the balancing efficiency, academics have proposed numerous 

trial-weight-free balancing methods [6]. 

Hundal [7] first proposed a trial-weight-free dynamic balancing method based on 

modal parameters, which can obtain the accurate correction mass through a series of cal-

culations after obtaining accurate modal and experimental data. Subsequently, many 

scholars conducted a series of studies on the improvement of the trial-weight-free modal 

balancing method [8–10], but the above methods rely on the modal analysis of the rotor 
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and have certain limitations in use. In order to develop an efficient and stable unbalance 

parameter identification method, scholars applied the finite element model to the research 

of the balancing method without trial weight and proposed a model-based unbalance pa-

rameter identification method. Zou et al. [11] proposed a novel time-domain unbalanced 

load identification method with the finite element method together with an augmented 

Kalman filter algorithm. Zhao et al. [12] proposed a balancing method based on transient 

characteristics, combined with dynamic load identification techniques, to identify the un-

balance parameters of the rotor system. Wang et al. [13] proposed two algorithms called 

the single direction algorithm and the two orthogonal direction algorithm, in order to 

identify the unbalance of multi-disc and multi-span rotors from the unbalanced response. 

Bachschmid et al. [14] proposed a model-based method for identifying multiple faults in-

cluding unbalance faults, which introduces residual plots as a visualization tool for fault 

identification and localization. Yao et al. [15] proposed a single-disk rotor unbalance fault 

identification method based on modal expansion and optimization algorithms, which can 

detect the location, amplitude, and phase of unbalance faults. In addition, the paper also 

proposed a two-disk rotor unbalance fault identification method integrating modal ex-

pansion, inverse problem, and optimization algorithm. Shrivastava et al. [16] proposed a 

model-based unbalance fault identification method using a Kalman filter and recursive 

least squares, which requires the location of the unbalance fault to be known in advance. 

Sudhakar et al. [17] proposed an improved equivalent load minimization method and vi-

bration minimization method, and the above methods can identify the location, ampli-

tude, and phase of a single unbalance fault with a few measurement points. Chatzisavvas 

et al. [18] proposed a technique for unbalance identification based on sparse vibration 

measurements using the equivalent load method, which is capable of identifying the lo-

cation of multiple unbalance faults without requiring a priori knowledge. 

It is usually assumed that the unbalance fault occurs at the rotor disc. The accurate 

identification of the unbalanced fault at the disc by the model-based method proposed 

above needs to be based on the accurate identification of positions. When there are more 

discs, none of the above methods can accurately identify the location, amplitude, and 

phase of the unbalance, which usually happens in gas turbines, aero-engines, and other 

rotating equipment with multistage blades. In addition, when balancing the rotor by the 

above method, the balancing planes must be consistent with the planes where the unbal-

ance faults occurs. However, in practical application, due to many restrictions, the number 

of balancing planes may be less than that of unbalanced faults planes, thus limiting the 

application of the model-based dynamic balancing method. 

In this paper, a model-based balancing method without trial weight is proposed for 

the unbalance faults of a multi-disc rotor-bearing system. Based on the modal balance 

theory, we first transform the rotor unbalance into isolated unbalance on several correc-

tion planes, and then identify the above unbalance by using the model-based method. 

Based on the above technology, a balancing method of flexible rotor with multi-disc is 

proposed in this paper, which includes two processes: low-speed balancing and high-

speed balancing. Numerical examples show the effectiveness and efficiency of the balanc-

ing method in reducing the rotor vibration. 

This paper is organized as follows. In Section 2, an analytical expression is estab-

lished based on the modal balance theory, which theoretically shows that the unbalance 

of the rotor distributed in continuous or isolated form can be approximated as the equiv-

alent isolated unbalance on several balancing planes. In Section 3, a model-based unbal-

ance parameter identification method is proposed which can identify the equivalent iso-

lated unbalance on the balancing planes. The balancing process proposed is briefly de-

scribed in Section 4. In Section 5, the balancing method proposed is simulated and veri-

fied, and the factors affecting the balancing performance are discussed. The conclusion is 

given in Section 6. 
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2. Theory 

The deformation �(�) of a rotor with bending stiffness ��(�) and continuous mass 

�(�) under an unbalanced force � can be described by the differential equation [19]: 

[��(�)���]�� − ���(�)� = � (1)

where � is the angular velocity of the rotor. 

Unbalance faults are usually caused by the inconsistency between the center of mass 

and the center of rotation of the rotor. Rotating machinery is important equipment in mod-

ern industry. Their unbalanced distribution has two forms: isolated distribution and con-

tinuous distribution [20], as shown in Figure 1. 
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Figure 1. Rotor unbalanced distribution (a) continuous unbalance (b) isolated unbalance. 

When the rotor rotates at an angular speed �, the unbalance distributed in isolated 

and continuous form generates an unbalance force �, which is expressed as [19] 

� = ���(�) + �� � ��

�

���

 (2)

where the continuous unbalance �(�) can be expanded by the principal mode in the fol-

lowing form 

�(�) = � ���(�)��(�)

�

 (� = 1,2, … ) (3)

where ��(�) is the principal mode, which is the solution of Equation (1) when � = 0. �� 

is the nth modal component of the unbalanced distribution, and its expression is 

�� =
1

��

� �(�)��(�)�� (4)

where �� is the modal mass of the nth mode and can be expressed as 

�� = � �(�)��
�(�)�� (5)

The response � of the rotor under the unbalanced force � can be expressed in the 

following form [19] 

�(�, �) = �
��

��
� − ��

��� +
1

��

� ��

�

���

������� ��(�)

�

���

 (6)

According to Equation (6), we can conclude that a single isolated unbalance �� can 

excite all modes (� = 1,2, … ) unless it happens to be located at a node of a certain mode 
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shape ������� = 0� without excitation of that mode. According to Equation (3), the con-

tinuous unbalance �(�)  only excites the modes it contains, e.g., when �(�) =

���(�)��(�), only the second order principal mode is excited. 

Rotor unbalance is usually caused by manufacturing errors, assembly errors and ma-

terial non-uniformity, and its distribution is complex, so it is difficult to accurately meas-

ure its distribution characteristics in practice. To solve the above problems, the purpose 

of this paper is to find a set of unbalance with a simpler distribution which excites a vi-

bration response equal to the vibration response excited by the original unbalance of the 

system. The isolated unbalances in accordance with the characteristics of the simpler dis-

tribution form and the following discussion focuses on whether there is such a set of iso-

lated unbalances. 

Suppose there are several isolated unbalances, and the vibration caused by these un-

balances is the same as that caused by the original unbalances in the rotor. The unbalance 

��  at multiple axial positions �� is used to represent the above-mentioned isolated un-

balance. According to Equation (6), to make the vibration the same, the unbalance ��  

should meet the following conditions: 

1

��

� ��

�

���

��(��) = �� +
1

��

� ��

�

���

������ (� = 1,2, … ) (7)

When the angular velocity of rotor is lower than ��, it is generally considered that 

the influence of modes above the �  order can be ignored, i.e., it is considered that 

�� (��
� − ��)⁄  in Equation (6) tends to 0 when � > �, at which time Equation (7) becomes 

Equation (8)  

1

��

� ��

�

���

��(��) = �� +
1

��

� ��

�

���

������ (� = 1,2, … , �) (8)

Further expanding Equation (8), the relationship between the equivalent unbalance 

��  and the original unbalance of the system can be expressed by Equation (9) 

��(��)�� + ��(��)�� + ⋯ + ��(��)�� = � ��

�

���

������ + ����

��(��)�� + ��(��)�� + ⋯ + ��(��)�� = � ��

�

���

������ + ����

⋮

��(��)�� + ��(��)�� + ⋯ + ��(��)�� = � ��

�

���

������ + ����

 (9)

Obviously, if and only if � = �, Equation (9) has a solution. Therefore, we can con-

clude that when the rotor runs below ��, the original unbalance in the rotor can be ap-

proximately equivalent to the isolated unbalances in � balancing planes. It should be 

noted that any of these � planes should not be located at the node of any vibration mode, 

which will lead to the number � of unknown parameters in Equation (9) being less than 

the number � of equations, and thus the equivalent unbalance ��  can not be solved. 

3. Identification of Equivalent Unbalance 

Due to the unknown of the right side in Equation (9), the traditional modal balancing 

method requires several runs for adding trial weights to complete the balancing of the 

rotor, which greatly reduces the efficiency. To improve the efficiency, the model-based 

unbalance parameter identification method has been greatly developed in recent years. It 

can estimate unbalance parameters according to the response signals collected in one run. 
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This section introduces the identification of the equivalent unbalance ��  by using the 

model-based method. 

The equation of motion of a flexible rotor can be written as [21]: 

��̈ + (� + �)�̇ + �� = � (10)

where �, �, �, and � are the mass, damping, stiffness, and gyroscopic matrices, respec-

tively, � is the displacement vector of the nodes, and � is the unbalanced force vector. 

To improve solution efficiency and even the unsolvable solution due to the large di-

mensionality of the finite element model, the reduced-order model is used to establish the 

equivalent unbalance solution model. The Iterated Improved Reduced System (IIRS) 

method proposed by Choi et al. [22] is an effective technique for obtaining condensed 

matrices. We can obtain the exact characteristic properties of the system from the con-

densed matrices without consuming expensive calculation costs. However, the condensed 

matrices of the gyroscopic matrices cannot be obtained by using the above method, so the 

improved IIRS method [23] is used to reduce the order of the model of the rotor-bearing 

system. This method must first select the degrees of freedom (dof) to be retained. In this 

paper, the translational dof of the node where the equivalent unbalances and the measur-

ing sensor is located are selected as the retained dof. The reduced-order equation of Equa-

tion (10) is [23]. 

���̈� + (�� + ��)�̇� + ���� = � (11)

The state space form of Equation (11) is [24] 

�̇(�) = ���(�) + ���(�)

�(�) = ���(�) + ���(�)
 (12)

where �(�) = [�� �̇�]� is the state vector, �� = �
0 �

−��
���� −��

��(�� + ��)� is the sys-

tem matrix, �� = �0 ��
�����

�
 is the input matrix，where ��  is the selection matrix of 

unbalanced forces, the elements of the translational dof of the nodes where the equivalent 

unbalances are located are usually set to 1 and the others are set to 0. �(�) is the output 

vector. The state output matrix ��  is the selection matrix of the displacement response. 

��  is the direct transfer matrix. In this paper, it is the zero matrix because only the 

displacement is measured. The superscript c denotes the continuous form of the matrix. 

The discrete form (denoted by the superscript d) of Equation (12) can be expressed as 

[25] 

�̇(� + 1) = ���(�) + ���(�)

�(�) = ���(�) + ���(�)
 (13)

where �(�) = �(�∆�) , �� = exp (��∆�) , �� = [�� − �](��)���� , �� = �� , �� = �� , 

where ∆� is the sampling time for discretization. 

For the zero initial condition, Equation (13) can be written as the following moving 

average model [26] 

�(�) = � ���(� − �)

�

���

 (14)

where � is called the Markov parameter [27], �� = ��, �� = ��(��)����� . Equation (14) 

can be organized into matrix form 

� = �� (15)

where � = [�(0) �(1) ⋯  �(� − 1)]�  is the response vector at the measurement 

point, � = [�(0) �(1)  ⋯  �(� − 1)]� is the unbalanced forec vector at the disk, � is the to-

tal number of sampling points. The expression of � is as follows: 
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� =

⎣
⎢
⎢
⎢
⎡

�� 0 ⋯ ⋯ 0
�� �� 0 ⋯ 0
�� �� ⋱ 0 ⋮
⋮ ⋮ ⋯ ⋱ 0

���� ���� ⋯ �� ��⎦
⎥
⎥
⎥
⎤

 (16)

Equation (15) is established to solve for the equivalent unbalanced forces. We can 

obtain the matrix � when the parameters of the rotor-bearing system are confirmed. We 

can measure the displacement response �(�), � = 0,1, … , � − 1, and arrange it to obtain the 

vector �. By solving Equation (15), we can obtain the vector �, which can be decomposed 

to obtain the equivalent unbalanced force at each moment. When a displacement trans-

ducer is used to measure the rotor vibration, all elements of the matrix �� are zero. Ac-

cording to the Picard condition [28], the solution of � in Equation (15) is an ill-posed in-

verse problem. 

According to the literature [24], the solution of ill-posed inverse problem usually has 

the following form 

� = (��� + �I)����� (17)

where � is the regularization parameter selected in the solution process, and in this paper 

the L-curve criterion [29] is used to determine the parameter �. 

After the vector � is decomposed to obtain the equivalent unbalanced forces at each 

moment, the amplitude and phase of the equivalent unbalanced force are extracted by 

using the spectrum correction method [30]. The spectral correction method is an improved 

FFT method, which can improve the extraction accuracy of signal frequency, amplitude 

and phase. 

4. Balancing Process 

Considering the actual working condition, the unbalance may cause excessive vibra-

tion at the critical speed, which will lead to the problem that the rotor cannot safely pass 

the critical speed, so the low speed balancing is needed in advance. Therefore, the balanc-

ing process is set up as two processes: low-speed and high-speed balancing. The process 

is shown in Figure 2. Since the processes of low-speed balance is the same as that of high-

speed balance, and only the rotational speed is different, this paper takes low-speed bal-

ance as an example to illustrate the process of this balancing method. 

Low-speed balancing

High-speed balancing

Select the position of 
the balancing surface 

and the sensor 
Construct matrix R 

based on the reduced 
order model

Collect vibration data 
and assemble it to 
obtain the vector Y

Solving equation (15) 
using regularization 

method

 Extract the amplitude 
and phase of the 

equivalent unbalance 
using the spectral 
correction method

Repeat balancing until 
vibration are met

Select the balance 
speed and build the 

reduced order model

 

Figure 2. Rotor balancing process. 



Energies 2022, 15, 5088 7 of 18 
 

 

Firstly, the balancing plane and the sensor position are selected, and then the low-

speed balance shaft speed is selected to establish a reduced-order model. Secondly, con-

struct the matrix � of Equation (15) based on the reduced-order model. Thirdly, the vec-

tor � of Equation (15) can be obtained by collecting and assembling the vibration data at 

the balanced rotating speed, and the equivalent unbalance force of the rotor-bearing sys-

tem can be obtained by solving Equation (15) by the regularization method. Fourth, the 

amplitude and phase of the equivalent unbalance force at the balancing planes can be 

obtained by spectral correction. Finally, the low-speed balance of the rotor can be achieved 

by adding the same amount of unbalance at the opposite position of the balancing planes. 

5. Numerical Simulation Verification 

In this section, the simulation examples of two rotor-bearing systems (with three and 

four discs, respectively) are used to verify the effectiveness of the proposed balancing 

method. 

5.1. Balancing of 3-Disc Rotor 

The rotor bearing system with three discs shown in Figure 3a is selected to verify the 

proposed balancing method. The density of the rotor is 7850 kg/m�, the elastic modulus 

is 2.06 × 1011 N/m� and the Poisson ratio is 0.3. The diameter of rotor is 0.025 m and the 

total length is 0.72 m. The rotor-bearing system has three discs D1, D2, and D3 with the 

same parameters, whose mass are 8.9 kg, diameter inertia is 0.03196 kg ∙ m�, and pole in-

ertia is 0.06392 kg ∙ m�. The distances of the three discs from the left end of the rotor are 

0.24 m, 0.32 m and 0.48 m, respectively. The two bearings of the system have the same 

parameters and are set to be anisotropic to simulate the actual bearings. The stiffness in x 

and y directions is 7.5 × 108 N/m and 8 × 108 N/m and damping in x and y directions is 2 × 

103 N∙s/m and 1.8 × 103 N∙s/m, respectively. The rotor is simulated as 18 identical Timo-

shenko beams, each beam has two nodes, and each node has 4 dofs: translation and rota-

tion in X and Y directions, respectively. The finite element model has 19 nodes and 76 

dofs. Three discs are located at nodes 6, 9 and 13, and two bearings are located at nodes 1 

and 19. Displacement sensors are located in the x and y directions at nodes 3 and 17, re-

spectively, to collect the vibration displacement response of the rotor. 

x

y

z

D2

B1 B2

D1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MP1 MP2D3  
(a) 

 
(b) 
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(c) 

Figure 3. (a) Finite element model (b) Modal shape of the first two orders of modes (c) Campbell 

diagram of the three−disk rotor−bearing system. 

Figure 3b shows the mode shapes of the first two orders mode of the system shown 

in Figure 3a. Figure 3c shows the Campbell diagram of this system. Table 1 shows the first 

and second order synchronous forward whirl critical speed (FWCS) and synchronous 

back whirl critical speed (BWCS). The rotor balancing method proposed in this paper is 

verified by numerical simulation with the rotor operating lower than the critical speed �� 

as an example. 

Table 1. First two orders FWCS and BWCS of the three-disc rotor-bearing system. 

1st BWCS 1st FWCS 2nd BWCS 2nd FWCS 

45.01 Hz 46.69 Hz 165.48 Hz 216.59 Hz 

In the current work, two discs located at nodes 6 and 13 are selected as balancing 

planes and nodes 3 and 17 are selected as the measurement position of the sensors. And 

the displacement responses in x and y direction are used to calculate the equivalent un-

balance. According to the Section 3, before identifying the equivalent unbalance parame-

ters, the reduced-order model of the finite element model must be established first, and 

the translational dof of nodes [3,6,13,17] are chosen as the dof of the reduced-order model. 

Two unbalanced distribution are used to verify the reliability of the proposed method. 

The amplitude and phase of the unbalance are shown in Table 2. The unbalanced masses 

of all three discs were placed at 0.1 m from the center of the disc. 

Table 2. Induced unbalance parameters for two different cases in the three-disc rotor-bearing sys-

tem. 

No. 
Case 1 Case 2 

Mass Phase Mass Phase 

D1 10 g −70° 10 g 110° 

D2 5 g −160° 5 g −70° 

D3 12 g 110° 12 g 110° 

5.1.1. Low-Speed Balancing 

The effectiveness of the balancing method is verified when the unbalanced distribu-

tion is in case 1 in Table 2. Because the unbalance may cause the rotor to vibrate too much 

at the critical speed, and then the rotor cannot safely cross the critical speed, it is necessary 

to balance at low speed. In this paper, the speed for low-speed balancing is selected as 40 

Hz. The equivalent unbalance is identified by the identification method proposed in Sec-

tion 3. The length of the displacement data needs to be specified to obtain the vector � in 

Equation (15). In this paper, the equivalent unbalanced force is reconstructed by using the 

vibration displacement signal of 30 cycles and 30 sampling points in each cycle. The iden-
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tification results of equivalent unbalance at discs D1 and D3 are shown in Table 3. Cali-

bration masses of 18.27 g and 18.13 g are added at 86.76° and −76.61° of D1 and D3 disks, 

respectively, for low-speed balancing. 

Table 3. Induced unbalance and estimated results of equivalent unbalance at 40 Hz. 

Induced Unbalance Parameters Estimated Unbalance Parameters 

No. Mass Phase No. Mass Phase 

D1 

D2 

D3 

10 g 

5 g 

12 g 

−70° 

−160° 

110° 

D1 

D3 

18.27 g 

18.13 g 

−93.24° 

103.39° 

To test the effect of low-speed balancing, the steady-state unbalance response before 

and after low-speed balancing is calculated using the full-order model. The response is 

calculated using the full-order model in the subsequent part of this paper and will not be 

emphasized in the future. Figure 4 shows the spatial shape of the rotor before and after 

balancing. The amplitude of the displacement in the x-direction at nodes 3 and 17 before 

and after balancing at 40 Hz is shown in Figure 5. The amplitude in the x-direction of node 

3 is reduced from 2.218 × 10−5 m to 4.139 × 10−6 m, and the amplitude in the x-direction of 

node 17 is reduced from 2.364 × 10−5 m to 5.532 × 10−6 m, with the obvious effect of vibration 

reduction. 

Before low-speed balancing

After low-speed balancing

 

Figure 4. Comparison of spatial shape of rotor at 40 Hz before and after low−speed balancing. 
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Figure 5. Comparison of response in the node 3 and 17 x-directions at 40 Hz before and after 

low−speed balancing. 

In addition, as shown in Figure 6, the spatial shape of the rotor at 120 Hz before and 

after low-speed balance is also calculated. Figure 7 shows the amplitude of the rotor at 

nodes 3 and 17 in the x-direction before and after low-speed balancing at 120 Hz. The 

amplitude of node 3 x-direction is reduced from 3.744 × 10−5 m to 2.402 × 10−5 m, and the 

amplitude of node 17 x-direction is reduced from 3.099 × 10−5 m to 2.116 × 10−5 m. It can be 

found that after low-speed balancing, the vibration response of the rotor decreases at high 

speed, but it is not as significant as that at low speed. 

Before low-speed balancing

After low-speed balancing

 

Figure 6. Comparison of spatial shape of rotor at 120 Hz before and after low−speed balancing. 
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Figure 7. Comparison of response in the node 3 and 17 x-directions at 120 Hz before and after 

low−speed balancing. 

5.1.2. High-Speed Balancing 

In order to further reduce the vibration of the rotor-bearing system, the rotor is bal-

anced at high speed, and the speed of high-speed balancing is set to 120 Hz. After the 

correction mass for the low-speed balancing is added, the original unbalanced distribu-

tion becomes as shown in the previous column of Table 4. The equivalent unbalances at 

discs D1 and D3 are identified by the identification method introduced in Section 3. The 

identification results are shown in the last column of Table 4. The system is balanced at 

high speed by adding correction masses of 18.27 g and 18.13 g at −96.05° and −60.15° of 

discs D1 and D3, respectively. The steady-state response of the rotor before and after high-

speed balancing is calculated. The spatial shape of the rotor is shown in Figure 8, and the 

amplitude of the rotor in the x-direction at nodes 3 and 17 before and after high-speed 

balancing are shown in Figure 9. The amplitude in x-direction of node 3 is reduced from 

2.402 × 10−5 m to 7.584 × 10−6 m, and the amplitude in x-direction of node 17 is reduced 

from 2.116 × 10−5 m to 5.786 × 10−6 m, with an obvious effect of vibration reduction. Figure 

10 shows the amplitude of the rotor’s speed-up response at node 3 and 17 x-direction after 

low-speed and high-speed balancing when the unbalanced distribution is case 1 in Table 

2. By comparing the amplitudes, it can be found that the balancing method proposed can 

effectively reduce the vibration amplitude of the rotor. 

Table 4. Induced unbalance and estimated results of equivalent unbalance at 120 Hz. 

Induced Unbalance Parameters Estimated Unbalance Parameters 

No. Mass Phase No. Mass Phase 

D1 

D2 

D3 

9.90 g 

5 g 

6.36 g 

63.29° 

−160.00° 

−89.16° 

D1 

D3 

5.42 g 

5.64 g 

−83.95° 

−119.85° 
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Before high-speed balancing

After high-speed balancing

 

Figure 8. Comparison of spatial shape of rotor at 120 Hz before and after high−speed balancing. 

 

Figure 9. Comparison of response in the node 3 and 17 x−directions at 120 Hz before and after 

high−speed balancing. 

 
 

Figure 10. Comparison of the steady-state response of the rotor in the node 3 and 17 x-directions 

before and after balancing (case 1). 
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To verify the effectiveness of the proposed method for different unbalanced distribu-

tions, the unbalanced distribution is set to case 2 in Table 2. The proposed method is used 

to balance the rotor-bearing system at low and high speeds. To save the space of the paper, 

the spatial shape of the rotor and the response at nodes 3 and 17 at the balancing speed 

are not listed. Figure 11 shows the amplitude of the rotor’s speed-up response at node 3 

and 17 x-direction after low-speed and high-speed balancing when the unbalanced distri-

bution is case 2 in Table 2. By comparing the amplitudes, it can be found that the balancing 

method proposed can effectively reduce the vibration amplitude of the rotor. 

  

Figure 11. Comparison of the steady-state response of the rotor in the node 3 and 17 x-directions 

before and after balancing (case 2). 

Table 5 summarizes the vibration amplitudes of nodes 3 and 17 in the x-direction at 

120 Hz before and after balancing for different unbalance excitations (Case 1 and Case 2). 

The results show that the vibration amplitude of the rotor decreases by 79.74% to 95.65%, 

which proves the effectiveness of the balancing method. 

Table 5. Amplitude comparison at 120 Hz before and after low speed and high speed balancing. 

 

Measure-

ment  

Position 

Original  

Amplitude (m) 

Amplitude after Low 

Speed Balance (m) 

Amplitude after High 

Speed Balance (m) 

Case 1
Node3 x 3.744 × 10−5 2.402 × 10−5 (35.84%) 7.584 × 10−6 (79.74%) 

Node17 x 3.099 × 10−5 2.116 × 10−5 (31.72%) 5.786 × 10−6 (81.33%) 

Case 2
Node3 x 2.610 × 10−5 6.218 × 10−6 (76.18%) 1.136 × 10−6 (95.65%) 

Node17 x 1.355 × 10−5 2.078 × 10−6 (84.66%) 9.089 × 10−7 (93.29%) 

5.2. Balancing of 4-Disc Rotor 

The 4-disc rotor used for the simulation in this section is based on the 3-disc rotor in 

Section 5.1, with an additional disc at node 16, and its parameters are consistent with those 

of other discs. Figure 12 shows the finite element model, the modal shapes of the first two 

modes, and Campbell diagrams of the four-disc rotor bearing system. The first and second 

order FWCS and BWCS are listed in Table 6. 

x
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(b) 

 
(c) 

Figure 12. (a) Finite element model (b) Modal shape of the first two orders of modes (c) Campbell 

diagram of the four−disc rotor−bearing system. 

Table 6. First two orders FWCS and BWCS of the four-disc rotor-bearing system. 

1st BWCS 1st FWCS 2nd BWCS 2nd FWCS 

42.08 Hz 44.99 Hz 145.75 Hz 184.00 Hz 

The comparison between Tables 1 and 6 shows that the addition of disc 4 leads to the 

decreases of the critical speed of the system. Therefore, the balancing speeds are set to 35 

and 90 Hz in this section. The balancing goal of this section is the same as that of the three-

disc rotor, that is, balancing the rotor-bearing system running below the second order 

critical speed ��. The parameters selected in this section (including the nodes of the re-

duced-order model, the length of the vibration signal, and the number of sampling points 

per cycle) are the same as those in Section 5.1. 

In this section, the unbalanced distribution is set to two cases, case 3 and case 4, as 

shown in Table 7, to verify the balancing ability of the balancing method for rotors with 

different unbalanced distribution. The balancing process is the same as that of the 3-disc 

rotor described in Section 5.1, and the detailed balancing process will not be described 

again. After low-speed and high-speed balancing, Figures 13 and 14 show the steady-state 

displacement of the rotor at nodes 3 and 17 x-direction at each speed, respectively. Table 

8 shows the comparison of the displacement of the rotor at nodes 3 and 17 in the x-direc-

tion at the balancing speed of 90 Hz before and after balancing. It can be found that the 

vibration amplitude of the rotor is significantly reduced after the low and high-speed bal-

ancing. 

Table 7. Induced unbalance parameters for two different cases in the four-disc rotor-bearing system. 

No. 
Case 3 Case 4 

Mass Phase Mass Phase 

D1 10 g −70° 10 g 110° 

D2 5 g −160° 5 g −70° 

D3 12 g 110° 12 g 110° 

D4 8 g 20° 8 g 40° 
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Figure 13. Comparison of the steady-state response of the rotor in the node 3 and 17 x-directions 

before and after balancing (Case 3). 

  

Figure 14. Comparison of the steady-state response of the rotor in the node 3 and 17 x-directions 

before and after balancing (Case 4). 

Table 8. Amplitude comparison at 90Hz before and after low speed and high-speed balancing. 

 
Measurement 

Position 

Original  

Amplitude (m) 

Amplitude after Low 

Speed Balance (m) 

Amplitude after High 

Speed Balance (m) 

Case3 
Node3 x 2.246 × 10−5 1.297 × 10−5 (42.25%) 2.036 × 10−6 (90.93%) 

Node17 x 1.614 × 10−5 8.667 × 10−6 (46.30%) 7.597 × 10−7 (95.29%) 

Case4 
Node3 x 3.094 × 10−5 8.279 × 10−6 (73.24%) 7.435 × 10−7 (97.60%) 

Node17 x 2.222 × 10−5 7.291 × 10−6 (67.19%) 1.578 × 10−6 (92.90%) 

5.3. Discussion 

In this paper, an efficient balancing method for multi-disc rotors is proposed. Based 

on the modal balance theory, it is first demonstrated that the original unbalance in the 

rotor can be approximated as isolated unbalance on multiple balancing planes, then the 

model-based identification method is adopted to identify the above equivalent unbalance 

and, finally, the rotor balancing is completed by adding the same unbalance mass on the 

reverse position of the balancing planes. Considering that the actual rotor may not exceed 

the critical speed due to excessive vibration, the balancing process is set to low-speed bal-

ancing and high-speed balancing. From the comparison of the amplitudes of each speed 

before and after balancing shown in Figures 10, 11 13 and 14, the proposed balancing 
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method effectively reduces the rotor vibration. From the results in Tables 5 and 8, it can 

be seen that the amplitude at the measuring point decreases by 79.74% to 97.60%. 

However, it should be noted that, in the derivation of Equations (7) to (8), we ignore 

the influence of modes above the �th order, but in practice, higher order modes always 

affect the rotor vibration response at low speeds, although this influence is small. The 

above reasons will lead to errors of the equivalent unbalances calculated by Equation (9), 

which will reduce the balancing effect. On the other hand, the accuracy of the equivalent 

unbalance identification method introduced in Section 3 will also affect the balancing ef-

fect of the rotor to some extent. In extension, Equation (15) is constructed based on the 

reduced-order model, and the prediction accuracy of the unbalance response of the re-

duced-order model determines the identification accuracy of the equivalent unbalance, 

which in turn affects the balancing effect of this method. 

To illustrate the effect of the reduced-order model, the unbalance response of the 3-

disk rotor in Section 5.1 is predicted by the reduced-order model and the full-order model, 

respectively. Figure 15a shows the comparison of the unbalance responses under the ex-

citation of unbalance (1 × 10−3 kg-m ∠ 135°at node 13), and Figure 15b shows the relative 

error of the unbalance response predicted by the reduced-order model. It can be seen that 

the unbalance response predicted by the reduced-order model at different speeds is dif-

ferent from that predicted by the full-order model. This deviation can lead to the identifi-

cation error of the equivalent unbalanced forces, which will affect the balancing effect of 

the proposed method. It is also to be noted that the maximum deviation occurs near the 

first-order critical velocity, which should not be chosen as balancing speed, otherwise, it 

will cause a large distortion in the equivalent unbalance identification. This implies that a 

more accurate equivalent unbalances identification method will help to improve the bal-

ancing effect of the rotor. 

  
(a) (b) 

Figure 15. (a) Comparison of responses predicted by the full−order and reduced−order model and 

(b) relative error of responses predicted by the reduced−order model. 

6. Conclusions 

This paper proposes a multi-disc flexible rotor balancing method without trial 

weights. The paper first explains, based on the modal balance theory, that when the rotor 

operates below the �th order critical speed ��, the unbalance, no matter how complex it 

is, can be approximated as isolated unbalances on � balancing planes. The paper also 

suggests a model-based identification method to identify the equivalent isolated unbal-

ances on � balancing planes. Based on the above theory and method, the paper proposes 

a balancing method that includes two steps of low-speed balancing and high-speed bal-

ancing to reduce the rotor vibration caused by the unbalance. Two rotor bearing systems 

with three and four disks, respectively, are used to verify the proposed balancing method. 

The simulation results show that the amplitude in the x-direction at the measurement 
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point decreases by 79.74~97.60% after balancing. Meanwhile, the paper analyzes the fac-

tors affecting the performance of the balancing method and concludes that the balancing 

effect can be further enhanced by improving the accuracy of the identification method. 

The proposed balancing method can be easily applied to rotor bearing systems oper-

ating at higher speeds, although this paper verifies the balancing method by using rotors 

operating below second order critical speed. In the future, we will carry out further re-

search on the improvement of the accuracy of the unbalanced parameter identification 

method and the experimental confirmation of the balancing method. 
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