
Citation: Gugl, R.; Kharrat, R.;

Shariat, A.; Ott, H. Evaluation of

Gas-Based EOR Methods in Gas-

Invaded Zones of Fractured

Carbonate Reservoir. Energies 2022,

15, 4921. https://doi.org/10.3390/

en15134921

Academic Editors: Shu Tao and Min

Wang

Received: 1 June 2022

Accepted: 30 June 2022

Published: 5 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Evaluation of Gas-Based EOR Methods in Gas-Invaded Zones
of Fractured Carbonate Reservoir
Ronald Gugl 1, Riyaz Kharrat 1,* , Ali Shariat 2 and Holger Ott 1

1 Department Petroleum Engineering, Montanuniversität Leoben, 8700 Leoben, Austria;
ronald.gugl@hotmail.com (R.G.); holger.ott@unileoben.ac.at (H.O.)

2 Computer Modeling Group Ltd., Calgary, AB T2L 2M1, Canada; ali.shariat@cmgl.ca
* Correspondence: riyaz.kharrat@unileoben.ac.at

Abstract: More than half of all recoverable oil reserves are found in carbonate rocks. Most of these
fields are highly fractured and develop different zonations during primary and secondary recovery
stages; therefore, they require a different developmental approach than conventional reservoirs.
Experimental results for water-alternating gas injection [WAG] and foam-assisted water-alternating
gas [FAWAG] injection under secondary and tertiary recovery conditions were used to investigate
these enhanced oil recovery [EOR] methods in gas-invaded reservoirs. The relative permeability
curves of the cores and the fitting foam parameters were derived from these experiments through
history matching. These findings were then used in a quarter five-spot, cross-sectional, and a sector
model of a carbonate reservoir where a double five-spot setup was implemented. The fracture and
matrix properties’ impact on the recovery was illustrated through the cross-sectional model. The
gas mobility reduction effect of the FAWAG was more noticeable than that of WAG. The apparent
viscosity of the gas was increased due to the foam presence, which caused a diversion of the gas from
the fractures into the matrix blocks. This greatly enhanced the sweep efficiency and led to higher
oil recovery. The gas front was much sharper, and gravity overrides by the gas were much less of
a concern. The properties of the fracture network also had a significant effect on the recovery. Oil
recovery was found to be most sensitive to fracture permeability. At the same time, sweep efficiency
increased substantially, improving the recovery rate in the early injection stages, and differed slightly
at the ultimate recovery. However, a lower fracture permeability facilitated gas entry into the matrix
blocks. The results of the reservoir sector model were similar to the core and pilot. However, the
WAG injection recovered more of the uppermost layers, whereas significant portions of the lowest
layer were not effectively recovered. In contrast, FAWAG was more effective in the lowest layer of
the reservoir. The FAWAG was a beneficial aid in the recovery of gas-invaded fractured reservoirs,
increasing the oil recovery factor with respect to WAG.

Keywords: fractured reservoir; EOR; FAWAG; WAG; gas invaded zone

1. Introduction

Naturally fractured reservoirs contribute considerably to the world’s hydrocarbon
reserves; however, they usually have a lower oil primary recovery. This is related to
different wetting conditions in reservoirs. Conventional reservoirs and fractured reservoirs
are very different in nature. The distribution of the fluids is not the same for both. In a
conventional reservoir, the two-phase contacts of water–oil and gas–oil are smooth, and
the transition zone may be significant in static conditions and, thus, will remain so in
dynamic conditions. During production, gas-invaded zones and water-invaded zones
may form as a result of oil production. On the contrary, the transition zone in a fractured
reservoir is sharp and abrupt; hence, the transition zone is horizontal in static and dynamic
conditions (Figure 1). Given that the transmissivity in a fracture network is high due to
its large permeability, any change in level is rapidly re-equilibrated [1]. These fractures
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are then occupied mainly by only one phase. Several Middle Eastern fields, such as the
Fahud, Gachsaran, and Hafkel [2–4], reported large water- and gas-invaded zones during
the primary production. For example, the Hafkel field, with more than eighty years of
production, has resulted in a gas-invaded zone of around 1000 feet [4]. Nowadays, with
many of these brown fields being produced for decades, the enhancement of oil with
different enhanced oil recovery methods is of interest.

Figure 1. Fracture reservoir zonation (a) Static condition (b) Dynamic condition.

One of the main mechanisms for gas injection in naturally fractured reservoirs [NFR] is
Gas-Assisted Gravity Drainage [GAGD]. Gas-filled fractures surround the oil-filled matrix
blocks, and the gas can go into the matrix (gravity-driven), displacing the oil. It was found
that fracture permeability is a key property for high oil recovery when gas is injected in
NFRs. Even higher recovery can be achieved when the vertical fracture permeability is
higher than the horizontal [5]. Interestingly, the fracture conductivity is less important than
the fracture spacing if the gas is injected in a “huff and puff” regime. During a cyclic gas
injection, lower fracture spacings result in higher recoveries [6].

Waterflooding is generally not an effective recovery method in naturally fractured
carbonate reservoirs, especially in oil-wet/mixed-wet reservoirs, in addition to the negative
effects of scaling [7] and early water breakthrough [8]. The WAG method in NFR might
be feasible because gas prefers to flow in the high permeability fractures, resulting in
gravity drainage. On the other hand, the water imbibes the matrix blocks and further
increases oil displacement efficiency. For the WAG process, high-permeability fractures
and low-permeability matrices are important for a successful application [9]. Recently, the
effect of driving forces on oil recovery for gas injection, foam injection, water-alternating
gas injection, and foam-assisted water-alternating gas injection was analyzed for fractured
reservoirs using dimensionless numbers and a surface response model [8]. The foam and
FAWAG injection methods were more sensitive to permeability contrast, density, and matrix
block highs than WAG injection.

Fractures also introduce new effects in chemical EOR methods. In the case of a surfac-
tant injection, the surfactant causes more favorable relative permeabilities and capillary
pressures by wettability alteration from oil-wet/medium-wet [OW/MW] to more water-
wet [WW] rock and also by lowering residual oil saturation via decreasing interfacial
tension [10]. Under more WW conditions, the water is more likely to imbibe the matrix
blocks, displacing the oil from the matrix into the fracture [11]. Another effect introduced by
surfactants is that surfactants may lower the interfacial surface tension [IFT] between water
and oil, thus lowering the capillary pressure and forcing the system to be more gravity
dominated. This results in more efficient oil recovery and lower residual oil saturation.
Similar to already discussed effects, if the fractures are more permeable than the matrix,
a breakthrough [BT] may occur faster, and oil recovery decreases. However, polymers
are known to mitigate channeling effects due to Kfracture >> Kmatrix. Further, decreased
fracture spacing and fractures oriented parallel to the intended fluid flow are considered
beneficial [12]. A very well-studied area of chemical EOR already at the stage of a field
application utilizes foams in NFRs. Surfactant-alternating gas (SAG) combined with foams
dispersed in gas injections leads to an increased treatment depth than SAG alone, and the
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foams block high-permeability fractures. This process increases the potential of inaccessible
fractures until then [13–15]. Hence, implementing a proper process requires extensive
laboratory work and simulation studies to be effective.

Two thirds of all recoverable oil reserves and a third of all recoverable gas reserves
are found in carbonate rocks. Most of these fields are highly fractured and develop dif-
ferent zonations during primary and secondary recovery stages; therefore, they require a
different development approach than conventional reservoirs. In particular, the creation
of gas-invaded zones during production poses a major problem. This simulation study
investigated the benefits of introducing gas-based EOR methods, such as WAG and foam-
assisted WAG, to a fractured reservoir to overcome these obstacles. It may yield benefits
for future recovery strategies.

2. Methodology

This work has been conducted on core flooding experiential data to validate the
generated models using history matching. The simulations in this work underlie a straight-
forward workflow of a small-scale model (core scale) to a large-scale model (sector or
field-scale) while still obtaining reasonable data in the large-scale model. This workflow
is charted in Figure 2. Initially, a compositional model had to be created by matching the
experimental data of the oil used in the experimental core floods. The numerical model
for matching experimental core flood experiments includes the experimental PVT data.
Rock properties deduced from the experiments have then been defined in the model. Both
gas and water relative permeability curves were matched simultaneously for WAG and
FAWAG. The only difference was that a few foam parameters were included in the FAWAG
case [16]. The matched data were then used in a heterogeneous quarter-pilot model. The
quarter-pilot gives a clearer picture of how the recovery methods behave in an idealized and
coarse three-dimensional model. Then, a two-dimensional cross-sectional model is created
to further investigate fluid movement between injector and producer. In this investigation,
three basic fracture properties were studied in a sensitivity analysis on how they affect oil
recovery and fluid flow in a gas-invaded zone. These include fracture permeability, fracture
spacing (horizontal spacing between vertical fractures), and fracture block height (vertical
spacing between horizontal fractures). Lastly, the FAWAG properties have been applied to
a real-life sector model that gives a view on how FAWAG could improve oil recovery in
real scenarios.

The PVT data were then used in the setup of the core. Core parameters deduced from
the experiments have then been defined in the model. Here, both gas and water relative
permeability curves were matched simultaneously. Only a few foam parameters were
changed to achieve a good match. This match was then applied to the large-scale pilot
and sector models. Upon building the models, a sensitivity analysis study was conducted
for the fracture and matrix property effect on the recovery of the FAWAG process in the
gas-invaded zone.
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Figure 2. Simulation study workflow.

3. Overview of Utilized Experimental Data

This study was based on the experimental work conducted by Kharrat and his
team [17–21], wherein they studied the effects of carbon dioxide injection, WAG, and
FAWAG injection into cores from the matrix of the naturally fractured carbonate reservoir
as a secondary and tertiary recovery method. The experiments were conducted using live
oil, brine with 5000 ppm of salts (4000 ppm NaCl, 500 ppm CaCl2 and MgCl2), and sodium
lauryl sulfate as the anionic surfactant and foaming agent. These cores were initially sat-
urated with the same live oil and brine at laboratory conditions (46.11 ◦C). However, the
pressure changed from experiment to experiment and ranged between 1600 and 2300 psi.
For the experiments, the cores were flooded with about two pore volumes of each method.
All properties, values, and parameters for the experiments can be found in Table 1, which
resemble the conditions of an oil field with a carbonate oil-bearing formation located in the
northern part of the Zagros folding.
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Table 1. Core properties, experimental parameters, water, and oil properties.

Core Properties

Length [cm] Diameter [cm] Pore Volume
[cm3] Porosity [%] Permeability [mD] Swc [%]

11.4 3.81 16.55 12.73 0.3 19.3

Experimental Parameters

WAG Ratio/Cycles Gas Rate
[cm3/min] Water Rate [cm3/min] Pressure [psi]

1:1/10 0.22 0.28 1700

Water Properties

Water Density [kg/m3] Compressibility [1/bar] Reference
pressure [psi] Viscosity [cP]

Laboratory 989.747 4.35 × 10−6 14.7 0.5822

Sector 1094 2.3519 × 10−6 2450 0.854

Oil Properties

GOR [m3/m3] Temperature [◦C] Initial Pressure
[psi] Saturation Pressure [psi] Density [◦API] Viscosity

[cP]

44.45

46.11
laboratory

50.00
sector

2450 1600 43 0.82

4. PVT Data Matching

The oil compositions used in the experiments can be found in Table 2. PVT data
at laboratory conditions, such as constant composition expansion [CCE] and differential
liberation [DL] tests, were used to create representative fluid models. The Peng–Robinson
equation of state was chosen based on the PVT data. Compositional reservoir simulation
studies often require high computing power. Therefore, the plus fraction, which is C6+, is
heavily lumped to reduce the pseudo-components in the model and reduce computation
time [22].

Table 2. Oil and gas composition.

Component [mol%] Component [mol%]

H2S 0.005 IC4 0.467
CO2 9.621 NC4 0.695
C1 26.459 IC5 0.627
C2 2.628 NC5 2.475
C3 10.83 C6+ 46.937

M.W. of C6+ 199 [kg/kg·mol] S.G. of C6+ 0.8181

5. History Matching

The core models need to be set up with the acquired PVT data. The runs are based on
the experiments conducted by [17,18]. Roughly 1.6 pore volumes were injected into the
core. Because our model will solely be flooded at a concentration of 2000 ppm, this value is
the most influential as increases in recovery cease to appear with higher concentrations [19].

Permeability curves were derived for both sets using the Corey–Brooks “power–law”
relationship, while the foam-assisted injection required foam parameters to be included in
the history match. These ones implanted were the foam mobility and the critical surfactant
concentration. Other foam-altering qualities, like oil saturation dependency, the influence
of the capillary number, and foam dry-out, were left out to simplify the model and reduce
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computing time. The results suggest that the FAWAG does indeed reduce gas mobility.
This is indicated by the stepwise oil recovery and gas production in Figures 3 and 4. The
reduced gas mobility allows for a greater sweep efficiency, wherein more oil is produced
in the gas cycles than pure WAG injection. The CO2 injection in WAG is significantly less
effective as it bypasses the oil and ends up being produced faster than the mobility-reduced
gas of the FAWAG method [23]. According to Lake, the gas mobility reduction caused by
the foam can be viewed as either an increase in the effective viscosity of a single-phase flow
or a decrease in the gas-phase permeability. Two different mechanisms are the main reason
for low mobilities: 1. The formation of/increase in trapped residual gas-phase saturation.
2. A blocking of pore throats due to gas films [24]. The results also display a stepwise
production history ascribed to the alternating water and gas injection. Both have different
properties and oil-recovery-enhancing abilities, leading to such a stepwise function. Here,
gas is the more potent oil mobilizer. This can be explained by the oil properties, which are
sensitive to the injected CO2. The CO2 can swell the oil, increasing its apparent saturation
and, thus, displacing oil more efficiently.

Figure 3. Coreflood history match: WAG and FAWAG recovery factor.

Figure 4. Coreflood history match: WAG and FAWAG gas production.
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6. Results and Discussion
6.1. Pilot Scale Model

The final step was to create a pilot model that would be used to simulate reservoir
conditions. This pilot model imitates a quarter of a five-spot pattern (Figure 5). This pattern
is important to study the effect of heterogeneity because it is also used in the upcoming
sector model. In addition, in the heterogeneous reservoirs, foam generation will first occur
in the high-permeability zones, diverting the fluid flow into low-permeability zones [25].
The grid was 15 × 15 × 8 in x, y, and z, with an overall length of 150 m × 150 m × 6 m.
The porosity was normally distributed from 0.05 to 32%. The permeability was modelled
as a function of porosity. The correlation for the permeability characterization of carbonate
rocks used was:

k = 1014 ∗ FZI2 ∗ Φ3

(1 − Φ)2 (1)

FZI is the flow zone indicator in regression models and Φ the porosity. For FZI, the
value of 0.861 was the most suitable for our type of carbonate rock [26]. The number 1014
was derived from FZI’s conversion number. The pilot model was flooded with 0.8 pore
volumes injected [PVI] with CO2, WAG (0.4 PVI each), and FAWAG (0.4 PVI each) at a
cycle of 0.2 PVI. Injection of more did not yield more oil recovery on any method and only
increased computing time for such a demanding model.

The reservoir conditions were chosen to be 115 ◦F and 1960 psi. This pilot model was
set up to be a dual-porosity model, meaning that fractures were implemented. The fracture
porosity was 5%, and the fracture permeability was 1000 mD. The fracture spacing was
0.4 m, 0.4 m, and 0.2 m in x, y, and z, respectively. Lastly, the relative permeability curves
were set to be straight lines.

Figure 5. Quarter five-spot pilot simulation model (porosity profile).

In this scenario, the quarter five-spot model was firstly flooded with gas until a gas
saturation of 40% was reached, and then CO2, WAG, and FAWAG were introduced to the
injection strategy. FAWAG enhances the oil recovery by a remarkable 20% on a simple WAG
strategy (Figure 6). The high gas saturation in the model increases the gas mobility and,
thus, enhances effects like gravity override and fingering, leading to an early breakthrough.
FAWAG recovery increases stepwise. This can be explained by the low mobility of the gas
that allows it to contact more of the reservoir and is indicated by the lower gas production
for FAWAG (Figure 7). The low gas mobility hinders the gas from acting as a “highway”
for the injected gas. The foam acts as a mobility control agent. This means that the foam
increases the apparent viscosity of the gas to such a degree that flow via fractures is
impaired, and other injected gas can be diverted into the matrix blocks, thus enabling a
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much more enhanced sweep efficiency of the matrix blocks. The surfactant used to create
the in situ foam has a positive effect on the early recovery of the oil since it alters the surface
tension between the oil and the water, rendering its displacement more effective. This can
be seen in the early stages of Figure 7.

Figure 6. Pilot model recovery factor vs. pore volume injected.

Figure 7. Pilot model cumulative gas production vs. pore volume injected.

6.2. Cross-Sectional Model

To further investigate foam-dependent gas mobility reduction and gas movement in a
reservoir and their effect on oil recovery, a fine two-dimensional cross-section-like model
was set up and then injected with both a WAG and a FAWAG displacement process. It
consisted of 10,000 grid blocks (100 × 1 × 100) to visualize and describe fluid movement
from the injector to the producer.

A dual-porosity—dual-permeability model was chosen to account for flow between
fractures and the matrix and vice versa. The properties of this homogeneous model are
given in Table 3 with 0.5 m, 1 m, and 0.20 m in the x, y, and z-direction, respectively:

Table 3. Properties of the homogeneous model.

Property Matrix Fracture

permeability 8.169 mD 500 mD

porosity 23.8% 5%
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To illustrate the mobility-controlling effect of the foam, a continuously fractured case
was created (Figure 8). This model was first flooded with 0.2 PVI of water for each case and
another 0.2 PVI of CO2. The gas-mobility-reduction effect of the foam is significant. The
FAWAG method displays a sharper front, leading to a much more efficient invasion of the
matrix blocks by the gas. The high mobility of the gas in the WAG process does not allow
the gas to form a sharp front as it moves along the fractures at high speed. Furthermore,
there is a gravity override effect taking place in the WAG process, meaning that the gas
bypasses the oil by flowing to the top due to stark density differences. These two effects
show that the sweep efficiency is greatly enhanced when using FAWAG, leading to higher
oil recovery.

Figure 8. Cross-sectional model (continuously fractured) comparison of gas-phase movement for
FAWAG (left) and WAG (right) displacement processes after the injection of 0.02 PV of CO2 in a
model with a 40% gas invaded zone (CO2 mole fraction).

7. Sensitivity Analysis

Three main variables were investigated regarding their effect on the oil recovery. These
were the fracture block height (height of the vertical fracture blocks; increased height lowers
horizontal fracture count), fracture permeability, and fracture spacing (spacing between
vertical fractures, increased spacing lowers vertical fracture count). Figure 9 shows the
different fracture networks used in the cross-sectional model where “a” is the base case.
The base case in this study assumed a fracture permeability of 500 mD, a block height
of 5 m, and a fracture spacing of 10 m. For each parameter, two additional cases were
created (fracture permeability: 100 mD and 1000 mD; fracture block height: 2.5 m and 10 m;
fracture spacing: 2 m & 10 m).

Figure 9. Fracture networks (a): 10 m × 5 m; (b): 10 m × 10 m; (c): 10 m × 2.5 m; (d): 5 m × 5 m;
(e): 2 m × 5 m.

A base case was created by imposing a fracture network onto the cross-sectional
model representing a fracture block height of 5 m and a fracture spacing of 10 m to have a
more realistic approach than the former continuously fractured cross-sectional model, as
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fractured reservoirs are typically characterized by consisting of big matrix blocks that are
separated by fractures. This model was then used to display the recovery-enhancing effects
of FAWAG in comparison to regular WAG displacement in a gas-invaded environment of
40%. Figure 8 shows that the sweep efficiency is enhanced by using foam for displacing
the oil. The CO2 gas front is significantly sharper for FAWAG than regular WAG injection.
Lower gas mobility impedes the gas’ ability to bypass the oil; thus, the gas can better
displace the oil. The recovery is close to 6% higher than the WAG displacement (Figure 10).
The sharp increase in the first 0.5 PVI can combine the surfactant’s IFT-changing and
gas-mobility-controlling abilities.

Figure 10. Cross-sectional model (fracture block height: 5 m; fracture spacing: 10 m) recovery factor
vs. pore volume injected.

Figure 11 compares the gas movement through the cross-section between the FAWAG
and WAG displacement methods. The mobility reduction of foam is clearly visible in these
different stages of CO2 injection. The foam actively slows down the injected gas, impairing
its movement through the matrix blocks. Due to the reduced mobility, a more highly
saturated gas front moves through the cross-section, displacing the oil more efficiently. By
just using WAG, the gas is moving through the matrix unhindered and at a much faster
pace and is, thus, also bypassing more of the oil. Furthermore, because of the gas’ high
mobility, the ultimate recovery is reached much faster, which is substantially lower than
what can be reached by introducing foam to the displacement method.

Figure 11. Cross-sectional model (fracture block height: 5 m; fracture spacing: 10 m) gas saturation
profile after (a) 0.05; (b) 0.2; (c) 0.4 gas pore volume injected (top: FAWAG; bottom: WAG).
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This quality becomes evident when examining the CO2 mole fraction in the gas
(Figure 12). In the case of the WAG, the CO2 has a uniform distribution throughout the
contacted areas. In contrast, in the FAWAG case, it is highly concentrated around the
fractures due to the gas being encapsulated by foam bubbles. Given that foam reduces
gas mobility, the foam found in the fractures serves the purpose of diverting gas from the
fractures into the matrix blocks by creating a pressure gradient from the fractures to the
matrix.

Figure 12. Cross-sectional model (fracture block height: 5 m; fracture spacing: 10 m) CO2 gas mole
fraction after (a) 0.05; (b) 0.2; (c) 0.4 gas PVI (top: FAWAG; bottom: WAG).

Varying the fracture permeability significantly impacts the recovery in the early stages
of the FAWAG injection. Figure 13 illustrates the flow behaviour of the injected gas at
different fracture permeabilities. At lower fracture permeabilities, the injected fluids tend
to invade the matrix blocks more readily, and gas breakthrough is delayed. A higher
fracture permeability facilitates the bypassing of the fracture blocks. However, the ultimate
recovery after two injected pore volumes stays almost unaltered. This suggests that FAWAG
can be used for high-permeability fracture networks and diverts enough gas into the oil
matrix blocks to produce significant oil over time. Figure 14 shows that a reduced fracture
permeability substantially increased the recovery up until the first injected pore volume.
A lower fracture permeability facilitates the diversion of gas from the fractures into the
matrix blocks and, thus, enhances the sweep efficiency of the matrix blocks.

Figure 13. Sensitivity analysis gas saturation profiles after 0.4 total PV (0.2 water and 0.2 gas) (fracture
permeability/(a): 100 mD; (b): 500 mD; (c): 1000 mD).
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Figure 14. Sensitivity analysis—fracture permeability (100 mD; 500 mD; 1000 mD) recovery factor vs.
pore volume injected.

A larger block height exhibits a similar behaviour on the oil recovery as a lower
fracture permeability (Figure 14). More injected fluid can enter the matrix blocks and sweep
the in situ oil with less horizontal fractures. In contrast, a smaller block height allows more
fluid to be conducted horizontally to the producer via fractures bypassing most matrix
blocks. As a result, the sweep of the matrix blocks is less efficient. Figure 15 illustrates the
enhanced sweep efficiency of the model with a 10 m block height. Starting from 0.5 PVI,
a higher recovery. There is no significant difference between 5 m and 2.5 m until 1.1 PVI.
Figure 16 illustrates how strongly a higher fracture block height can affect oil recovery.
After two pore volumes were injected, the block height of 10 m has a 2.5% recovery lead
over the 2.5 m block height. Production from a fractured reservoir with few horizontal
fractures profits greatly from foam diverting gas into the matrix blocks.

Figure 15. Sensitivity analysis gas saturation profiles after 0.4 total PV (0.2 water and 0.2 gas) (fracture
block height/(a): 10 m; (b): 5 m; (c): 2.5 m).

Figure 17 shows how efficiently the gas occupies the vertical fractured. When the
saturation in the vertical fractures reaches high percentages, the invasion of the matrix
blocks is impaired, and lower oil recovery results. Reservoir rock with many vertical
fractures might initially boast a higher recovery but will reach ultimate recovery sooner
than other reservoirs. The fracture spacing influences oil recovery and allows for more
gravity drainage and better sweep in the early injection stages (Figure 18) by introducing
a tighter spacing. Although there is an increase in oil recovery, the ultimate recovery
is reduced with reduced fracture spacing, suggesting that the effect of gravity drainage
eventually stops, and the matrix blocks are no longer invaded efficiently.
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Figure 16. Sensitivity analysis—fracture block height (2.5 m; 5 m; 10 m) recovery factor vs. pore
volume injected.

Figure 17. Gas saturation profiles after 0.4 total PV (0.2 water and 0.2 gas) (fracture spacing/(a): 10 m;
(b): 5 m; (c): 2 m).

Figure 18. Sensitivity analysis—fracture spacing recovery factor vs. pore volume injected.

8. Reservoir Sector Model [Gas Invaded Zone]

The studied reservoir formation consists of seven layers of carbonate dolomitic rock
with oil field fissures and fractures, which are fairly distributed, and these fracture networks
contribute to oil production [27]. Initially, the reservoir was undersaturated, and the initial
reservoir pressure was equal to 2500 psia with an average temperature of 50 ◦C. Oil
production causes a reduction in pressure. After reaching the saturation pressure, the gas
cap starts to form gradually. The selected sector model has a very low permeability, ranging
between 0.01 mD and 10.1 mD and an average permeability of about 14%, representing the
cores used in the history match (Figure 19). This model investigates the potential benefits
of applying WAG and FAWAG and compares their effectivity. It can give crucial insight
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into how the two EOR methods might influence the oil recovery of a reservoir and how
they behave in a large-scale production simulation.

Figure 19. The reservoir sector model and its dual-five-spot well-placement.

To prepare the model, methane was injected to create a suitable gas-invaded zone
with approximately 40% gas saturation in the uppermost layers. As shown in Figure 19, a
dual-five-spot well pattern was installed to test WAG and FAWAG displacement recovery
efficiency. WAG and FAWAG were injected at alternating 0.2 PVI until one pore volume
was reached, e.g., three cycles of water and two cycles of gas. The gas and oil saturation of
the invaded gas zone is illustrated in Figures 20 and 21, respectively. The gas saturation
levels range from 0 to 0.5, and oil saturation from 0 to 1.

Figure 20. Gas (left) and oil (right) saturation after creating the gas invaded zone in layer 1.
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Figure 21. Gas (left) and oil (right) saturation after creating the gas invaded zone in layer 7.

Comparing both recovery methods by applying them in a reservoir model shows that
the investigated mechanisms take effect again. The WAG injection recovers more of the
southeastern parts of the uppermost layer (Figure 22), whereas significant portions of the
lowest layer are not effectively recovered (Figure 23). This can be explained by the gravity
overriding behavior of the gas. FAWAG, on the other hand, could effectively display more
oil in the lowest layer due to the reduced gas mobility, which drives the gas from the
fractures into the matrix blocks (Figure 22). The reduction of the gas mobility also enables
the gas to display more oil in the centers of the dual-five-spot pattern. Although it could
not contact as much of the southeastern part of the reservoir as the WAG injection method,
given more time, FAWAG could have recovered more hydrocarbons from that area.

Figure 22. Oil saturation after 1 PVI of WAG (left) and FAWAG (right) in layer 1.

Figure 23. Oil saturation after 1 PVI WAG (left) and FAWAG (right) in layer 7.

To put the recoveries into relation, FAWAG produces almost 2.5% more oil after
injecting 1.0 PVI, as shown in Figure 24. Given more time, this difference can become
substantially bigger. This shows that foam-assisted WAG can be an effective alternative for
gas-invaded fractured reservoirs.
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Figure 24. WAG and FAWAG recovery factor—sector model.

The foam-assisted water-alternating gas injection is a viable enhanced oil recovery
method for naturally fractured carbonate reservoirs with a gas-invaded zone. In an ide-
alized pilot model, the additional oil recovery when using FAWAG was 20% (Figure 6).
Applying this method to a sector model based on actual reservoir data shows an increase
of almost 2.5% (Figure 24). Further, the effective delay of the gas breakthrough is noticeable
(Figure 6). By introducing surfactants to the injection water to produce foam in situ, the gas
mobility is reduced tremendously. The CO2 movement along the fractures makes it visible
that foam suppresses viscous fingering and that the lower portions of the reservoir are
better swept. In addition, a much sharper and more highly saturated gas front is moving
along the cross-section (Figure 8). The movement of foam along the matrix is rare. This is
because foam has the proclivity to occupy space in the fractures and move sluggishly due
to its higher apparent viscosity. This also allows the foam to impose a pressure gradient
between the fractures and the matrix [28]. Thus, the injected gas is diverted into the matrix
blocks.

The fracture network properties also significantly affect the recovery when using
FAWAG. Oil recovery is most strongly influenced by fracture permeability (Figure 13). The
sweep efficiency increases substantially, improving the recovery rate in the early stages of
injection (Figure 14). The ultimate oil recovery seems to differ only by a slight margin.

9. Conclusions

In this work, the performance of gas-based EOR methods, such as WAG and FAWAG
methods, were studied for a carbonated fractured reservoir based on core flooding data.
The FAWAG process led to higher recovery than WAG in the gas-invaded zone based on the
rock and fluid properties of the studied reservoir. FAWAG gas mobility reduction was more
pronounced than WAG, where the gas front was much sharper in the FAWAG process, and
gravity override by the gas was reduced. The sweep efficiency was, thus, greatly enhanced,
leading to higher oil recovery. The fracture network properties also had a significant effect
on the recovery. Evidently, oil recovery was most sensitive to fracture permeability. The
sweep efficiency increased substantially, improving the recovery rate in the early injection
stages; however, the ultimate oil recovery differed slightly. A lower fracture permeability
facilitated the entry of gas into the matrix blocks.

Fracture permeability variation significantly impacted the recovery in the early stages
of the FAWAG process. Fracture spacing contributed to oil recovery in a very different
way. A tighter spacing allowed for more gravity drainage and better sweep in the early
injection stages. Although there was an increase in oil recovery, the ultimate recovery
was reduced with reduced fracture spacing, suggesting that the effect of gravity drainage
eventually stops, and the matrix blocks are no longer invaded efficiently. A bigger fracture
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block height improves sweep efficiency by forcing more gas into the matrix blocks. This
can be explained by the gas not having enough “highways” (horizontal fracture channels)
connecting the injector and producer.

The reservoir sector model displayed similar results to the core and pilot. However,
the key difference was that the performance was different due to the heterogeneity of the
matrix and the fracture network. The WAG injection recovered more of the southeastern
parts of the uppermost layer, whereas significant portions of the lowest layer were not
effectively recovered. In contrast, FAWAG was more effective in the lowest layer of the
reservoir.

The application of FAWAG as a late-stage recovery method in naturally fractured
carbonate reservoirs featuring a bulky gas-invaded zone is a viable method for improving
recovery. The mobility-decreasing quality of foam improves sweep efficiency and allows
the gas to enter the matrix blocks more efficiently. This strategy can greatly enhance the
recovery of fields with little oil saturation left compared to using pure water and CO2 alone.
Therefore, the addition of surfactant to water is worth considering.
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Nomenclature

WAG Water-alternating gas (injection)
FAWAG Foam-assisted water-alternating gas (injection)
EOR Enhanced oil recovery
NFR Naturally fractured reservoir
GAGD Gas-assisted gravity drainage
OW/MW Oil-wet/medium-wet
WW Water-wet
IFT Interfacial tension
BT Breakthrough
CCE Constant composition expansion
DL Differential liberation
PVT Pressure-volume-temperature
PVI Pore volume injected
GOC Gas-Oil-Contact
WOC Water-oil-contact
SCAL Special core analysis
K Permeability
Φ Porosity
FZI Flow zone indicator
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