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Abstract: This paper provides insight into the optimal configuration scheme of the grid-connected
inverters based on harmonic amplification suppression. The connection of the inverters changes
the natural resonance frequencies of the grid. Hence, a reasonable configuration of grid-connected
inverters can optimize the impedance distribution and shift the natural resonance frequencies to
frequency bands farther away from the harmonic sources. We proposed a scheme of site selection
and determination of the number of inverters to suppress harmonic amplification. The resonance
frequencies and modal frequency sensitivities (MFSs) were obtained by the resonance modal analysis
(RMA). Moreover, the concepts of security region and insecurity region of resonance frequency were
illustrated. The grid-connected sites can be obtained by calculating the participation factors (PFs) of
the resonance frequencies in the insecurity region. Furthermore, the optimal number was determined
by building the Norton equivalent circuit of the inverter and evaluating the output impedance at
each frequency. Finally, simulations in Matlab/Simulink based on a modified IEEE-9 bus microgrid
were utilized to verify the effectiveness of the proposed scheme.

Keywords: grid-connected inverters; harmonic amplification; impedance distribution; resonance
modal analysis (RMA); optimization; output impedance

1. Introduction

The high-density access of many nonlinear loads causes severe harmonic pollution in
the grid [1–3]. Even though a single nonlinear load can be regarded as a micro harmonic
source, the superposition of a multitude of micro harmonic sources can have significant
effects on the grid. Therefore, the harmonic pollution of modern power networks presents
the characteristics of high density, decentralization, and whole network [4–6]. On the other
hand, the grid-connected power generation technology of distributed power generation
(DPG), such as wind and photovoltaic power generation, has attracted increasing atten-
tion [7,8]. In a microgrid containing DPG, the structure of multiple inverters connected
in parallel is usually adopted [9]. Multiple inverters are connected to microgrids, and
the impedance distribution is affected. An unreasonable grid connection may make the
impedance distribution of the grid match with the harmonic source and further strengthen
the harmonic amplification. Harmonic amplification causes the degradation of power qual-
ity, leading to system instability and threatening the system’s security and stability [10,11].

Existing methods of suppressing harmonic amplification are provided in [12–20]. They
can be divided into the following two categories: reducing the harmonic injection and
breaking the requisite of harmonic amplification. Reducing the harmonic injection mainly
includes controlling the harmonic sources and harmonic compensation. Active control of
harmonic sources can reduce harmonic excitation by improving the topology and control of
power electronic equipment [12], e.g., multipulse AC–DC converters [13] and power factor
correction [14]. However, they are unsuitable for industrial applications due to their limited
capacity, cost, and reliability. Harmonic compensation requires the installation of harmonic
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compensation devices near nonlinear loads. Harmonic compensation devices include
passive power filters [15], active power filters [16,17], and hybrid active power filters [18].
However, these filters bring about new resonances. In particular, when connected to a weak
grid, they can significantly reduce system stability [19]. To break the requisite of harmonic
amplification, it is desired to move harmonics to frequencies where there is no harmonic
source or a harmonic source with a minimal value [20]. This method can be realized by
installing passive devices or active devices at critical nodes, and it has the characteristics of
low cost and good adaptability. This paper studied this method based on the connection
of inverters.

At present, the optimization objectives of grid-connected studies of DPG are to im-
prove the reliability of the distribution system [21], minimize power loss [22,23], and
improve voltage stability [24,25]. However, when the output impedance of the inverter
cannot be ignored, the grid connection of DPG will change the topology and impedance
distribution of the grid, especially when multiple inverters are connected in parallel [26].
Therefore, it is necessary to reasonably configure the inverters to optimize the impedance
distribution, keep the resonance frequency away from the harmonic source, improve the
voltage quality and prevent potential resonance.

The traditional resonance method of the power system is the frequency scan method [27].
The resonance modal analysis (RMA) method was first proposed in [28] to analyze the
harmonic resonance mechanism. It overcomes the shortcomings of the frequency scan
method, such as limited detection range, complicated analysis and calculation, and the
inability to provide more relevant information to solve the resonance problem. Later on,
in [29], RMA was applied to solve the resonance problem in railway electrification systems.

This paper presents a grid-connected optimization scheme of inverters to suppress
harmonic amplification in a microgrid. Resonance frequency was identified based on RMA
and critical sites were determining based on the participation factor (PF). The number of
connected inverters was optimized by calculating the modal frequency sensitivities (MFSs)
of the components. Based on the quasi-proportional resonance controller, the Norton
equivalent model of an inverter considering capacitor current feedback was established.
Calculation of the output impedance at resonance frequency was conducted, verifying
consistent impacts on the impedance distribution from the inverter and equivalent passive
components. The security region and insecurity region of resonance frequency were
discussed. By optimizing the configuration of the inverters, the resonance frequency can
be maintained in the security region to reduce the harmonic impedance in the insecurity
region and reduce the voltage distortion. In addition, simulation results are provided to
validate the theoretical analysis, followed by the conclusion of the main contributions of
this paper.

2. Resonance Modal Analysis Method
2.1. Identification of Resonance

The basic principle of the RMA is as follows. For an n-node network, the occurrence of
harmonic resonance means that the network node admittance matrix has become or is close
to becoming a singular matrix. The characteristic of a singular matrix is that the eigenvalue
of zero appears, so when a matrix is close to singular, the inverse of its eigenvalues or the
eigenvalues of its inverse matrix will tend to infinity. Because zero eigenvalues are the
fundamental characteristic of resonance, the mode of harmonic resonance can be accurately
defined according to the eigenvalue change.

Assuming that harmonic resonance occurs at a particular frequency f, the nodal
admittance matrix is a singular matrix. The node injection current is represented by [I]f
where all elements are finite values, and the node voltage vector [V]f at the resonance
frequency is [28]

[V] f = [Y]−1
f [I] f (1)
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where [Y]f is the network admittance matrix. Here, some elements in [Y]f are infinite. The
admittance matrix can be represented as

[Y] f = [L] f [Λ][T] f (2)

where Λ = diag(λ1, λ2, . . . , λn) is the diagonal eigenvalue matrix of Y. The reciprocal of
the eigenvalue characterizes the impedance property, defined as “modal impedance”. L
and T are the left and right eigenvector matrices, respectively. The location with the most
significant PF is the center of resonance. PF can be obtained by [28]

PFbm = LbmTmb (3)

where b is the bus number and m is the node number. Generally, installing devices at the
resonance center to adjust the impedance distribution has the most noticeable effect and
can reduce the impact on other resonance frequencies.

2.2. Modal Frequency Sensitivity

Although the center of resonance can be determined based on the PF, the influence of
specific component parameters on resonance cannot be determined. The introduction of a
sensitivity analysis in [30] is conducive to the influence analysis of parameters on system
resonance. It provides a basis for the treatment of harmonic resonance and the design of
component parameters.

The eigenvalue sensitivity to Yij is calculated as

Sm,ij =
∂λm

∂Yij
= TmiLjm (4)

where λm is the mth eigenvalue of matrix Y, and tmi and ljm are the mth-row ith-line entry
of the matrix and jth-row mth-line entry, respectively.

Assuming that
λm = λr + jλi (5)

Sλ,ii = Sr + jSi. (6)

The impedance sensitivity of admittance Y = G + jB can be calculated as

∂|λm|
∂G

=
Srλr + Siλi
|λm|

= u (7)

∂|λm|
∂B

=
Srλi − Siλr

|λm|
= v. (8)

The MFS index is derived as [30]

d f
dα

= −∆ f
∆α

= −
∂2|λm |
∂ f ∂α

∂2|λm |
∂2 f

(9)

∂2|λm|/∂α∂f can be calculated as

∂2|λm|
∂ f ∂α

=
∂u
∂ f

∂G
∂α

+ u
∂2G
∂α∂ f

+
∂v
∂ f

∂B
∂α

+ v
∂2B

∂α∂ f
(10)
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∂G/∂α, ∂2G/∂α∂f, ∂B/∂α, and ∂2B/∂α∂f can be obtained using a series resistor
–inductor–capacitor branch [29]. The second-order derivative of the eigenvalue magnitude
to frequency f can be derived during the frequency scan process as follows:

∂2|λm|
∂ f 2 =

1
4∆ f 2 (|λm| f+2∆ f + |λm| f−2∆ f − 2|λm|) (11)

Combined with the MFSs of component parameters and the equivalent output impedance
of the inverter, the impedance distribution after connecting the inverters can be easily
understood. Therefore, the number of connected inverters can be optimized after the
suitable sites are determined.

3. Output Impedance Characteristics of the Inverter

This section discusses the inverter’s control and topology and establishes the corre-
sponding Norton equivalent circuit. The feasibility of connecting the inverter to optimize
the microgrid impedance is discussed by analyzing the output impedance characteristics of
the inverter at different frequencies.

3.1. Equivalent Circuit of the Inverter

The structure diagram of a single three-phase LCL grid-connected inverter is shown
in Figure 1. The upper part is the power circuit configuration, and the lower is the control
structure diagram. Udc is the DC bus voltage obtained through the DC voltage stabilizing
link, and Uinv is the output voltage of the inverter. C is the filter capacitance. L1 and L2
are the inverter-side and grid-side filter inductance, respectively. iinv, i2 and iC are the
inverter-side current, grid-side current and filter-capacitor current, respectively. UPCC is
the voltage of the point of common coupling (PCC). iref is the filter output reference current
of the inverter. Ug is the grid voltage. In this paper, closed-loop control was adopted for the
current control, and proportional feedback control was adopted for the active damping link.
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Figure 1. System structure of single−phase grid−connected inverter with LCL filter. 
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link of the inverter filter system, in which Kpwm is the gain of the inverter. Quasi−propor-
tional resonance (QPR) control was adopted for the current controller, and the expression 
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Figure 1. System structure of single−phase grid−connected inverter with LCL filter.

Figure 2 shows the control block diagram of the current control and active damping link
of the inverter filter system, in which Kpwm is the gain of the inverter. Quasi−proportional res-
onance (QPR) control was adopted for the current controller, and the expression is as follows:

GPR(s) = Kp +
Krωcs

s2 + 2ωcs + ω2
0

(12)

where Kp and Kr are the proportionality coefficient and resonance coefficient, respectively;
ωc is the cut-off frequency; ω0 is the fundamental angular frequency. To ensure the influ-
ence of active damping on the peak value of the natural resonance amplitude−frequency
response of the filter, the proportional feedback link based on KC is added to the forward
channel of the quasi-proportional resonance control output link.
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According to the control block diagram shown in Figure 2, the Norton equivalent
circuit of the inverter shown in Figure 1 can be obtained (see Figure 3). The equivalent
current and equivalent admittance are Ieq(s) and Yeq(s), respectively. Their expressions are
shown in (13) and (14).

Ieq(s) =
KpwmGPR(s)

L1L2Cs3 + KpwmKcL2Cs2 + (L1 + L2)s + KpwmGPR(s)
ire f (13)

Yeq(s) =
L1C f s2 + KpwmKCC f s + 1

L1L2C f s3 + KpwmKCL2C f s2 + (L1 + L2)s + KpwmGPR(s)
(14)
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The grid-connected inverters can change the self-admittance of PCCs and thus change
the impedance distribution. To reduce the installation cost and capacity, this paper chose to
connect the inverters to the site with high MFS, namely the site with a significant PF.

3.2. Output Impedance of the Inverter

It can be seen from (14) that the output impedance of the inverter is not a constant but
changes with frequency. This section discusses the output impedance characteristics of the
inverter and the influence of the connection on the distributed impedance. The parameters
of the inverter are shown in Table 1.

Table 1. Control and electrical parameters of the inverter.

Symbol Instruction Values

Kp proportionality coefficient 0.4
Kr resonance coefficient 200
ωc cut-off frequency 5
Kc capacitor-current feedback constant 1
L1 Inverter-side filter inductor 4 mH
L2 Grid-side filter inductor 0.5 mH
C Filter capacitor 20 µF
f 0 Grid frequency 50 Hz

UDC DC voltage 700 V

Assume that
Yeq(s) = Geq(s) + jBeq(s) (15)



Energies 2022, 15, 4989 6 of 15

where Geq(s) and Beq(s) are the equivalent conductance and equivalent susceptance, respec-
tively. The effect of frequency on Geq and Beq is depicted in Figure 4.
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Within the range of (0, 49 Hz), (91 Hz, 562 Hz) and (1686 Hz, 2000 Hz), Beq is less
than 0. The output impedance of the inverter is inductive and is equivalent to the parallel
connection of a 1/Geq resistor and a 1/(ω × Beq) (ω = 2πf ) inductor. Within the range of
(50 Hz, 90 Hz) and (562 Hz, 1685 Hz), Beq is larger than 0. The output impedance of the
inverter is capacitive and can be equivalent to the parallel connection of a 1/Geq resistor
and a Beq/ω capacitor.

The equivalent capacitor value Ceq and inductance value Leq are shown in Figure 5.
In the low-frequency and high-frequency bands, the output impedance of the inverter
is almost inductive, while in the medium-frequency band, it is capacitive. Except at the
junction of different parts, Ceq and Leq change slightly. Notably, Geq always has a small
value, so it has little effect on PCC self-admittance. The impedance distribution of the grid
is mainly affected by Beq.
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3.3. Effect of Grid-Connected Inverter on Impedance Distribution

It can be seen from Figure 5 that, in each frequency band greater than 90 Hz, the Ceq
or Leq is an approximately constant value Ceq(f 0) (or Leq(f 0)) (f 0 is a specific frequency in
this frequency band). Therefore, in a specific frequency range, the impedance distribution
of connecting the inverter is consistent with that of connecting the passive components
with the same equivalent capacitance (or inductance). The IEEE 9-bus system was studied
in this paper to verify its consistency [31]. The network topology is shown in Figure 6.
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There are three generators and three loads; generator G1 is the balance node, and the rest
are PV nodes. The loads were modelled as the constant power loads. To facilitate the
inverters’ connection, the test system’s voltage and power were scaled down to 230 V and
100 kW, respectively. The scanning frequency ∆f for RMA was set to 5 Hz. The resonance
mode information of the test system is shown in Figure 7, and there were six resonance
frequencies of 305, 420, 435, 590, 760 and 825 Hz. The equivalent output impedance of the
inverter was inductive at f = 305 Hz and capacitive at f = 760 Hz. These two resonance
frequencies were selected to verify the consistency.
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The effect of buses’ parameters on the resonance can be clearly understood for the PF
information shown in Figure 8. The PFs of buses 1, 2, and 3 were all zero, which means
that changing their parameters did not affect the resonance frequencies. This is because
buses 1, 2 and 3 were connected with voltage sources. Their self-admittances are infinite,
and changing the parameters of the components did not change their self-admittances.
The resonance centers of f = 305 Hz and f = 760 Hz were bus 6 and 8, respectively. They
had the most significant PFs at the corresponding resonance frequencies and were selected
as the connection sites. The equivalent output impedance of the inverter at f = 305 Hz
and f = 760 Hz can be obtained by (11), which are Yeq|f=304 Hz = (0.0092 − j0.091) Ω and
Yeq|f=760 Hz = (0.0051 + j0.049) Ω, respectively.

The mode impedance diagram of the test system connecting the inverters and the
passive branches is shown in Figure 9. It is obvious that connecting the inverter and the
passive branch produces almost the same effect. Their curves have the same trend, and
their resonance frequencies are almost the same. For example, the resonance frequencies
of the system where the inverter is connected to bus 6 and where the passive branch of
(0.0092 − j0.091) is connected to bus 6 are both 309 Hz.
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From the aforementioned analysis, it can be seen that the optimal connection number
of the inverters can be obtained by calculating the MFS of the Ceq (or Leq). In addition, the
resonance frequency needs to be calculated by RMA again to correct the error.

4. Connection Optimization Scheme of Inverter
4.1. Concept of Security Region

Harmonic amplification is caused by matching the harmonic sources with the natural
resonance frequencies of the grid. In other words, harmonic amplification can be avoided by
keeping the natural resonance frequencies away from the frequency of the harmonic sources
instead of weakening the harmonic sources. In addition, harmonic source frequencies
often show a specific regularity. For example, harmonic source frequencies of the power-
electronic grid are generally 6k± 1 (k = 1, 2, . . . , n). When the natural resonance frequencies
are far from the harmonic source frequencies, such as (6k ± 3), it can be said that these
frequencies can be regarded as “safe”. Conversely, frequency ranges close to the harmonic
source frequencies are “unsafe”.

The driving point impedance of a specific node is shown in Figure 10. f 1, f 2, and f 3
are all harmonic source frequencies, and fres1 and fres2 are the natural resonance frequencies
of the grid. The shaded areas are the insecurity regions, and the blank parts are the security
regions. No treatment is required if the resonance frequency is in the security region, such
as fres2. If it is in the insecurity region, such as fres1, it needs to be shifted to the security
region using external methods.
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4.2. Study on Optimization Scheme

By optimizing the connection sites and number of inverters, the harmonic amplifi-
cation can be suppressed, and the potential of resonance can be reduced. The proposed
optimization process can be summarized as follows:

Step 1: Use RMA to calculate resonance frequencies and PFs of frequencies (fres1, fres2,
. . . , fres3) in the insecurity regions.

Step 2: To reduce the influence on other resonance frequencies, use site with the
significant PF as the location of the grid-connected inverters.

Step 3: Calculate the equivalent inductance Ceq or equivalent capacitance Leq of the
inverter at f = fresi.

Step 4: Calculate the MFS to Ceq or Leq and the number of inverters m required to shift
it to the security region. The m should satisfy:

∂ fresi
∂C
·m·Ceq( f f esi) + fresi ∈ ( fsec min, fsec max) (16)

where f secmin and f secmax are lower- and upper-frequency limits of the security region, respectively.
Step 5: Connect m inverters and calculate the resonance frequency. If it is in the

security region, the solution is reached; otherwise, proceed to Step 1.
The proposed optimization scheme is presented in Figure 11.
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5. Simulation Verification

The modified IEEE 9-bus microgrid was used to verify the proposed scheme. To
characterize the dispersed harmonics generated by power electronic devices, harmonic
sources were set at the three load-connected sites of bus 5, bus 6 and bus 8. The current
information of harmonic sources is shown in Table 2. ∆f s was set to 25 Hz. All inverters
had the same parameters, as shown in Table 1. The modal impedance diagram of the test
system is shown in Figure 7.

Table 2. Node harmonic current injection orders and sizes.

Harmonic Source Order h (p.u.) Bus 5 (A) Bus 6 (A) Bus 8 (A)

5 11.2 10.3 10.0
7 10.6 8.5 9.0
11 8.6 7.3 7.5
13 8.9 7.1 9.2
17 7.0 6.8 5.7
19 6.4 7.1 4.5

Figure 12 demonstrates that only f = 825 Hz was in the insecurity region (825 Hz, 875 Hz).
The output impedance at f = 825 Hz can be calculated as Yvsc|f=825 Hz = (0.0054 + j0.0655) Ω. It
is capacitive, and the equivalent capacitance Ceq is 12.64 × 10−6 F. The PF distribution of the
resonance frequency is shown in Figure 11. Bus 4 has the largest PF at this resonance frequency,
while the PFs of other nodes are close to zero. Bus 4 is the resonance center of this resonance
frequency and is the optimal place to install the inverters.
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Figure 12. PFs corresponding to the resonance frequency f = 825 Hz.

Geq has a slight effect on the self-admittance of PCC, and the impedance distribution of
the grid is mainly affected by Ceq. Therefore, only the MFS to Ceq needs to be calculated. The
MFS to Ceq on bus 4 can be obtained by (14), which is ∂fres/∂C = −6.64 × 105 Hz/F. By (16),
after connecting an inverter, the new resonance frequency is fres – Ceq× ∂fres/∂C = 819 Hz. The
resonance frequency is already in the security region, but it is still close to the insecurity region.
To further reduce the voltage distortion and increase the “safety” margin when the impedance
distribution varies, the number of inverters should be further optimized. When three inverters
are connected, the resonance frequency is reduced to 801 Hz and is far from the insecurity
region. The modal impedance information with three inverters connected is shown in Figure 13.
It can be seen that all resonance peaks are in the security region. The resonance frequency after
shifting calculated by RMA is 800 Hz and is basically consistent with the theoretical value.

A corresponding model of the test system was developed in Matlab/Simulink and the
obtained results were compared with the theoretical analysis. When bus 4 was connected to
different numbers of inverters, the voltage distortion information of the bus was obtained
which is shown in Figure 14. As the number of connected inverters increased, the total
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harmonic distortion (THD) of U4 gradually decreased. The THD of the original case is
7.06%, and after connecting one, two, and three inverters it was 5.07%, 3.86%, and 3.18%,
respectively. The voltage spectra information of bus 4 with different numbers of inverters is
shown in Figure 15. After optimization, the magnitude of the 17th voltage harmonic decreased
significantly, whereas the amplitude of the other harmonics changed slightly. Notably, when
more inverters were connected, the THD still reduced, but not significantly. Even if 15 inverters
are connected, the THD is only reduced to 2.17%. This means that the optimized THD has a
lower limit, and a specific number of connected inverters meets the requirements.
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Figure 13. Modal impedances of the test system with three inverters on bus 4.
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The impedance scanning diagram of the test system with bus 4 connected to three
inverters is shown in Figure 16. It clearly shows that the driving point impedance of
the insecurity region significantly reduced. The waveform of optimized U4 obviously
improved (see Figure 17a). Since the PFs of other nodes were very small, the connection of
inverters at bus 4 had little effect on the voltage waveform of other buses (see Figure 17b–f).
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Figure 18 and Table 3 show the THD information when three inverters were connected
at different buses. It can be clearly seen that when the inverters were installed at bus 4,
the THD of U4 significantly reduced, and the THDs of other node voltages also slightly
reduced. However, when inverters were connected to other nodes, it had little impact
on the voltage of each node and even further worsened the original voltage quality. For
example, in the original case, the THD of U9 was 3.77%. When node 9 is connected to the
inverter, the THD rises to 4.71%.



Energies 2022, 15, 4989 13 of 15Energies 2022, 15, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 18. Voltage distortion when inverters are connected at different nodes. 

Table 3. The THD information when three inverters were connected at different buses. 

THD (%) U4 U5 U6 U7 U8 U9 
Original case 7.19 5.28 6.18 3.54 4.26 3.77 

On Bus 4 3.18 4.87 5.77 3.33 4.00 3.58 
On Bus 5 6.46 5.46 5.56 3.41 4.06 3.52 
On Bus 6 6.7 4.82 6.51 3.31 4.08 3.52 
On Bus 7 6.92 5.07 5.70 3.63 4.33 3.61 
On Bus 8 6.81 4.86 5.56 3.52 4.34 3.73 
On Bus 9 6.99 5.09 5.83 3.60 4.51 4.71 

6. Discussion 
The proposed scheme has room for improvement and future applications. Three is-

sues identified in this paper are discussed here. 

6.1. Optimization Objective 
The proposed optimization scheme is only suitable for improving the voltage quality, 

and this is determined by the principle of RMA. If the current quality needs to be im-
proved, the RMA based on loop impedance for analyzing series harmonic resonance 
needs to be adopted. In addition, for the optimal number of inverters, this paper provides 
a number range, so this scheme can be combined with the optimization of improving the 
permeability of the DPG or minimizing power loss. 

6.2. Improvement of Voltage Quality 
Although the optimized THD of bus 4 is already less than 5%, the reader must be 

aware that the optimized THD has a lower limit, as shown in Figure 15. There are two 
reasons. One is the reduction in MFS, and the effect of the grid-connected inverter on the 
harmonic frequency is weakened. The second is that this paper only reduced the 17th har-
monic impedance, while the harmonic impedances of other orders were basically main-
tained. 

6.3. Target Frequency 
The scheme to suppress harmonic amplification proposed in this paper was based on 

moving the resonance frequency and reducing the harmonic impedance at the harmonic 
source. However, this measure affects the harmonic impedance of other orders, so the 
target frequency of the movement needs to be adjusted according to the harmonic source. 
For example, for a 15th harmonic source in Figure 17, the resonance frequency would need 
to be shifted further, such as to 700 Hz. 

4 5 6 7 8 9
3

4

5

6

7

8

Bus 

TH
D

 (%
)

Original case
Inverters on Bus 4
Inverters on Bus 5
Inverters on Bus 6
Inverters on Bus 7
Inverters on Bus 8
Inverters on Bus 9

Figure 18. Voltage distortion when inverters are connected at different nodes.

Table 3. The THD information when three inverters were connected at different buses.

THD (%) U4 U5 U6 U7 U8 U9

Original case 7.19 5.28 6.18 3.54 4.26 3.77
On Bus 4 3.18 4.87 5.77 3.33 4.00 3.58
On Bus 5 6.46 5.46 5.56 3.41 4.06 3.52
On Bus 6 6.7 4.82 6.51 3.31 4.08 3.52
On Bus 7 6.92 5.07 5.70 3.63 4.33 3.61
On Bus 8 6.81 4.86 5.56 3.52 4.34 3.73
On Bus 9 6.99 5.09 5.83 3.60 4.51 4.71

6. Discussion

The proposed scheme has room for improvement and future applications. Three issues
identified in this paper are discussed here.

6.1. Optimization Objective

The proposed optimization scheme is only suitable for improving the voltage quality,
and this is determined by the principle of RMA. If the current quality needs to be improved,
the RMA based on loop impedance for analyzing series harmonic resonance needs to be
adopted. In addition, for the optimal number of inverters, this paper provides a number
range, so this scheme can be combined with the optimization of improving the permeability
of the DPG or minimizing power loss.

6.2. Improvement of Voltage Quality

Although the optimized THD of bus 4 is already less than 5%, the reader must be aware
that the optimized THD has a lower limit, as shown in Figure 15. There are two reasons.
One is the reduction in MFS, and the effect of the grid-connected inverter on the harmonic
frequency is weakened. The second is that this paper only reduced the 17th harmonic
impedance, while the harmonic impedances of other orders were basically maintained.

6.3. Target Frequency

The scheme to suppress harmonic amplification proposed in this paper was based on
moving the resonance frequency and reducing the harmonic impedance at the harmonic
source. However, this measure affects the harmonic impedance of other orders, so the
target frequency of the movement needs to be adjusted according to the harmonic source.
For example, for a 15th harmonic source in Figure 17, the resonance frequency would need
to be shifted further, such as to 700 Hz.
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7. Conclusions

This paper presented a grid-connected optimization scheme of the inverters to sup-
press harmonic amplification in a microgrid. This paper first discussed the basic principle
of RMA, and then introduced the concepts of PF and MFS. The Norton equivalent circuit
model was established and the output impedance of the inverter was evaluated. Further-
more, this paper proved the consistency of the influence of the grid-connection inverter and
passive components with the same output impedance on the impedance distribution. In
addition, the security region and insecurity region of resonance frequency were illustrated.
Then, a harmonic-amplification suppression scheme based on RMA and the grid-connected
inverters was proposed. The proposed scheme can significantly reduce the voltage distor-
tion at the resonance center. The originality of the proposed scheme includes: (1) optimized
impedance distribution through grid-connected inverters and (2) determination methods of
PF-based optimal sites and MFS-based optimal number. The characteristics of the proposed
scheme were investigated through simulation verification. Finally, additional applications
and improvements of the proposed scheme were discussed.
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