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Abstract: The goal of reaching the peak of carbon in the construction industry is urgent. However,
the research on the feasibility of realizing this goal and the implementation of relevant policies in
China is relatively superficial. In view of the historical data of energy consumption and building
CO2 emission from 1995 to 2019, this paper establishes a BP neural network model for predicting
building CO2 emissions. Moreover, the influencing factors, such as population, GDP, and total
construction output, are introduced as the parameters in the model. Through the scenario analysis
method explores the practical path to accomplish the peak of building CO2 emissions. When using
traditional prediction methods to predict building carbon emissions, the long prediction cycle will
increase the possibility of significant errors. Therefore, this paper constructs the calculation model
of building carbon emission and forecasts the future carbon emission value through the BP neural
network to avoid the error caused by the nonlinear relationship between influencing factors and
predicted value. It will effectively predict the feasibility of the carbon peak and the carbon-neutral
target set by government, and provide a useful predictive tool for adjusting the new energy structure
and formulating related emission reduction policies.

Keywords: carbon emissions; peak carbon emissions; carbon neutral; energy consumption; scenario
analysis; BP neural network model

1. Introduction

The continuous increase of global GHG emissions leads to the frequent occurrence of
extreme climate. One of the most striking problems is global warming. If GHG emissions
continue to rise, the global temperature will increase by 1.5 ◦C in 2052 [1]. The continuous
increase of carbon emissions mainly comes from daily human activities. As an indispens-
able part of human life and economic development, buildings significantly affect China’s
carbon emissions. At present, as far as the carbon emissions of various industries in China
are concerned, the building carbon emissions have always been high, 40% of the total
is construction carbon emissions, and even have a definite upward trend [2]. Therefore,
China’s low-carbon development is closely related to the building industry’s low-carbon.
Due to the continuous promotion of urbanization and the improvement of economic level,
people’s requirement for commercial buildings and houses increases. At the same time,
the completed area of houses will gradually increase. Therefore, CO2 emissions will still
maintain a rapid growth trend in the future. After 2050, with the continuous improvement
of building energy conservation and emission reduction policies and the promotion of
carbon reduction technology, building carbon emission reduction will contribute the most
to carbon emission reduction in all industries [3,4]. Therefore, to realize the beautiful ex-
pectation of national green ecology, we must strive to solve and promote the green ecology
of the construction industry.

Currently, the main methods used in the research on the calculation of building carbon
emission at home and abroad are the life cycle method, input-output method, emission
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coefficient method, etc. Foreign scholars usually adopt life-cycle methods and input-output
methods. Hui Ya et al. [5] established the carbon emission calculation model by dividing
the carbon dioxide emission in the construction process into the production of building
materials, recycling, and treatment of building materials and other parts through the life
cycle method. Acquaye and Duffy et al. [6] calculated Ireland’s building’s CO2 emissions
through the input-output method. In 2005, the total carbon emissions were 13.81 million
tons of CO2, of which the direct GHG emissions were 2.37 million tons of CO2, and the in-
direct GHG emissions were 11.44 million tons of CO2. Christodoulakis et al. [7] constructed
the energy consumption model of Greece to study Greece’s future energy demand and
calculated Greece’s carbon emission through the input-output method. Bach et al. [8] used
input-output models to simulate the impact of fiscal reform on Germany’s carbon dioxide
emissions. Chen Sha et al. [9] divide the construction industry into three stages through the
life cycle method: preparation stage, construction stage, and use phase, and calculate the
carbon dioxide emissions in different stages, respectively. Zhang Zhihui et al. [10] divided
the total amount of buildings GHG in different periods into direct GHG and indirect GHG
through the life cycle method. Liu et al. [11] divided greenhouse gas emissions into direct,
indirect, and other greenhouse gases, and calculated these three types of greenhouse gases
according to the emission coefficient method. Based on the IPCC emission coefficient
method, Ji Jianyue et al. [12] identified coal, natural gas, electric power, and petroleum
as carbon dioxide emission sources and calculated the building carbon emission. The
scholars’ above studies on carbon dioxide cover the calculation model of carbon emissions,
but the different selection of influencing factors often lead to significant differences in the
calculation results.

The research on carbon dioxide emission prediction is relatively limited, and the
research methods differ at home and abroad. Wakivams et al. [13] estimated the CO2
emission caused by the power consumption of the construction industry in Japan through
the time series method. They found that by 2030, the carbon dioxide emissions from
construction electricity will reach 55.4 million tons. Chen Qiao et al. [14] improved the IPAT
model and predicted the CO2 emissions from 2010 to 2050 based on China’s CO2 emissions
data in previous years. The prediction certificate that China can reach the expected carbon
peak before the specified period.

In addition, Hu Zhen et al. [15] established the Xi’an household carbon emission
model based on BP neural network model, and the results show that the model has
good prediction performance, which is better than the multiple linear regression model.
Zhang et al. [16] used BP neural network model to predict future coal consumption and
carbon emissions, and the average error of training samples was 0.0066. Ding et al. [17] used
the grey prediction model to predict the development trend of private hospitals in China.
The results showed that the model’s accuracy was more than 95%, and the prediction
effect was good. BP neural network and grey model show good prediction ability in many
fields, which is suitable for medium and long-term prediction. Unlike the multiple linear
regression model, BP neural network and grey model can deal well with the relationship
between influencing factors and reduce the error.

As there are many influencing factors of building carbon emissions, different influenc-
ing factors will have different impacts on future prediction results. In addition, according
to the carbon emission method of IPCC Guidelines (IPCC, 2006), carbon emissions are
determined by activity level data and emission factors together, and different calculation
models lead to different carbon emission factors used in energy conversion. As a result
of the above two factors, scholars’ predictions of future carbon emissions for China and
provinces differ significantly.

In summary, to ensure the correctness of carbon emission prediction data, the key lies
in selecting influencing factors of a building’s CO2 emission. Considering the linear and
nonlinear relationship between building’s CO2 emissions and some influencing factors
and the long prediction cycle of this paper, the use of traditional prediction methods will
lead to significant differences in prediction results. Therefore, the grey prediction model is
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combined with BP neural network to predict building’s CO2 emissions. Reasonable predic-
tion of construction carbon emissions has far-reaching practical significance for reducing
construction industry emissions. It can also provide a theoretical basis for subsequent
scholars’ research.

2. Principles of Research Methods

The research method proposed in this paper focuses on the good combination of grey
prediction model and BP neural network model to obtain an accurate carbon emission
prediction model. First, determine the influencing factors of carbon emissions from the
construction industry. Secondly, through the gray prediction model to preprocess the data
of the factors, combined with the scenario analysis method to get the future prediction value
of the influencing factors. Then, the processed data is introduced into the BP neural network
model for many times of network training. Repeat the above steps to generate an accurate
carbon emission prediction model, as shown in Figure 1. Advantages of the combination of
the two methods: the grey model can make up for the defect of BP neural network model
that the prediction accuracy is not high under the condition of small samples, and can give
better play to the advantages of the two methods and improve the prediction accuracy of
the model.
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2.1. BP Model

BP neural network is a multilayer feedforward neural network trained according to
the error backpropagation algorithm. Generally, the BP neural network model is composed
of the input, hidden, and output layers. Figure 2 shows its structure diagram. The key lies
in the forward propagation of the signal and the backpropagation of error to continuously
adjust the weighting vector and threshold to minimize the error.

This paper constructs the prediction model of building carbon emission in China
through the BP neural network. The basic steps of model construction are as follows:

(1) Normalize the index data to make it within the [−1, 1] interval to eliminate the
dimensional difference between the data. Its function form is as follows:

x
′
k =

xk − xmin

xmax − xmin
(1)

(2) The historical data from 1995 to 2019 were divided into training sets and test sets.
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(3) Construct BP neural network model, apply training samples to train the model, and
correct the model parameters through continuous training to finally obtain a BP
neural network CO2 emission prediction model for the construction industry that
meets the desired error. The learning rate represents the information accumulation
of the BP neural network over time. The learning rate determines the magnitude
of each parameter update. When it takes an enormous value, it will lead to large
fluctuations in the late stage of model training leading to failure to converge; when its
value is small, although it can make the model simulation results more accurate, it
will increase the training time. Learning rate γ is between in (0, 1), usually we take
the γ value was 0.5.

(4) The increase of the number of hidden layers in the model will enhance the data
processing ability of the model, but too many hidden layers will lead to too slow
convergence speed of the model. Therefore, it is particularly important to reasonably
arrange hidden layers’ numbers in-network structure design and select the number of
neurons with the best performance. Thus, the model selects one layer as the number
of hidden layers. In addition, at present, we can only calculate the approximate range
of the number of neurons in the hidden layer according to the empirical formula
and then verify the model’s performance through training to determine the specific
number. The empirical formula is as follows:

J =
√

n + m + α (2)

where J is the number of hidden layer cells, n and m are the number of input layer
and hidden layer cells, respectively, and α is a constant between 1–10.

(5) After the training process of the prediction model, the test samples are used for
prediction, and the prediction value of the model is obtained by inverse normalization.
The model’s prediction performance is verified by comparing it with the actual value.
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2.2. GM (1,1) Model

Grey prediction is the prediction based on grey system, which can better mine the
change law of the original data sequence. Among the grey prediction models, GM (1,1)
model is the most widely used. It is suitable for many fields and has the characteristics
of fewer samples and high prediction accuracy. It is a modern prediction method that
can realize medium and long-term predictions. The advantage of the GM (1,1) model is
that it can predict uncertainly and yet to occur events based on the existing actual data
and few data samples and predict the future results of events through a simple operation.
This paper will use the grey prediction model to predict per capita building area and total
energy consumption. The prediction principle of the GM (1,1) model is that a group of new
data sequences with apparent trends is generated by accumulating a specific data sequence,
and the model is established according to the growing trend of the new data sequence to
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predict, and then the cumulative method is used for the reverse calculation to restore the
original data sequence, and then the prediction results are obtained. The modeling process
is as follows:

(1) The original data sequence with variable x(0)(k):

x(0) =
{

x(0)(1), x(0)(2), . . . , x(0)(n)
}

(3)

By accumulating x(0), get a new sequence of numbers as follows:

x(1)(k) =
{

x(1)(1), x(1)(2), . . . , x(1)(n)
}

(4)

x(1)(k) =
k

∑
i=1

x(0)(i), k = 1, 2, . . . n (5)

(2) Generate the adjacent mean equal weight column of x(1)

z(1) =
(

z(1)(2), z(1)(3), . . . , z(1)(k)
)

, k = 2, 3, . . . n (6)

(3) Establish the general form of grey prediction model.

dx(1)

dt
+ ax(1) = u; (7)

Among them, a and u are unsolvable coefficients, which are called development
coefficient and grey action respectively.

(4) Average the accumulated generated data to generate B and constant term vector Yn:

Yn =


x(0)(2)
x(0)(3)

...
x(0)(n)

 (8)

B =


−Z(1)(2) 1
−Z(1)(3) 1

...
...

−Z(1)(n) 1

 (9)

(5) The least square method is used to solve grey parameter â = (BT B)−1BYn,

(6) The grey parameter is brought into dx(1)
dt + ax(1) = u and solved,

x̂(1)(t + 1) = (x(1)(1)− u
a
)e−1−at +

u
a

, (10)

(7) Thus, the predicted value can be obtained:

x̂(0)(t + 1) =
{

x̂(1)(t + 1)− x̂(1)(t)
}

, (11)

3. Carbon Emission Calculation of Construction Industry
3.1. Estimation of Carbon Emissions

The National Information Circular shows that CO2 from energy consumption in
China’s primary source of carbon emissions. Controlling energy consumption is also
an important area for preventing and mitigating carbon emissions [18,19]. Based on the
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estimation method of carbon emissions proposed by IPCC guidelines (IPCC, 2006) [20]. In
the carbon emission calculation model, we divide carbon emissions into direct and indirect
CO2 emissions. The carbon emissions from coal, oil, and other primary energy sources are
direct, and the carbon emissions from building materials are indirect. Equations (12)–(14)
present the measurement models of CO2 in the construction industry.

A =
n

∑
i=1

ei × fi (12)

B = ∑ Mj × αj × (1− ε j) (13)

C = A + B (14)

where A refer to building direct carbon emission; B is the building indirect carbon emission;
C is the total carbon emission of construction industry; i is the type of energy and ei is
the energy consumption; fi is the carbon emission factors of corresponding energy, as
shown in Table 1; j is the type of building materials in the construction industry, Mj is the
usage of building materials, αj is the carbon emission coefficient of materials, as shown
in Table 2; ε j is the recovery coefficient of materials. Table 1 shows the energy emission
factors for each type of energy, and Table 2 shows the carbon emission factors for each kind
of building material.

Table 1. CO2 emission factors of various energy sources.

Energy Raw Coal Hard Coke Gasolene Paraffin Diesel Oil Heating Oil Gas

Carbon emission
factors 0.5394 kgC/kg 0.8303 kgC/kg 0.8140 kgC/kg 0.8399 kgC/kg 0.8616 kgC/kg 0.8823 kgC/kg 0.5956 kgC/m3

Table 2. CO2 emission factors of construction industry materials.

Building Material Cement Steel Timber Aluminum Glass

CO2 emission factors 0.822 kg/kg 1.789 kg/kg −842.8 kg/m3 2.612 kg/kg 0.966 kg/kg

3.2. Influencing Factors

The screening of influencing factors of carbon emission in construction determines
the correctness of the model output. This paper synthesizes the existing theories of many
scholars and considers the correlation between various factors and the availability of
influencing factor data to put forward the key influencing factors of carbon emission. In the
relevant research, it is mainly to study the building carbon emission by building a model.
Huo et al. [21] applied the STIRPAT model to build an urban carbon emission framework
composed of population, economy, and space. The research shows that the increase of
urban population and the demand for construction land will lead to the growth of urban
construction CO2 emission. Still, economically, the value-added of the tertiary industry will
play a positive role in urban construction emission reduction. Yang et al. [22] established
CBCEM model based on China’s overall carbon emission control target, and analyzed
that the floor area and carbon intensity are the two significant factors affecting the carbon
emission of buildings.

Through extensive literature reading, starting from the macroscopic level of influenc-
ing elements of carbon emissions and the micro-level of influencing factors, this paper
summarizes many influencing elements according to three categories: demographic charac-
teristics, economic factors, and technical factors. Table 3 shows the specific contents.

3.3. Energy Consumption Estimation of Construction Industry

From the perspective of China’s socio-economic structure, the proportion of energy
consumption in building sector has been stable at 20–25% in history. In addition, other
energy consumption is mainly concentrated in manufacturing and transportation. In order
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to ensure the flourish of all sectors of society and economy, it is necessary to control the
energy consumption of the construction industry below 25% [35]. Therefore, we take the
above value of 25% to estimate the upper limit of energy consumption in the construction
industry, as shown in Equation (15).

Eb = E× ε (15)

where Eb is the energy consumption in the construction industry, E is China’s energy
consumption, and ε is the discount factor.

Table 3. Selection of influencing factors.

Category Influencing Factors References

Demographic factors Population [6,23–26]

Economic Factors
GDP

Total construction industry
output

[27–33]

Technical Factors Energy consumption [24,32,34]

3.4. Data Sources and Results Analysis

The energy data involved in this paper are from the statistical yearbook of China’s
energy and the statistical yearbook of China’s construction industry [36–38]. The data of
national building material consumption, national total primary energy consumption, and
various types of energy in terminal energy consumption from 1995 to 2019 are selected.
Using the calculation model of Equation (15), we measured the total energy consumption
of China’s construction industry for the period from 1995 to 2019, and Table 4 shows
the results of the data. Figure 3 shows that from 1995 to 2003, energy consumption of
the construction industry was in a slow-growth stage. From 2003 to 2014, it entered a
rapid growth stage. At this time, it has entered the stage of rapid growth, the energy
consumption increased from 493 million tce in 2003 to 1.07 billion tce in 2014, increasing
about 117%. The energy consumption will increase from 2014 to 2019 at an annual rate of
about 400 million tce, which is in a phase of consistent growth.
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Table 4. Energy consumption of construction industry.

Year Total Energy
Consumption (B tce)

Energy Consumption
in Construction (B tce) Year Total Energy

Consumption (B tce)
Energy Consumption
in Construction (B tce)

1995 13.1 3.28 2008 32.1 8.03
1996 13.5 3.38 2009 33.6 8.40
1997 13.6 3.40 2010 36.1 9.03
1998 13.6 3.40 2011 38.7 9.68
1999 14.1 3.53 2012 40.2 10.05
2000 14.7 3.68 2013 41.7 10.43
2001 15.6 3.90 2014 42.8 10.70
2002 17.0 4.25 2015 43.4 10.85
2003 19.7 4.93 2016 44.1 11.03
2004 23.0 5.75 2017 45.6 11.40
2005 26.1 6.53 2018 47.2 11.80
2006 28.6 7.15 2019 48.7 12.18
2007 31.1 7.78

According to the calculation model of Equations (12)–(14), calculate the CO2 emissions
generated by China’s construction industry from 1995 to 2019 according to the type of
energy and the corresponding carbon emission coefficient. Table 5 shows the data results.

Table 5. Carbon emissions in China (billion tons).

Year CO2 Emissions from the
Construction Industry Year CO2 Emissions from the

Construction Industry

1995 1.265 2008 7.237
1996 1.530 2009 9.172
1997 1.621 2010 10.298
1998 2.059 2011 13.262
1999 1.766 2012 13.560
2000 2.753 2013 14.939
2001 2.898 2014 15.321
2002 3.517 2015 15.643
2003 3.852 2016 15.955
2004 4.602 2017 17.525
2005 5.436 2018 18.182
2006 5.771 2019 19.363
2007 6.849

From the comparison between Figures 3 and 4, the change of building CO2 emission
and the evolution of total building energy consumption in construction industry generally
show a synchronous trend. Both show a steady growth trend on the whole. Specifically, it
grows rapidly after the slow growth period, decreases after the rapid growth reaches the
high level, and then maintains steady and slow growth. The increase of carbon emissions
from buildings was relatively slow at the beginning of the 21st century. From 2003 to 2014,
it entered a rapid growth stage, with carbon emissions reaching 1531.2 million tons in
2014. After a short period of stabilization, there has been an enormous increase since 2016.
The synchronous growth of carbon emissions and energy consumption in the construction
industry shows that they are closely related.
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4. Carbon Emission Control Targets of Construction Industry

This chapter introduces the upper limit of energy consumption in the construction
industry to establish carbon emission control objectives on this basis. In addition, according
to the characteristics of carbon emission coefficient changing with energy structure, the
changing trend of the carbon emission coefficient in the future is scientifically and reason-
ably predicted. The expected maximum carbon emission represents the responsibility and
potential of the construction industry for emission reduction, which is conducive to the
government to formulate energy conservation and emission reduction policies.

4.1. Energy Consumption of Construction Industry

Based on the study of Bi Chao [39], this paper forecasts China’s primary energy
consumption from 2020 to 2060 based on relevant policy analysis. With the increase of clean
energy use, the energy structure is bound to change, and the carbon emission factor will
also change. In specific terms, as shown in Table 6, China’s primary energy consumption
is 4.260 billion tce in 2020, with an average annual growth rate of 1.8%. As the primary
energy consumption continues to grow, the growth rate of energy consumption gradually
decreases to 1.70%, 1.60%, 1.50%, 0.80%, and 0.60%. CO2 emissions from energy activities
will grow from 8.370 billion t in 2020 to 9.350 billion t in 2030 and gradually decline after
2030 to reach 9.060 billion t in 2060.

Table 6. China’s primary energy consumption in 2020–2060.

Year 2020 2025 2030 2035 2040 2045 2050 2055 2060

Primary energy consumption (B tce) 42.60 46.43 50.38 54.41 58.49 60.83 62.65 64.55 66.51

Annual growth rate (%) 1.80 1.80 1.70 1.60 1.50 0.80 0.60 0.60 0.60

CO2 emission (B t) 83.70 88.00 93.50 93.10 92.80 92.00 91.50 91.00 90.60

Upper limit of energy consumption
in construction industry (B tce) 10.65 11.61 12.60 13.61 14.62 15.21 15.66 16.14 16.63
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Table 6 shows that when the upper limit is 25%, the energy consumption of construc-
tion industry will increase from 1065 million tons in 2020 to 1663 million tons in 2060.

4.2. Carbon Emission Factor of Construction Industry

Energy consumption and carbon emission coefficient are the keys to measuring carbon
emissions, and the carbon emission coefficient is closely related to the energy structure.
Therefore, it is required to analyze the prospective development tendency of China’s
building carbon emission coefficient based on building energy structure. Yang et al. [22]
Defined the formula for determining the future carbon emission coefficient. Based on this
study, Equations (16) and (17) present the measurement method of carbon emission factors
in construction industry.

Cbi = CiBi/∑ CiBi (16)

CEF = ∑ fiCbi (17)

where i refers to major energy types (details in Table 7), Cbi is the proportion of energy i in
total energy consumed in the building sector, Ci is the proportion of energy i in country
energy consumption, and Bi is the proportion of resources used by the building sector, of
which fi is a carbon emission factor for the conversion of each kind of energy into coal
equivalent. Due to the energy structure optimization, the share of energy will change, so
the carbon emission factor will also change. Considering the implementation of relevant
emission reduction regulations, the share of clean energy will gradually expand with the
popularization of clean energy. At the same time, China is undergoing a service-oriented
economic transformation, and its reliance on energy sources such as coal is decreasing.
Considering the above factors, in Table 7, the scenario I following the historical trend
is established.

Table 7. The prediction of energy structure in China.

Year 2025 2030 2035 2040 2045 2050 2055 2060

Coal 60.0% 60.0% 55.0% 50.0% 47.0% 45.0% 43.0% 42.0%
Oil 11.0% 9.0% 8.0% 8.0% 8.0% 8.0% 7.0% 7.0%

Natural gas 11.0% 11.0% 11.0% 11.0% 11.0% 11.0% 11.0% 11.0%
Clean energy 18.0% 20.0% 26.0% 31.0% 34.0% 36.0% 39.0% 40.0%

In addition to scenario I, two other scenarios have been established, corresponding to
stricter policies. In scenario II and scenario III, the oil and gas share trend remains basically
unchanged. While the proportion of Clean energy consumption in scenario II rise to 31%,
36%, 36%, 38%, 41%, 42%, and the proportion of coal gradually decreases to 50%, 45%,
45%, 43%, 41%, 40%. The share of Clean energy in scenario III rise to 33%, 38%, 38%, 40%,
43%, 44%, and the share of coal decreases to 48%, 43%, 43%, 41%, 39%, 38%. Based on the
changes in energy structure in these three scenarios, it can calculate the carbon emission
factor by using Equations (16) and (17).

We can transform the upper limit of energy consumption into a carbon emission
control target by combining the carbon emission factors in Table 8. Figure 5 shows that
under Scenario I, carbon emissions of construction industry will keep increasing, and will
be at a rapid growth stage during 2020–2030, and then slow down after 2030, reaching
a peak in 2045. Under Scenario II and Scenario III, carbon emissions will peak in 2035
and 2030, respectively. It is clear that among the three scenarios, only in Scenario III the
carbon emissions will peak in 2030, which is in line with the goal of China’s carbon peaking
strategy. Therefore, we choose the carbon emission control target of Scenario III as the CO2
emission cap in the building sector. The construction industry’s carbon emissions target is
2438 million t by 2025 and 2533 million t by 2030. 2531 million t in 2035, 2485 million t in
2040, 2464 million t in 2045, 2427 million t in 2050, 2421 million t in 2055, and 2378 million t
in 2060, as shown in Figure 5.
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Table 8. Carbon emission factors under different scenario.

Year 2025 2030 2035 2040 2045 2050 2055 2060

Scenario I 2.21 2.16 2.04 1.92 1.86 1.80 1.74 1.69
Scenario II 2.12 2.04 1.91 1.77 1.69 1.62 1.56 1.50
Scenario III 2.10 2.01 1.86 1.70 1.62 1.55 1.50 1.43

Note: The unit is kgCO2/kgce.
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5. Construction Carbon Emissions Projection
5.1. Influence Factor

Using the STIRPAT model, the population, GDP, energy consumption and construction
output value were selected as the influencing factors, and the CO2 emissions of China’s
buildings were fitted separately using the RidgeRegression method. Therefore, the STRIR-
PAT model of building carbon emission influence factor established in this study is shown
in Equation (18):

ln E = ln e + f (ln R) + g(ln S) + h(ln T) + i(ln U) + ln J (18)

where E is the amount of carbon emission, R is population, S is GDP, T is energy consump-
tion, U is the output value of construction industry, e is model coefficient, f , g, h and i
respectively represent elastic coefficients of population, GDP, energy consumption, and
construction output, respectively, and J is a random error term. We fit the model with the
Ridge Regression, and Table 9 shows the results.

Table 9. Influencing factor coefficient of building carbon emission.

ln R ln S ln T ln U ln J R2

regression coefficient 1.896 1.027 1.373 0.457 21.398 0.997

The R2 of the regression model is 0.997, which indicates that the regression model
was well-fitted. According to the fitting results of influencing factors, population, GDP,
energy consumption, and the construction output are in direct proportion to the change
of building carbon emission, that is, with the increase of the change value of influencing
factors, carbon emission increases. When the change value of influencing factors decreases,
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carbon emission decreases. The contribution of the population to CO2 emissions is more
significant than other influencing factors due to the fact that as the number of people
increases, the demand for buildings also increases. The surge in architecture demand is
accompanied by a rise in energy consumption, which results in more carbon emissions.

In addition to demographic factors, the influence of GDP on building carbon emissions
has been considerable. When GDP increases by 1%, construction carbon emissions will
increase by 1.027%. When the economic level improves, carbon emissions will also increase.
From the perspective of energy structure, China currently maintains a primary energy
consumption structure dominated by coal and oil. When reducing the consumption of
primary energy and increasing the proportion of non-fossil energy, the generation of
carbon emissions can be curbed to a certain extent. The impact of construction output is
also positive since the rise of construction output marks the growth of more construction
works, corresponding to the increase in building area. Therefore, the corresponding carbon
emission will also increase.

5.1.1. Total Population

In general, population growth contributes to the rise of carbon emissions from build-
ings in two ways. One is that a larger population leads to an increased demand for residen-
tial buildings and public buildings. The other is that population growth accompanied by
changes in land-use patterns will somewhat reduce the area of green forests. The National
Population Development Plan states the expected future development goals for China’s
population: the total national population is expected to amount to 1.42 billion in 2020 and
maintain a steady level of growth to reach 1.45 billion in 2030 [40]. An Yag pointed out that
although the adoption of the “comprehensive two-child” policy will stimulate population
growth to some extent [41], China’s total population will not see the expected explosive
growth but will gradually decrease after reaching a population peak of 1.452 billion in 2030,
at a moderate rate, and will remain at 1.378 billion in 2050. This data is in line with that
expected in the National Population Development Plan. The China Statistical Yearbook
states that the population of China is 1.395 billion and 1.400 billion people in 2018 and
2019. Therefore, this paper sets two scenarios for population growth in Table 10. Scenario
A sets a net increase of 8 million people per year from 2020 to 2060, while Scenario B sets a
population peak of 1.452 billion people in 2030 and decreases at a rate of 1.3% after that.

Table 10. Population prediction (billion).

Year 2025 2030 2035 2040 2045 2050 2055 2060

Scenario A 1.448 1.488 1.529 1.567 1.608 1.649 1.652 1.654
Scenario B 1.416 1.452 14.34 14.15 13.97 13.78 1.376 1.375

5.1.2. GDP

As urbanization accelerates and the economic structure transforms, economic growth
will change according to policies. Therefore, this paper combines the 14th Five-Year Plan
and objective reality to simulate and forecast the possible economic growth in the future
and sets the following three GDP growth scenarios:

(1) Baseline scenario developed in accordance with historical trends. Focus on economic
development, in accordance with the current energy saving and emission reduction
efforts, increase technology investment, and launch corresponding emission reduction
policies, but not to meet the needs of emission reduction.

(2) According to the “supply-side structural reform”, set a faster growth scenario. The
government improves the industrial structure, promoting clean energy and trans-
forming energy consumption structure; reform the mode of economic development
activities; citizens’ awareness of saving energy and reducing emissions has been
dramatically enhanced, creating a trinity of economy, energy, and environment for
harmonic development.
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(3) Slower growth scenarios. Slow improvement in industrial structure and promotion
of industrial upgrading; continued increase in the share of non-fossil energy; lack of
awareness of emission reduction.

Referring to Li Ping’s study on China’s economic growth forecast for 2016–2030 [42],
this paper assumes that under the baseline scenario (Scenario 1), the average annual GDP
growth rates are 5.6% and 4.9% for the 2021–2025 and 2026–2030 periods, respectively;
2030–2040, 2040–2050, and 2050–2060 are 4.9%, 4.6%, and 4.6%, respectively. In the slower
growth scenario (Scenario 2), the average annual GDP growth for the five periods is 5.2%,
4.5%, 4.5%, 4.3%, and 4.3%, respectively. In the faster growth scenario (Scenario 3), China
maintains a faster growth rate of 6.0%, 6.0%, 6.0%, 5.8%, and 5.8% per year on average in
five periods as the industrial structure is transformed and upgraded.

5.1.3. Total Building Energy Consumption and Total Output

Taking the historical data of total building energy consumption in China from 1995
to 2019 as the object, the model is established. The error analysis is carried out using the
original and accumulated data to predict the data up to 2060. Table 11 shows that the
relative error between the actual and predicted values in the prediction of building energy
consumption is minor, thus illustrating that the model has the good predictive capability
and can predict future energy consumption. Figure 6 shows the energy consumption
prediction results.

Table 11. Relative error.

Year Actual Value Predicted Values Relative Error

1995 3.28 3.28 0.0000%
2000 3.68 3.82 3.8043%
2005 6.53 6.24 4.4191%
2010 9.03 8.45 6.4329%
2015 10.85 10.90 0.4846%
2019 12.18 13.12 7.7175%
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In summary, the overall national total building energy consumption shows a continu-
ous growth trend. Building energy consumption is rapidly growing during the 2000–2030
period, with building energy consumption expected to increase sharply to 1.576 billion tce
in 2030. The growth rate of building energy consumption decreases after 2030, and building
energy consumption grows to 2.001 billion tce in 2060, increasing 1.27 times compared with
2030. The growth of building energy consumption has slowed in recent decades as China
has vigorously promoted energy efficiency in buildings. Building energy consumption is a
consumer energy consumption closely related to people’s lives. Reducing building energy
consumption needs to be relevant to real life, implementing building energy efficiency
standards, and fundamentally optimizing and adjusting the energy structure; From the
perspective of consciousness, enhancing the people’s awareness of energy conservation.
Similarly, the GM (1,1) model has good predictive power for forecasting the total construc-
tion output value. We use the historical data of China’s total construction output value
from 1995 to 2019 as input values to analyze the trend of China’s total construction output
value. Figure 7 shows that the entire building sector output value has been growing at a
steady rate for the following reasons: macroscopically, it is due to the fact that the new ur-
banization will change the construction layout of cities and build to realize the urbanization
of population characterized by metropolitan areas; microscopically, the new urbanization
will cause the more rural population to flock to cities and towns, leading to an increase
in the demand for urban housing and public buildings. In addition, people’s demand for
high-quality life is often accompanied by the improvement of urban infrastructure and the
emergence of more buildings that can meet people’s living needs. Therefore, the entire
building sector output value is gradually increasing.
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5.2. Building Carbon Emissions Scenario Projections

This paper selects total population, GDP, total construction output, and construction
energy consumption as the main factors affecting building carbon emissions. The data of
these four main influencing factors will be used as the input vector of the CO2 prediction
model for the construction industry, and the data are randomly selected as training samples
and test samples, respectively. The prediction model is divided into two parts: the training
and testing model.
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5.2.1. Structural Design of Building Carbon Emission Prediction Model

When building a carbon emission neural network prediction model is established, the
input layer corresponds to the number of input vectors of the prediction model. Hence,
the input layer of the neural network model contains four neurons. Since the output of the
prediction model is only the carbon dioxide emission in the building sector, the number
of neurons in the output layer of the model is 1. The number of input layers is defined
as four, and the number of output layers is 1. Calculated from Equation (2), the number
of hidden layer units should be between 4 and 13. Secondly, after clarifying the relevant
network parameters and activation function, combined with the number interval of hidden
layer neurons obtained by empirical formula, the final number of hidden layer neurons is
determined through model training.

The research data on the four influencing factors contain both historical data and
future forecast data. The historical data are selected from the China Statistical Yearbook
and China Construction Industry Statistical Yearbook from 1995 to 2019. The forecast data
are divided into two major categories. One category is the data of population and GDP
obtained by using scenario analysis for reasonable prediction considering historical trends
and relevant implementation policies. The second category is the total construction output
value and construction energy consumption obtained by using GM (1,1) model prediction.
Based on the above research data, a neural network model of building carbon emission is
established by the MATLAB R2020a platform for prediction analysis. Table 12 shows the
projected values of carbon emissions under different scenarios.

Table 12. Projected carbon emissions under different scenarios.

Year Scenario A1 Scenario A2 Scenario A3 Scenario B1 Scenario B2 Scenario B3

2020 27.82 23.42 27.86 25.48 22.94 25.53
2025 30.69 24.25 32.73 27.99 24.29 28.75
2030 33.73 25.34 37.61 29.64 25.18 32.74
2035 34.24 25.89 42.64 30.53 24.90 36.29
2040 34.85 25.65 45.31 30.96 24.69 40.58
2045 35.68 24.89 51.52 31.85 23.75 44.62
2050 36.16 24.57 54.86 32.26 23.65 48.38
2055 36.28 24.49 55.12 32.67 23.52 49.64
2060 36.30 24.43 55.45 33.14 23.38 50.46

As shown in Figures 8 and 9, the projections of carbon emissions from buildings have
six types of components. Carbon emissions will keep rising sharply in scenarios A3 and B3
with the same economic growth scenario. Under the scenario A3, carbon emissions will
keep rising, reaching 3.761 billion tons and 5.545 billion tons in 2030 and 2060, respectively,
an increase of about 0.47 times in total. Under scenario B3, it will reach 3.274 billion tons
and 5.006 billion tons in 2030 and 2060, respectively, and the total emission will represent a
0.53-fold increase. The growth trend of building carbon emissions in this scenario is similar
to scenario A3. It shows that the increase in population scale contributes to the carbon
emissions of buildings. Therefore, controlling population size is crucial to reducing carbon
emissions. In A2 and B2 scenarios, due to improved energy structure and the promotion of
clean fuels, the peak of building carbon emissions is significantly lower than in the other
four scenarios. It will decline rapidly after reaching the peak, which shows that improving
energy structure is an effective measure for energy saving and emission reduction.

5.2.2. Feasibility Analysis of “Carbon Peak”

Under the A1 and B1 scenarios, building carbon emissions have been growing at a
low rate, unable to peak by 2030. In the A2 scenario, the peak carbon dioxide emissions
will be reached by 2035, which is different from the carbon peak target, so the scenario is
not in line with the carbon peak strategic objectives. Under the six scenarios, only the B2
scenario with positive economic growth and well-adjusted energy structure reaches the
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peak of carbon emissions in 2030. The value does not exceed the carbon emission control
target. The carbon emissions gradually decrease after 2030, and the value of building
carbon emissions has stabilized by the middle of this century. It fully shows that under the
coordinated development of the economy, energy, and environment, we can achieve the
strategic goal of reaching a carbon peak in 2030.
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5.2.3. Feasibility Analysis of “Carbon Neutrality”

CO2 emission reduction and carbon sink are two ways to achieve carbon neutrality.
CO2 emission reduction is a CO2 capture and storage (CCUs) technology, while carbon sink
is the self-recycling of CO2 by the ecosystem, and photosynthesis is the most important
way of carbon sink. According to relevant statistics, China’s carbon sink consumption from
2010–2016 was about 3.8–44 billion t. It is expected that China can recover 6 billion t of
CO2 by carbon sinks alone in 2060 [43]. Under the B2 scenario, the construction carbon
emissions reached 2.338 billion tons in 2060. The construction carbon emissions constitute
over 25% of the national carbon emissions, so the 2060 carbon-neutral strategy target is
achievable by adopting artificial emission reduction measures such as CCUS.

6. Conclusions and Policy Advice
6.1. Conclusions

(1) By analyzing the current status of CO2 emission research, it is found that there is a lack
of research on carbon neutralization prediction in the building industry. A majority of
studies concentrated on CO2 emission calculations and CO2 emission prediction. Since
the CO2 influencing factor and the explained quantity in the construction industry
are non-simple linear relationships, the traditional forecasting method will cause
significant errors in the data. In contrast, the BP neural network forecasting model
can compensate for the disadvantage of substantial errors.

(2) Based on the IPCC carbon emission method, we classify the CO2 emission of buildings
as a combination of direct and indirect and thus construct the measurement model of
carbon dioxide emission of buildings. The construction industry’s CO2 emission and
energy consumption values from 1995 to 2019 were measured, respectively. The results
showed that the change in CO2 emission and total building energy consumption
showed a synchronized trend, both of which grew rapidly after the slow growth
period and decreased after reaching a small peak.

(3) To effectively predict the feasibility of achieving the 2030 carbon peak and the 2060
carbon neutrality target. To regulate and control building carbon emissions at a
macro level, we decompose the carbon emission control objectives of the construction
industry into building energy consumption ceiling and carbon emission coefficient,
in which the carbon emission coefficient is obtained from the relationship between
energy structures. Since the carbon emission coefficients are different under the three
scenarios, we select the corresponding scenario that meets the carbon peak target as
the carbon emission ceiling of the construction industry.

(4) Using the literature reading approach to screen the affecting elements of CO2 emis-
sions in the building sector, the total population, GDP, gross construction output value,
and energy consumption of the building sector were screened as the input parameters
of the prediction model. It can solve the problems that the BP neural network could
not make the input variable selection autonomously and the low prediction accuracy
caused by the redundancy of the input variables.

(5) Based on the historical trends and existing policy planning, the total population under
the two scenarios is reasonably predicted, and three GDP growth scenarios are set
up: baseline, rapid growth, and slow growth. The carbon emission prediction results
have a total of six scenarios for each regulation, among which only under scenario
B2, the CO2 emission of the construction industry will reach the peak in 2030, and
the carbon emission of the construction industry will continue to decline after 2030,
which is in line with China’s strategic goals of carbon peaking in 2030 and carbon
neutrality in 2060.

(6) The research scope needs to be further expanded. This paper mainly focuses on
analyzing and predicting building carbon emissions at the national level and lacks
provincial-municipal level research. However, the low-carbon development levels in
China’s eastern and western regions are quite different, and the peak time of carbon
is bound to be quite different. Future research needs to focus on the differences
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in carbon emissions caused by different architectural styles and energy use habits
between the East and the West from the urban level. Exploring the future development
trend of building carbon emissions in different regions will help the construction
department formulate more effective energy conservation and emission reduction
policies according to local conditions.

6.2. Policy Advice

(1) Accelerate scientific and technological innovation and technology introduction, opti-
mize energy structure, and establish a low-carbon building energy system. Consider-
ing the different climate, economic conditions, and energy reserves in each province
of China, policies need to be formulated according to local conditions. Due to the
relatively backward economy and abundant energy resources in China’s western
region, most of the regional economy is energy-dependent. Therefore, it is necessary
to enhance the research of energy-saving technologies, promote new clean materials,
and form a virtuous cycle of building energy conservation. In the eastern coastal
areas of China, where resources are relatively scarce, and population density is high.
Therefore, it is required to vigorously develop building energy-saving technologies,
promote new energy-saving green buildings, and increase the proportion of clean
energy to effectively control CO2 emissions of building.

(2) Policies lead the direction of reform and improve supporting regulations. Promulgate
corresponding laws and regulations and energy-saving standards for promoting
green buildings. Use finance as the overall grip of macro-control, provide financial
subsidies and tax incentives for the low-carbon construction industry chain through
fiscal incentive policies, and implement subsidized preferential policies for buildings
that exceed energy-saving standards.

(3) The implementation of the “lucid waters and lush mountains are invaluable assets”
development concept, energy conservation, and carbon reduction concept throughout
society. Fully aware that “carbon peak, carbon-neutral” is a green revolution that
requires the participation of all people to create a harmonious coexistence between
man and nature in the natural community, the establishment of a clean, low-carbon,
efficient and safe construction system.
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