
Citation: Metsä-Eerola, I.; Pulkkinen,

J.; Niemitalo, O.; Koskela, O. On

Hourly Forecasting Heating Energy

Consumption of HVAC with

Recurrent Neural Networks. Energies

2022, 15, 5084. https://doi.org/

10.3390/en15145084

Academic Editors: Joao Miguel

C. Sousa, Paulo Tavares,

Hermano Bernardo and

Patrick Phelan

Received: 24 April 2022

Accepted: 8 July 2022

Published: 12 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

On Hourly Forecasting Heating Energy Consumption of HVAC
with Recurrent Neural Networks
Iivo Metsä-Eerola, Jukka Pulkkinen *, Olli Niemitalo and Olli Koskela

HAMK Smart Research Unit, Häme University of Applied Sciences, P.O. Box 230, 13101 Hämeenlinna, Finland;
metsaeerola@gmail.com (I.M.-E.); olli.niemitalo@hamk.fi (O.N.); olli.koskela@hamk.fi (O.K.)
* Correspondence: jukka.pulkkinen@hamk.fi

Abstract: Optimizing the heating, ventilation, and air conditioning (HVAC) system to minimize
district heating usage in large groups of managed buildings is of the utmost important, and it requires
a machine learning (ML) model to predict the energy consumption. An industrial use case to reach
large building groups is restricted to using normal operational data in the modeling, and this is
one reason for the low utilization of ML in HVAC optimization. We present a methodology to
select the best-fitting ML model on the basis of both Bayesian optimization of black-box models
for defining hyperparameters and a fivefold cross-validation for the assessment of each model’s
predictive performance. The methodology was tested in one case study using normal operational data,
and the model was applied to analyze the energy savings in two different practical scenarios. The
software for the modeling is published on GitHub. The results were promising in terms of predicting
the energy consumption, and one of the scenarios also showed energy saving potential. According to
our research, the GitHub software for the modeling is a good candidate for predicting the energy
consumption in large building groups, but further research is needed to explore its scalability for
several buildings.

Keywords: HVAC; district heating; machine learning; recurrent neural networks; energy efficiency

1. Introduction

Ever stricter CO2 emissions targets pose a challenge for buildings which contribute
a major part of the global carbon dioxide emissions in cities [1], with heating being the
largest contributor in the northern countries [2]. According to the Confederation of Finnish
Construction Industries, 25% of energy consumption and 30% of greenhouse gas emissions
in Finland originate from buildings [2]. Accordingly, building owners are required to
implement proactive actions to meet national targets by improving energy efficiency. In
Finland, the Ministry of the Environment has stated a goal of 55% reduction for the
energy consumption of buildings compared to levels in 2005 [3]. The actions instituted
in the strategy are estimated to reduce greenhouse gas emissions of heating in buildings
by 92%. These procedures play an essential role in climate change mitigation. District
heating systems are seen as a vehicle for achieving energy efficiency targets, and in Europe,
especially, district heating systems play an important role in the energy systems [4]. The
reason behind this is that district heating is flexible regarding its energy sources; therefore,
renewables can be used as a fuel in district heating plants.

However, the energy usage in buildings is complex due to the fact that the buildings
are of various types and ages, with owners who have diverse values, lifestyles, and ways
of using buildings [5,6]. This results in a fragmented field with multiple actors embedded
in the building value chain, including designers and architects, developers and capital
providers, contractors, engineers, building owners, and tenants [7]. In addition to this,
the used technologies have a very long life cycle [5] and, therefore, the renovation cycle
is relatively long. Investments in new technology to improve energy efficiency will be

Energies 2022, 15, 5084. https://doi.org/10.3390/en15145084 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15145084
https://doi.org/10.3390/en15145084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-3424-9969
https://doi.org/10.3390/en15145084
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15145084?type=check_update&version=3


Energies 2022, 15, 5084 2 of 20

important to achieve the stated goals of energy reduction, and one typical investment to
reduce CO2 emissions would be to move toward heating technologies like district heating
with more environmentally friendly fuels. These types of investments are typically very
large and expensive. However, there are also low-cost investments compared to these
large ones such as using digitalization to optimize the use of current technologies [8,9].
Digitalization can be used to optimize the existing district heating systems, but the energy
consumption reduction is milder. Therefore, it will be important to scale up the usage of
digitalization to include multiple buildings to achieve more significant impacts.

One major trend in the transition toward using digitalization is to utilize machine
learning (ML) to optimize operations. In the European Union, the Energy Performance
of Buildings Directive (EPBD) and the Energy Efficiency Directive have been revised to
increase the intelligence in the buildings, because this can have major impact on improving
the energy efficiency [8]. On the other hand, ML algorithms, as a means to increase the
intelligence, are highly suitable for improving energy efficiency in the case of district
heating because they can learn the unique dynamic behavior of specific buildings, and
this information can be used to tune existing district heating systems to be as optimum
as possible in terms of energy efficiency. The behavior of individual buildings varies
substantially due to the different technologies used and due to the different usage of the
buildings. The increase in renewables on the supply side has created the desire to have
more flexible demand [10], which can be achieved by modeling the dynamic behavior of
the buildings. Thus, adjusting the operations of heating, ventilation, and cooling (HVAC)
equipment is expected to have a major impact on energy reduction [10].

There are some solutions on the market which claim to allow smart control (SC).
However, the authors’ understanding based on several discussions with experts is that
the role of ML is minimal, if there is any role at all in such solutions. Nevertheless, these
solutions are in commercial use, and they definitively provide a certain added value to
their customers.

The usage of SC was analyzed using the real-life data of 109 district heating cus-
tomers [3,4,11]. The data included 31 customers who implemented SC in their operations
and 78 customers who did not implement it, used as a reference group. The data analyzed
were for four years (2014–2017), and the SC actions started in 2016. According to results,
for the year 2016, the normative heat consumption was 7.1% smaller compared to the level
in 2014 for SC buildings, whereas the heat consumption increased by 1.7% for the reference
buildings. Furthermore, the energy bills were smaller for customers who implemented
SC by an average of 5% in 2017 compared to the level in 2014; however, for the reference
buildings, the energy bill increased by 1% for the same period.

According to the literature, ML has been used in several research projects to optimize
HVAC, and ML is typically used as a supervisory control to define setpoints for the upper-
level control [12]. The setpoints are typically temperature values for the internal radiator
network and ventilation network. ML is used to model the unique behavior of a specific
building, and this model is then used for optimization for different goals. For example, these
goals could include minimizing the overall energy consumption or operational cost while
ensuring that the indoor air quality parameters such as the temperature and CO2 levels are
within defined tolerances [13]. According to several studies, ML-based supervisory control
has succeeded in reducing the overall energy consumption or operational costs from 7% to
more than 50% [14–18].

ML based supervisory controls are successful for complex systems implemented by
academia, but fail to satisfy industrial users [12,19]. Industry has been very reluctant to
adapt complicated ML-based control of HVAC systems; therefore, HVAC systems still use
very simple control strategies. The abovementioned SC solutions are still very rare, and
ML is not really used properly in these applications. Our research aimed to find answers to
questions which would make it easier for industrial players to start using more advanced
ML-based supervisory control of HVAC systems.



Energies 2022, 15, 5084 3 of 20

ML model development starts from data gathering. Data gathering in an industrial
environment has several practical restrictions compared to the research environment. First,
the data need to be gathered from real buildings, restricted to collecting comprehensive
data around a normal operating point. ML algorithms require rich input data covering the
whole optimization space in which the model can be used to optimize energy consumption
which may be outside the normal operation range. Therefore, our research questions were
as follows:

• What would be the optimum ML model structure for energy consumption?
• How good are the district heating energy consumption predictions made by ML

algorithms for the HVAC system of the pilot location using normal operational data?
• Can we use an ML model to estimate the energy saving in some scenarios?

This study was mostly performed as part of Iivo Metsä-Eerola’s MSc work [20].

2. Materials and Methods
2.1. Data

The pilot location analyzed in this study was a large school building spanning 7187 m2

on two stories. The building was opened in 1964 and renovated in 1990. The data were col-
lected in one contiguous interval from 11 February 2021 to 2 May 2021. The data originated
from five separate sources: the building automation system (BAS) of the pilot location, the
European Union’s Copernicus Atmosphere Monitoring Service (CAMS), Internet of things
(IoT) sensors mounted on site, and a district heating energy consumption monitoring tool.

The HVAC system of the pilot location consisted of two heat exchange centers both
serving three subsystems, i.e., radiator, ventilation, and domestic hot water networks.
From the radiator and ventilation networks, the network temperatures were utilized in the
modeling, i.e., “water temperature of radiator network 1 and 2” and “water temperature
of ventilation network 1 and 2”. As for the domestic hot water networks, data from the
flow valve position controlling the amount of district heat flowing to the heat exchangers
were included in the modeling, i.e., “valve of domestic hot water 1 and 2”. Additional
parameters from the HVAC system included in the modeling were the temperature of the
incoming district heat and the 24 h rolling average of outside temperature. For the carbon
dioxide concentration, which is a great proxy variable for building occupancy, observations
were collected via IoT sensors mounted on site, and average CO2 concentrations were
utilized in the modeling. Figure 1 shows the locations of the measurements in a simplistic
HVAC diagram.

In addition to the average outside temperature parameter obtained from the BAS, two
weather parameters were utilized in the modeling: the solar irradiance and outside air
relative humidity. From the EU CAMS data, the solar irradiance defined as the power per
unit area in electromagnetic radiation was included. These satellite-based observations
were calculated considering cloud cover, aerosol optical properties, and ground elevation
(Copernicus Atmosphere Monitoring Service, n.d.). The outside air relative humidity
observations were downloaded from the API of the Finnish Meteorological Institute (FMI).
The FMI weather station which provided the humidity data for this project was located
approximately 5 km in a straight line from the pilot destination (Finnish Meteorological
Institute, 2021).

Having introduced the input data sources, the only data source not addressed is that
producing the target values for the district heating energy consumption. These values were
received from the energy consumption monitoring tool of the building owner, used as a
basis for invoicing from the district heat supplier, thus including total energy consumption.
As these values were obtained in hourly temporal intervals, all the input parameters
needed to be down-sampled to the same interval. Down-sampling was the first step of data
preprocessing, as presented in Figure 2.



Energies 2022, 15, 5084 4 of 20

Figure 1. An overview of the HVAC system. The black line is the primary circuit managed by the
energy services company, while the orange lines represent the secondary circuits receiving heat from
the primary circuit via heat exchangers (HE). The green line is a subsystem receiving the heat from the
secondary circuit. Temperature and valve icons depict the temperature and valve sensors associated
with each primary circuit.

Figure 2. Data preprocessing flowchart. Data from various sources were resampled into a single
sampling frequency and integrated as a dataset. Time was encoded as a cyclical variable, and
the dataset was split into a training and a test set, scaled, and converted into short overlapping
subsequences.

After down-sampling all the input data sources to hourly temporal granularity, the
input and target variables were integrated on the basis of timestamps into a single table.
The timestamps were then used for the extraction of two temporal variables: the hour of
the day and day of the week. A summary of all the input features is presented in Table 1.
These cyclical variables were encoded using sine and cosine functions to make them more
easily interpretable for ML algorithms [21].



Energies 2022, 15, 5084 5 of 20

Table 1. Input and target features by uses, sources, and units.

Features Use Source Unit

District heating energy consumption Target Monitoring tool kWh
Valve of domestic hot water network 1 Input BAS %
Valve of domestic hot water network 1 Input BAS %

Water temperature of incoming district heat Input BAS ◦C
24 h rolling average of outside temperature Input BAS ◦C
Water temperature of ventilation network 1 Input BAS ◦C
Water temperature of ventilation network 2 Input BAS ◦C

Water temperature of radiator network 1 Input BAS ◦C
Water temperature of radiator network 2 Input BAS ◦C

Average facility CO2 concentration Input IoT ppm
Outside air relative humidity Input FMI %

Solar irradiance Input CAMS W
m2

Hour of the day Input Timestamp h
Day of the week Input Timestamp d

After encoding the temporal variables, the data preprocessing continued in three
sequential phases: splitting, scaling, and sequencing. Splitting the data into training and
testing sets was performed with a nonrandom 80:20 sequential split [22]. The first 20% of
the data collection period was chosen for testing, as the latter 80% included a period of
manual scenario testing with HVAC controls. It was a priority to include this period of
diverse data in the training set.

Scaling of input features to the same scale enables distance-based learning methods to
learn equally from each parameter and speeds up convergence of artificial neural networks
as used in this study [22]. As a result, min–max scaling of the features was applied. Every
instance of a feature was scaled as follows:

xi.j,scaled =
xi,j − xmin

xmax − xmin
(b − a) + a,

where xmin and xmax represent the minimum and maximum values of the feature, and xi,j
represents the non-scaled i-th instance of feature j. The intended scale which the feature
is transformed to is depicted with [a, b]. In this study, the applied scale ranged from 0
to 1. The practical implementation of min–max scaling was performed using the Python
package scikit-learn [23].

As seen from Figure 2, the last phase of preprocessing was sequencing. Sequencing
is required as most of the ML algorithms examined in this study were sequence-based
recurrent neural networks (RNNs). The sequencing method applied in this study is called
windowing, as the sampling function features a window of a desired length sliding on
the temporal axis. After saving one sequence, the window slides one step forward on the
temporal axis. This results in a dataset where subsequent observations have all but the
most recent data point in common. For input datasets of static ML algorithms, sequencing
is not necessary as these use data from a single time instance to formulate a forecast. The
lengths of preprocessed datasets are presented in Table 2. The predicted variable was to be
forecasted 1 h into the future and was, therefore, sampled at the next timepoint following
an input sequence.

Table 2. Training and testing input dataset dimensions for difference sequence lengths. The testing
samples are of equal length to enable valid comparisons.

Sequence Length Training Sample Testing Sample

1 [1555, 15] [376, 15]
4 [1552, 4, 15] [376, 4, 15]
8 [1548, 8, 15] [376, 8, 15]
12 [1544, 12, 15] [376, 12, 15]



Energies 2022, 15, 5084 6 of 20

2.2. Modeling

In this study, five model types were examined for the short-term forecasting of district
heating energy consumption. Out of these five, three were RNNs with varying cell types,
one was the vanilla neural network multilayer perceptron, and one was ordinary least
squares estimated linear regression. RNN models with each cell type were tested with
three different sequence lengths, as seen in Table 2. Thus, the total number of models tested
in this study was 11.

2.2.1. Linear Regression

Linear regression is one of the most common algorithms used in statistical analyses,
which is based on the idea that there exists a linear relationship between explanatory and
response variables [24]. The general form of a single output linear multivariate regression
model is

y = βX + ε,

where y is the response variable vector of size m, β is the coefficient vector of size n, X is the
data vector of size, and ε is the noise vector of size m. One of the most widespread methods
to find the greatest fit producing vector β is the least squares method, which minimizes the
squared residuals of points around the curve (Maulud and Abdulazeez, 2020). In contrast
to iterative or heuristic methods used commonly in ML, the least squares method is a
statistical approach to model training.

2.2.2. Artificial Neural Networks

Artificial neural networks (ANNs) are a family of ML models with a structure of a grid
connecting nodes of multiple layers capable of conveying transformed information to each
other. These networks have been proven to be capable of learning to forecast the behavior
of systems by altering the flow of information between the network layers [25]. In this
study, two types of ANNs, which differ in the way that information flows in the network,
were studied: multilayer perceptron (MLP) and recurrent neural networks (RNNs). In
the former, also called a feedforward neural network, information moves solely forward
through the network [26]. In the latter, information is fed not only through the network but
also through a time sequence as a hidden state. In other words, every forecast made with
an RNN requires a sequence of data, whether that sequence is defined in time, space, or
some other dimension. The key differences in the basic structure between MLPs and RNNs
are shown in Figure 3.

Figure 3. High-level structures of a multilayer perceptron and many-to-one recurrent neural network.



Energies 2022, 15, 5084 7 of 20

2.2.3. Multilayer Perceptron

As seen in simplistic form in Figure 3, an MLP network consists of input, hidden, and
output layers. The mathematical operations of these hidden layers are expressed as

hj = g
(
Wjhj − 1 + bj

)
, (1)

where hj describes the output of hidden layer j, Wj describes the weight matrix of hidden
layer j, and bj represents the bias vector of layer j. The contents of matrices W and b
are model parameters to be modified during training. The sizes of matrices W and b
depend on the sizes of the previous and following layers as the MLP structure necessitates
full connectivity between nodes of subsequent layers. Notation g portrays the activation
function applied to linearly transformed layer inputs hj − 1 used to increase the network’s
ability to learn complex patterns [27]. In this study, two different activation functions for
MLPs were tested, rectified linear units [28] and the hyperbolic tangent (tanh).

2.2.4. Recurrent Neural Networks

Unlike feedforward MLPs, RNNs capture relationships not only from input data
but also from the internal state of previous cells in the sequence. The basic structure of
operations in a single RNN cell is visible in the equation of a hidden state as depicted
below [25].

ht = g(Wxt + Uht − 1 + b),

where xt of size m represents the input data vector at time t in the sequence, ht − 1 is the
output of previous cell (hidden state) of size n, and U is the weight matrix applied to the
hidden state of the previous cell. The weights of matrices W, U, and b, sized n×m, n× n,
and n× 1, are shared through the whole sequence length [26]. In other words, parameters
applied in transformations in n units are repeated in t cells.

Algorithms used for training neural networks are typically based on the backpropaga-
tion of gradients. However, modeling long-term dependencies on the backpropagation of
gradients is difficult, as the algorithms suffer from exploding and vanishing gradients [29].
These phenomena distort the relationships in the data which the algorithm is trying to
capture. One way to battle the issue is to design a more sophisticated activation function
for the RNN units to replace common hyperbolic tangent or rectified linear units [30].
Next, two of these are presented: the long short-term memory (LSTM) unit and the gated
recurrent unit (GRU).

2.2.5. Long Short-Term Memory

First introduced in [31], LSTMs implement two key innovations to combat gradient-
related issues in learning: gates and memory. These structures enable the LSTM cell to
regulate the reservation and transmission of information in units. In an LSTM cell, input
and forget gates regulate the updating of the internal memory c of size n in LSTM units [30].
Input gates control the addition of new information, while forget gates do the same for
forgetting, as expressed below.

ct = ftct − 1 + it c̃t,

where f and i are forget and input gates, respectively, and c̃ is the candidate value vector of
size n for new cell state. The values of the gates are calculated as

ft = σ
(

W f xt + U f ht − 1 + Vf ct − 1

)
,

it = σ(Wixt + Uiht − 1 + Vict − 1),

where Vf ,i are diagonal matrices of size n× n, and the activation function σ : R→ [0, 1] is
the sigmoid function [32]. The candidate solution is calculated on the basis of the inputs
and the hidden state

c̃t = g(Wcxt + Ucht − 1),



Energies 2022, 15, 5084 8 of 20

which includes the activation function g defined as either a hyperbolic tangent or rectified
linear unit (ReLU) in recent studies [30,33].

The memorized content in cell state c is then applied to the hidden state h through the
output gate o as follows:

ot = σ(Woxt + Uoht − 1 + Voct).

The final hidden state is the activation of σ with the input of cell state c regulated by
the output function o.

ht = otg(ct).

This implementation presented in [34] is slightly different from the original one
proposed by Hochreiter and Schmidhuber. Another simpler variant of LSTM is the gated
recurrent unit which is presented next.

2.2.6. Gated Recurrent Unit

A gated recurrent unit (GRU) is an LSTM cell variant applied to machine transla-
tion [35]. It resembles LSTM in the way that gates control the flow of information. GRU
does not include a cell state c; however, it does use past information in hidden state h to
update h̃ as follows:

h̃t = g(Wxt + U(rt � ht − 1)),

where � is the notation for the element-wise product. The reset gate rt controls how much
information is retained from the previous hidden state ht − 1 to the new hidden state ht.
The value of the reset gate is calculated from the input and previous hidden state.

rt = σ(Wrxt + Urht − 1).

The new hidden state ht is then combined from the candidate state h̃t and ht − 1.

ht = (1 − zt)ht − 1 + zt h̃t,

where zt is the update gate balancing the previous hidden state and the current candidate
solution. The value of the update gate zt is calculated similarly as the reset gate rt.

zt = σ(Wzxt + Uzht − 1).

Figure 4 illustrates the differences between the RNN units presented in this study.

2.2.7. Loss Function, Backpropagation of Gradients, and Gradient Descent

Training a neural network to make accurate predictions necessitates penalizing param-
eter combinations which produce unsatisfactory results. One method to penalize prediction
errors e = ŷ − y is a loss function L(ŷ, y). On the basis of the value of the loss function,
gradients for network parameters are then calculated with the backpropagation algorithm
introduced in [36]. After obtaining the gradients for network parameters, an optimization
algorithm is applied to steer the learning process toward the loss function minimizing
network parameters. One widely applied optimization algorithm is the stochastic gradient
descent (SGD)

θt + 1 = θt − λ∇θL(xt, θ),

where λ is the size of the step in the algorithm, θi are the parameters of the network, and
∇θL(xt, θ) are the gradients of parameters [31]. The algorithm is based on the idea that
constant updates executed on the parameters for each data point will eventually guide
the network to the minimum of the loss function [36]. Repeated updates of the SGD
algorithm typically lead to a streaky convergence with major variance in the values of the
loss function [37].



Energies 2022, 15, 5084 9 of 20

Figure 4. Illustration of three RNN cell structures: (a) vanilla RNN, (b) LSTM, and (c) GRU.

To combat the streaky convergence of SGD, a mini-batch gradient descent is imple-
mented in this study. In a mini-batch gradient descent, the parameters of the network are
updated every n data point in training, which are called mini-batches. In this study, for
hyperparameter tuning, the mini-batch size implemented was 32, adhering to the default
value provided by the ML Python library TensorFlow [38] and the same as the length of
the training data for accelerated retraining.

For noisy objective functions, such as the loss function in SGD, more sophisticated
methods in addition to mini-batches are required to ensure convergence. In this study, the
efficient first-order optimization algorithm Adam introduced in [39] was implemented for
the optimization of neural networks. Adam combines key innovations from other SGD
variants such as momentum [40], AdaGrad [41], and RMSProp [42] to form an adaptive
solution for a gradient descent. In this study, the Adam algorithm was implemented with
default parameter values of β1 = 0.9, β2 = 0.999, and ε = 1 · 10 − 7. The value of the
learning rate λwas optimized in a hyperparameter optimization.

2.2.8. Batch Normalization

One problematic phenomenon in ML is the internal covariate shift, which occurs
when the input distribution of the network changes from previous instances [43]. This is



Energies 2022, 15, 5084 10 of 20

harmful for the learning process as the model is required to adapt to changes in the input
distribution. While an internal covariate shift in the network inputs can be neutralized by
domain adaptation methods, inputs to hidden layers deeper in the network experience the
same issues [44].

One solution to the internal covariate shift in the inputs of the networks’ inner layers
is batch normalization, as introduced in [44]. In batch normalization, the input vector a of
each mini-batch is normalized separately based on mini-batch statistics.

µB =
1
m ∑m

i = 1 ai, σ2
B =

1
m ∑m

i = 1(ai − µB)
2, âi =

ai − µB√
σ2

B + ε
, and yi = γâi + δ,

where ai is the initial output of the previous hidden layer, ε is a small constant to avoid
divisions by zero (0.001 in this study), γ and δ are trainable variables, and yi is the input
of the following hidden layer. When using the model in forecasting, trainable parameters
γ and δ are not used as the output of the model must be deterministic. Furthermore,
mini-batch-specific statistics for the mean and variance are replaced by population-specific
ones. Thus, the input of the following hidden layer is calculated as

â =
a − E[a]√
Var[a] − ε

,

where Var[a] = m
m − 1 EB

[
σ2

B
]

is the unbiased estimate for the population variance based
on the variances of mini-batches of size m [44].

In addition to removing the adverse effects of the internal covariate shift from the
training of a deep neural network, batch normalization works as a regularization method
through the random selection of mini-batches [44]. Thus, batch normalization effectively
replaces the need for common dropout [45] regularization. Regularization is further ad-
dressed in the next section.

2.2.9. Regularization

Regularization methods are required for ML algorithms to be of such efficiency and
complexity that they can effectively memorize the whole training dataset. Training an
ML algorithm to that length is called overfitting the model to the training data. If this
phenomenon occurs, it will make the model poor for use in predicting outcomes on the
basis of unseen input data [26]. After all, the goal of the optimization algorithm is to
minimize both training and testing errors for the ML model [26] (p. 110).

Luckily, overfitting the model does not happen in an instant but rather gradually as
more and more epochs or the number of iterations over the training dataset are fed into
the modeling algorithm. This phenomenon is shown in Figure 5, where the training and
validation errors of a ML model are presented as functions of epochs [46]. The dashed line
represents the sweet spot where the training should be stopped before the algorithm starts
to overfit, which is visible as the increasing validation error.

This method of halting the training process before overfitting is called early stopping.
It is one of the most common regularization techniques due to both its simplicity and its
effectiveness [26] (p. 247). The technical implementation of early stopping usually includes
a patience parameter which regulates how many epochs of increased validation errors the
algorithm tolerates before interrupting the process. After the training has been stopped, the
parameters which produce the lowest validation error are then restored. In this study, the
patience parameter was set to 20 epochs while the initial training epoch number was 1000.



Energies 2022, 15, 5084 11 of 20

 

Er
ro

r 

Epochs 

Validation error 

Training error 

Sweet spot 

Figure 5. Early stopping learning curves.

2.3. Model Tuning

In this study, the term model tuning signifies the process in which the search for the
optimal configuration of the ML model hyperparameters is combined with the assessment
of each model’s predictive performance. The former objective was achieved via a Bayesian
optimization of black-box models, while the latter was achieved by applying a fivefold
cross-validation. These methods are introduced next in this study.

2.3.1. Cross-Validation

Cross-validation is a heuristic testing model based on repeated training and validation
of nonoverlapping data splits [26] (p. 122). The average validation performance across the
splits is then compared to that achieved with other model configurations. Cross-validation
is a popular technique as it has minimal assumptions and wide applications for a wide
range of different model algorithms [47]. Figure 6 illustrates three sampling processes:
traditional holdout, leave-one-out cross-validation, and fivefold cross-validation.

Figure 6. Sampling from a dataset of length 10 in (a) holdout validation, (b) leave-one-out CV, and
(c) fivefold CV. The selection of samples is typically performed randomly; however, in this example,
the process is sequential for clarity.



Energies 2022, 15, 5084 12 of 20

A fivefold cross-validation was applied in this study as it has better computational
performance while also performing better in circumstances with a high signal-to-noise ratio
when compared to the more intensive cross-validation methods such as leave-one-out or
10-fold CV [47]. The regression metric which the model comparisons were based on was
the mean squared error,

MSE =
1
n

n

∑
i = 1

(ŷi − yi)
2,

Which was chosen for its sensitivity to outliers (Goodfellow et al. 2016, p. 108).

2.3.2. Bayesian Optimization

Due to the computationally intensive nature of cross-validation, it is efficient to select
the model configurations from search space χ which have the most potential. Evidently,
it is difficult to determine these models beforehand as the model algorithm is a black-box
function f : χ→ R . Unfortunately, optimization of a black-box function is not achievable
in an analytical form (Snoek et al. 2012).

The black-box optimization algorithm applied in this study was Bayesian optimization,
which samples the unknown function f from a Gaussian process (Mockus, 1974). In Bayesian
vocabulary: the prior of this function f is a Gaussian process, i.e., f(υ) ∼ N (µ,σ), ∀ {υ ∈ χ}.
As is customary in Bayesian frameworks, the posterior distribution of f is updated when
new information in the form {νn,ψn}N

n = 1 is obtained. In this context, ψn ∼ N ( f (ν), Y)
introduces noise to the posterior distribution. In this study, Y = 0.0001.

In Bayesian optimization, the value of the acquisition function decides which param-
eters υ are tested next (Snoek et al., 2012). In this study, a GP lower confidence bound
acquisition function was applied using the formulation presented by Srinivas et al., (2012).

q(ν; {νn,ψn}, Θ) = µ(ν; {νn,ψm}, Θ) − κσ(ν; {νn,ψn}, Θ),

where q is the acquisition function, Θ are the parameters of the Gaussian process, µ and σ
are the predictive mean and standard deviance functions, and κ is a parameter regulating
the exploratory nature of the iterations. In this study, κ = 2.6.

Model tuning was run for 15 iterations of Bayesian optimization evaluating every
model configuration using fivefold cross-validation. The search space explored for each
model type and sequence length is shown in Table 3. The exclusion of ReLU activation
functions from the search spaces of LSTMs and GRUs was due to the requirements of GPU
accelerated training (Google Brain, n.d.).

Table 3. The explored hyperparameter search spaces for each ML algorithm. For the units, only the
end points of the intervals are presented to save space.

Algorithm Units Layers Activation Function Learning Rate

MLP [10, 120] [1, 2, 3] [tanh, ReLU] [0.1, 0.01, 0.001]
RNN [10, 120] [1, 2] [tanh, ReLU] [0.1, 0.01, 0.001]
LSTM [10, 120] [1, 2] [tanh] [0.1, 0.01, 0.001]
GRU [10, 120] [1, 2] [tanh] [0.1, 0.01, 0.001]

2.4. Scenario Testing

During a 2 week period, more specifically from 19 April to 2 May, scenario testing was
conducted in the pilot location in the spring of 2021. These tests included constant decreases
to the heating network temperature setpoints in the nights when the location was not in
use. The testing was conducted to increase knowledge of the sensitivity of the location’s
indoor air quality and the possibilities for energy savings. Additionally, exposing the
HVAC system to control schemas outside of the regular operational environment increased
the quality of the data.



Energies 2022, 15, 5084 13 of 20

Tables 4 and 5 illustrate the amount of shift in the network control curves as a function
of the dates and times of day. During the first week of testing (Week 16 of 2021), the
setpoint values of control were decreased for the radiator network from 9:00 p.m. to
6:00 a.m. During the second week of testing (Week 17 of 2021), the ventilation network
values were adjusted. Only one heating network out of two in parallel was adjusted during
the testing due to the unequal distribution of instrumentation in the building and a careful
approach to introducing disturbances to the HVAC system.

Table 4. Scenario testing schedule for radiator network.

Week 16 Mon.
9:00 p.m.

Tue.
6:00 a.m.

Tue.
9:00 p.m.

Wed.
6:00 a.m.

Wed.
9:00 p.m.

Thu.
6:00 a.m.

Thu.
9:00 p.m.

Fri.
6:00 a.m.

Fri.
9:00 p.m.

Sat.
6:00 a.m.

Sat.
9:00 p.m.

Sun.
6:00 a.m.

Radiator
network −2 0 −3 0 −4 0 −5 0 −6 0 −6 0

Ventilation
network 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. Scenario testing schedule for ventilation network.

Week 16 Mon.
9:00 p.m.

Tue.
6:00 a.m.

Tue.
9:00 p.m.

Wed.
6:00 a.m.

Wed.
9:00 p.m.

Thu.
6:00 a.m.

Thu.
9:00 p.m.

Fri.
6:00 a.m.

Fri.
9:00 p.m.

Sat.
6:00 a.m.

Sat.
9:00 p.m.

Sun.
6:00 a.m.

Radiator
network 0 0 0 0 0 0 0 0 0 0 0 0

Ventilation
network −2 0 −3 0 −4 0 −5 0 −7 0 −7 0

The 10 h adjustments made to network control setpoints resulted in changes to the
measurements, as illustrated in Figure 7, where the original controls are shown by the blue
line, and the changed measured values are shown in orange.

Figure 7. The original controls as the blue line and the changed measured values with orange for
scenario testing.

For scenario testing predictions, the GRU12 model was retrained using the full training
data. To reduce the risk of convergence problems, retraining consisted of five indepen-
dent training runs on the same data, and the model with the smallest testing loss was
returned. Energy consumption using the original setpoints was predicted by subtracting
the implemented offsets from the measured network temperatures which were assumed to
have a causal relationship to energy consumption. The 95% confidence intervals (CI) were
estimated as the minimum and maximum values predicted by 20 model instances, each
retrained on a bootstrap resample of the training sequences.



Energies 2022, 15, 5084 14 of 20

3. Results

In this chapter, results of the study are presented from three viewpoints: model tuning,
model testing, and scenario testing.

3.1. Model Tuning

The model tuning algorithm specified in Section 2.3 was run for 15 iterations for each
model type in the search space defined in Table 6. The hyperparameter combinations
extracted from the greatest performing models are presented in Table 6, where the number
of parameters is included for the sake of illustration. Model tuning was performed only
for the ML models, as the OLS estimated linear regression model did not contain suitable
hyperparameters.

Table 6. Hyperparameter combinations obtained in model tuning.

Algorithm Units Layers Activation Function Learning Rate Number of Trainable Parameters

MLP 100 2 ReLU 0.01 11,801
RNN4 120 1 ReLU 0.01 16,441
RNN8 30 1 ReLU 0.01 1411
RNN12 30 1 tanh 0.01 1411
LSTM4 50 1 tanh 0.1 13,251
LSTM8 50 1 tanh 0.01 13,251

LSTM12 40 1 tanh 0.01 9001
GRU4 80 1 tanh 0.01 23,361
GRU8 100 1 tanh 0.01 35,201

GRU12 110 1 tanh 0.01 42,021

In Table 6, it can be seen that the model tuning algorithm favored a single-layer
structure with a learning rate λ of 0.01 for RNN models. Even though the selections made
by the model tuning algorithm indicated notable homogeneity, it is notable that the number
of units varied from nearly the bottom of the possible range to the absolute top. This is
visible in the amount of variation in the model complexity between optimal models of each
model type, i.e., the number of trainable parameters. Additionally, the algorithm favoring
ReLUs in RNN models suggests that it might be worth sacrificing the computational
efficiency provided by GPU training to include ReLUs as possible activation functions for
LSTM and GRU models.

3.2. Model Testing

Model testing was performed with leftover testing datasets presented in Table 7. Linear
regression parameters were estimated with ordinary least squares, and the best-performing
ML models for each model type introduced in Section 3.1 were tested without additional
training. As shown in Figure 8, the target values for the hourly energy consumption were
compared to forecasts made by the models.

As expected, linear regression was, without question, the worst-performing model of
the bunch. This seems to indicate that district heating energy consumption of the HVAC
system is not a linear phenomenon with respect to these input features.

When it comes to visual assessment of the performance of the ML models, they
seemed to capture the seasonality of energy consumption quite well. They did, however,
tend to make similar errors in forecasts as seen in Figure 9. The largest values in energy
consumption were chronically underestimated, while other spikes were overestimated.
However, the magnitude of the mistakes varied between models, constituting the difference
in predictive performance between models.

As visually comparing the performance of the models through the time series plot
was not sufficient, the regression errors as mean squared errors were visualized, as shown
in Figure 9. The juxtaposition of training and testing errors allowed rough estimates for
overfitting in addition to the evident assessment of the models’ predictive performance.



Energies 2022, 15, 5084 15 of 20

Table 7. Numerically presented training and testing errors of hyperparameter-tuned models.

Algorithm Training MSE
((kWh)2)

Testing MSE
((kWh)2)

LR 1330 4253
MLP 508.5 1981

RNN4 339.8 2175
RNN8 371.1 1983

RNN12 494.2 2262
LSTM4 629.9 2197
LSTM8 310.5 2230
LSTM12 508.3 2285
GRU4 352.6 1829
GRU8 427.8 2328

GRU12 332.6 1669

Figure 8. Time series of predictions with testing data compared to the target values. The target values
are marked with stars on the wide blue lines, while the dashed lines represent model predictions.

Figure 9. Testing and training errors as mean squared error values.

According to Figure 9, the GRU12 model (GRU model with input sequence length of
12) performed the best in terms of the testing errors. GRU4 was the second best, while,
rather surprisingly, the static MLP came third in the testing. Displaying a smaller difference
between the training and testing errors and relatively good testing performance, the MLP



Energies 2022, 15, 5084 16 of 20

model raises questions regarding the need for sequential models in this framework. A
more detailed numerical examination of the regression errors is provided in Table 7.

3.3. Scenario Testing

Scenario testing in the location was performed as outlined in Section 2.4. The purpose
of the testing was to increase knowledge of the sensitivity of the location’s indoor air
quality and the possibilities for energy savings. The GRU12 model was retrained on the
full training data, resulting in the key performance indicators listed in Table 8. The mean
absolute percentage error (MAPE) was 7% for the training and 8% for the testing dataset.
As expected from the MSE loss, bias was negligible at less than 1 kWh. Modeling results
are presented in Figures 10 and 11. We can see that the measured energy consumption
was very close to the simulations with modified controls. This means that we can predict
the energy consumption accurately outside the normal operation range even if the input
data for the modeling consists of over 90% normal operation data (testing for both the
radiator and the ventilation network was for 1 week out of a total of 11 weeks of data
collection). The most important indoor air quality parameter is the temperature, and we
can conclude that we did not recognize any changes in the temperature during the test
period. This means that the temperature was not at all sensitive regarding the temperature
setpoint changes of −6 ◦C for the radiator network and −7 ◦C for the ventilation network.
Energy saving was estimated using the created energy consumption predication model and
comparing the energy consumption between original and modified controls. The results
are presented in Figure 12. A daily energy saving of 0% (95% CI [0%, 4%]), not statistically
significant, was predicted for the 24 h starting at the last 6 ◦C reduction in the radiation
network temperature, and a 5% (95% CI [2%, 8%]) reduction was likewise predicted for
the last 7 ◦C reduction in the ventilation network temperature. Here, it is important to
point out that the temperature reduction was applied only for one radiator network and
ventilation network, even though the building has two networks.

Table 8. Key performance indicators of the GRU12 model retrained on the full training data.

Algorithm Dataset MSE
((kWh)2)

RMSE
(kWh)

Bias
(kWh)

MAE
(kWh) MAPE

GRU12
Training 334 18.3 0.00455 13.6 6.95%
Testing 1602 40.0 0.624 28.2 7.78%

Figure 10. The scenario test results for the radiator network.



Energies 2022, 15, 5084 17 of 20

Figure 11. The scenario test results for the ventilation network.

Figure 12. The 24 h energy savings for the scenario tests with 95% confidence intervals indicated.

4. Discussion

Several ML models were evaluated, and the best-fitting model was selected by apply-
ing Bayesian optimization of black-box models to define the ML model’s hyperparameters
and by applying a fivefold cross-validation for the assessment of each model’s predictive
performance. This presented approach to define the optimum model is in answer to our
first research question: What would the optimum ML model structure be for predicting the
energy consumption? In this specific case, the optimum ML model was GRU12 (a GRU
model with an input sequence length of 12), which performed best in the testing.

Our second research question was as follows: How good are the district heating energy
consumption predictions made by ML algorithms for the HVAC system of the pilot location
by using normal operational data? Model testing was performed with leftover testing
datasets, and the best-fitting model was the abovementioned GRU12. On the other hand,
we can conclude that the worst-performing model was LR, which means that the system
has nonlinear features; thus, the linear model was not good enough to predict the energy
consumption. A GRU12 model was used for two 1 week test periods to predict the energy
consumption when the input features were modified from the normal operation range and
the prediction results were good. Accordingly, we can state that the developed energy
model also has a generalization capability outside the normal operation range where the
model was tuned.

In addition to the energy consumption prediction, we can point out that, in our
research, we also developed a temperature model to predict the indoor air quality parameter



Energies 2022, 15, 5084 18 of 20

while the available input data were not good enough to predict the temperature, especially
outside normal operation range. In fact, our measured indoor air temperature was inside a
very narrow band, which obviously poses challenges for modeling the correlation between
the features available and the indoor air temperature.

Our third research question was as follows: Can we use the ML model to estimate the
energy saving in some scenarios? The 1 week test periods to reduce the water temperature
of the radiation networks and the water temperature of the ventilation networks were con-
sidered to explore the energy saving potential. This approach to reducing the temperature
when buildings are not used (e.g., school buildings are used in the daytime; hence, the tem-
perature could be reduced during the nighttime) is not widely used in practice. Our testing
and modeling found a reduction of 5% (95% CI [2%, 8%]) in daily energy consumption by a
7 ◦C reduction in the ventilation network temperature from 9:00 p.m. to 6:00 a.m., which is
quite significant because the temperature reduction was implemented only in after-hours
and only in a single ventilation network, even though the building has two radiator and
ventilation networks and the energy consumption was for the whole building. This means
that there is definitively some possibility to reduce the energy consumption by reducing
the ventilation network temperature temporarily, because energy saving can be achieved
immediately, while the indoor air temperature is not sensitive regarding the change. We
did not find a statistically significant energy saving from radiator network temperature
reduction at the 95% confidence level.

The software for hyperparameter tuning and scenario test modeling is available at
https://github.com/hamk-uas/HAMK_Smart_City (accessed on 16 June 2022) under a
permissive Apache-2.0 license.

5. Conclusions

A six-phase methodology was presented for data preprocessing, which consisted of
down-sampling, integration, encoding of cyclical variables, splitting the data for training
and testing, scaling, and sequencing. The ML model development was based on data
gathering for a period of 11 weeks, and the data originated from five separate sources. The
data gathering was performed in an industrial environment during the normal operation of
the building. A 1 week test period for the input features such as water temperature of the
radiator networks and ventilation networks was used in order to explore the impact on en-
ergy saving. The methodology to select the best-fitting model was presented, and it utilized
both Bayesian optimization of black-box models to define the ML model’s hyperparameters
and fivefold cross-validation for the assessment of each model’s predictive performance.

There are several companies on the market providing so-called SC aimed at achieving
energy savings with their algorithms. Our developed model would be beneficial to them
to evaluate the achieved energy saving when comparing the energy consumption with
static temperatures regarding external conditions and the SC optimized temperature. The
developed software on GitHub can be easily adopted for this purpose. Nevertheless, we
want to point out that further studies would be recommended to explore our model’s
capability to predict the energy consumption in other buildings beyond our pilot case.

One development area would be real-time optimization, which would mean mini-
mizing the energy consumption while keeping the indoor air temperature within agreed
tolerances. For the optimization, it would be necessary to calculate the water temperature
of radiator networks and ventilation networks so that this requirement would be contin-
uously fulfilled. This would require a temperature model in addition to the developed
energy model; therefore, one important further research area would be to develop a reliable
temperature model using input data inside the normal operation range.

Author Contributions: Software, O.N.; Supervision, O.K.; Writing—original draft, I.M.-E.; Writing—
review & editing, J.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by European Regional Development Fund, Pirkanmaan Liitto
(grant number A75624).

https://github.com/hamk-uas/HAMK_Smart_City


Energies 2022, 15, 5084 19 of 20

Data Availability Statement: The data presented in this study are openly available in GitHub “Smart
City project—Forecasting and optimizing HVAC system parameters in a large public building” at
https://github.com/hamk-uas/HAMK_Smart_City.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McGinley, O.; Moran, P.; Goggins, J. An Assessment of the Key Performance Indicators (KPIs) of Energy Efficient Retrofits to

Existing Residential Buildings. Energies 2022, 15, 334. [CrossRef]
2. Rakennusteollisuus RT ry. Leijonanosa Rakennetun Ympäristön Päästöistä Aiheutuu Kiinteistöjen Lämmityksestä. 2020. Available

online: https://www.rakennusteollisuus.fi/Ajankohtaista/Tiedotteet1/2020/leijonanosa-rakennetun-ympariston-paastoista-
aiheutuu-kiinteistojen-lammityksesta/ (accessed on 3 December 2021).

3. Ministry of the Environment. Pitkän Aikavälin Korjausrakentamisen Strategia 2020–2050. 2020. Available online:
https://ym.fi/documents/1410903/38439968/Suomen-EPBD-2a-ilmoitus_final_10-03-2020-242AE19E_F497_4A38_8DF2
_95556530BA53-156573.pdf/37a549e9-b330-5f8c-d863-2e51f2e8239a/Suomen-EPBD-2a-ilmoitus_final_10-03-2020-242AE19E_
F497_4A38_8DF2_95556530BA53-156573.pdf (accessed on 3 December 2021).

4. Maljkovic, D.; Basic, B.D. Determination of influential parameters for heat consumption in district heating systems using machine
learning. Energy 2020, 201, 117585. [CrossRef]

5. Neij, L.; Sandin, S.; Benner, M.; Johansson, M.; Mickwitz, P. Bolstering a transition for a more sustainable energy system: A
transformative approach to evaluations of energy efficiency in buildings. Energy Res. Soc. Sci. 2019, 72, 101864. [CrossRef]

6. Martin-Escudero, K.; Atxalandabaso, G.; Erkoreka, A.; Uriarte, A.; Porta, M. Comparison between Energy Simulation and
Monitoring Data in an Office Building. Energies 2022, 15, 239. [CrossRef]

7. WBCSD (World Busines Council for Sustainable). A Handbook on Creating Dynamic Local Markets for Energy Efficiency in Buildings;
WBCSD: Geneva, Switzerland, 2016.

8. Ożadowicz, A. A Hybrid Approach in Design of Building Energy Management System with Smart Readiness Indicator and
Building as a Service Concept. Energies 2022, 15, 1432. [CrossRef]

9. Rafati, A.; Shaker, H.R.; Ghahghahzadeh, S. Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive
Load Monitoring: A Review. Energies 2022, 15, 341. [CrossRef]

10. Rocha, P.; Siddiqui, A.; Stadler, M. Improving energy efficiency via smart building energy management systems: A comparison
with policy measures. Energy Build. 2015, 88, 203–213. [CrossRef]

11. Kontu, K. Customer—Centred Development Paths for District Heating Industry. Ph.D. Thesis, Aalto University, Espoo,
Finland, 2022.

12. Afram, A.; Janabi-Sharifi, F.; Fung, A.S.; Raahemifar, K. Artificial neural network (ANN) based model predictive control (MPC)
and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 2017,
141, 96–113. [CrossRef]

13. Wei, X.; Kusiak, A.; Li, M.; Tang, F.; Zeng, Y. Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning)
system performance. Energy 2015, 83, 294–306. [CrossRef]

14. Ferreira, P.M.; Ruano, A.E.; Silva, S.; Conceição, E.Z.E. Neural networks based predictive control for thermal comfort and energy
savings in public buildings. Energy Build. 2012, 55, 238–251. [CrossRef]

15. Huang, H.; Chen, L.; Hu, E. A new model predictive control scheme for energy and cost savings in commercial buildings: An
airport terminal building case study. Build. Environ. 2015, 89, 203–216. [CrossRef]

16. Kusiak, A.; Tang, F.; Xu, G. Multi-objective optimization of HVAC system with an evolutionary computation algorithm. Energy
2011, 36, 2440–2449. [CrossRef]

17. Garnier, A.; Eynard, J.; Caussanel, M.; Grieu, S. Predictive control of multizone heating, ventilation and air-conditioning systems
in non-residential buildings. Appl. Soft Comput. J. 2015, 37, 847–862. [CrossRef]

18. Kim, W.; Jeon, Y.; Kim, Y. Simulation-based optimization of an integrated daylighting and HVAC system using the design of
experiments method. Appl. Energy 2016, 162, 666–674. [CrossRef]

19. Szul, T. Application of a Thermal Performance-Based Model to Prediction Energy Consumption for Heating of Single-Family
Residential Buildings. Energies 2022, 15, 362. [CrossRef]

20. Metsä-Eerola, I. On Forecasting Heating Energy Consumption of HVAC Systems with Recurrent Neural Networks. Master’s
Thesis, Aalto University, Espoo, Finland, 2021.

21. London, I. Encoding Cyclical Continuous Features—4-Hour Time. Ian London’s Blog. 2016. Available online: https://ianlondon.
github.io/blog/encoding-cyclical-features-24hour-time/ (accessed on 3 December 2021).

22. García, S.; Luengo, J.; Herrera, F. Data Preprocessing in Data Mining; Springer: Cham, Switzerland, 2015; Volume 72. [CrossRef]
23. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
24. Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trends

2020, 1, 140–147. [CrossRef]

https://github.com/hamk-uas/HAMK_Smart_City
http://doi.org/10.3390/en15010334
https://www.rakennusteollisuus.fi/Ajankohtaista/Tiedotteet1/2020/leijonanosa-rakennetun-ympariston-paastoista-aiheutuu-kiinteistojen-lammityksesta/
https://www.rakennusteollisuus.fi/Ajankohtaista/Tiedotteet1/2020/leijonanosa-rakennetun-ympariston-paastoista-aiheutuu-kiinteistojen-lammityksesta/
https://ym.fi/documents/1410903/38439968/Suomen-EPBD-2a-ilmoitus_final_10-03-2020-242AE19E_F497_4A38_8DF2_95556530BA53-156573.pdf/37a549e9-b330-5f8c-d863-2e51f2e8239a/Suomen-EPBD-2a-ilmoitus_final_10-03-2020-242AE19E_F497_4A38_8DF2_95556530BA53-156573.pdf
https://ym.fi/documents/1410903/38439968/Suomen-EPBD-2a-ilmoitus_final_10-03-2020-242AE19E_F497_4A38_8DF2_95556530BA53-156573.pdf/37a549e9-b330-5f8c-d863-2e51f2e8239a/Suomen-EPBD-2a-ilmoitus_final_10-03-2020-242AE19E_F497_4A38_8DF2_95556530BA53-156573.pdf
https://ym.fi/documents/1410903/38439968/Suomen-EPBD-2a-ilmoitus_final_10-03-2020-242AE19E_F497_4A38_8DF2_95556530BA53-156573.pdf/37a549e9-b330-5f8c-d863-2e51f2e8239a/Suomen-EPBD-2a-ilmoitus_final_10-03-2020-242AE19E_F497_4A38_8DF2_95556530BA53-156573.pdf
http://doi.org/10.1016/j.energy.2020.117585
http://doi.org/10.1016/j.erss.2020.101864
http://doi.org/10.3390/en15010239
http://doi.org/10.3390/en15041432
http://doi.org/10.3390/en15010341
http://doi.org/10.1016/j.enbuild.2014.11.077
http://doi.org/10.1016/j.enbuild.2017.02.012
http://doi.org/10.1016/j.energy.2015.02.024
http://doi.org/10.1016/j.enbuild.2012.08.002
http://doi.org/10.1016/j.buildenv.2015.01.037
http://doi.org/10.1016/j.energy.2011.01.030
http://doi.org/10.1016/j.asoc.2015.09.022
http://doi.org/10.1016/j.apenergy.2015.10.153
http://doi.org/10.3390/en15010362
https://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/
https://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/
http://doi.org/10.1007/978-3-319-10247-4
http://doi.org/10.38094/jastt1457


Energies 2022, 15, 5084 20 of 20

25. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network
applications: A survey. Heliyon 2018, 4, e00938. [CrossRef]

26. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: https:
//www.deeplearningbook.org/ (accessed on 3 December 2021).

27. Sharma, S.; Sharma, S.; Athaiya, A. Activation Functions in Neural Networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310–316.
[CrossRef]

28. Zeiler, M.D.; Ranzato, M.; Monga, R.; Mao, M.; Yang, K.; Le, Q.V.; Nguyen, P.; Senior, A.; Vanhoucke, V.; Dean, J.; et al. On
rectified linear units for speech processing. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and
Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [CrossRef]

29. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.
1994, 5, 157–166. [CrossRef]

30. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

31. Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of the COMPSTAT’2010, Paris, France,
22–27 August 2010. [CrossRef]

32. Hochreiter, S.; Jürgen, S. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
33. Dey, R.; Salem, F.M. Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks. In Proceedings of the 2017 IEEE 60th

international Midwest symposium of circuits and systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; Institute of Electrical
and Electronics Engineers: Piscataway, NJ, USA, 2017. [CrossRef]

34. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
35. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
36. Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
37. Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2017, arXiv:1609.04747.
38. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

System for Large-scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016.

39. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
40. Qian, N. On the Momentum Term in Gradient Descent Learning Algorithms. Neural Netw. 1999, 12, 145–151. [CrossRef]
41. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn.

Res. 2011, 12, 2121–2159.
42. Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [CrossRef]
43. Shimodaira, H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan.

Inference 2000, 90, 227–244. [CrossRef]
44. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456.
45. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
46. Jain, R. Why ‘Early-Stopping’ Works as Regularization? 2020. Available online: https://medium.com/@rahuljain13101999/why-

early-stopping-works-as-regularization-b9f0a6c2772 (accessed on 3 December 2021).
47. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [CrossRef]

http://doi.org/10.1016/j.heliyon.2018.e00938
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
http://doi.org/10.33564/IJEAST.2020.v04i12.054
http://doi.org/10.1109/ICASSP.2013.6638312
http://doi.org/10.1109/72.279181
http://doi.org/10.1007/978-3-7908-2604-3_16
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1109/MWSCAS.2017.8053243
http://doi.org/10.1038/323533a0
http://doi.org/10.1016/S0893-6080(98)00116-6
http://doi.org/10.1016/S0893-6080(98)00010-0
http://doi.org/10.1016/S0378-3758(00)00115-4
https://medium.com/@rahuljain13101999/why-early-stopping-works-as-regularization-b9f0a6c2772
https://medium.com/@rahuljain13101999/why-early-stopping-works-as-regularization-b9f0a6c2772
http://doi.org/10.1214/09-SS054

	Introduction 
	Materials and Methods 
	Data 
	Modeling 
	Linear Regression 
	Artificial Neural Networks 
	Multilayer Perceptron 
	Recurrent Neural Networks 
	Long Short-Term Memory 
	Gated Recurrent Unit 
	Loss Function, Backpropagation of Gradients, and Gradient Descent 
	Batch Normalization 
	Regularization 

	Model Tuning 
	Cross-Validation 
	Bayesian Optimization 

	Scenario Testing 

	Results 
	Model Tuning 
	Model Testing 
	Scenario Testing 

	Discussion 
	Conclusions 
	References

