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Abstract: Given the spatial structures and functional requirements, there are a number of different
types of obstacles in long and narrow confined spaces that will cause a premixed gas explosion
to produce greater overpressure and influence the flame behavior for different obstacles. Because
the volume fraction of unburned gas changes with the changing height of the U-type obstacles,
we can further study the influence on the volume fraction of the unburned premixed gas for the
characteristics of the overpressure and the flame behaviors in the closed tube with the obstacles. The
results show that after the premixed gas is successfully ignited in the pipe, the overpressure in the
pipe greatly increases as the unburned premixed gas burns between the adjacent plates. Moreover,
the increase of the overpressure in the closed duct becomes faster when the decrease of unburned
gas becomes faster. The high-pressure areas between the plates move inversely compared with the
direction of flame propagation when the height of the U-type increases, whereas the high pressure in
the front of the flame moves further when the flame propagation passes all obstacles. In addition,
the reversed flow structure of the flame is a coupling result for the overpressure caused by the flame
propagation and the vortex between the plates. From the perspective of production safety, this study
is a significant basic subject about the characteristics of overpressure and flame behaviors in a closed
tube with obstacles.

Keywords: premixed methane-air; U-type obstacles; overpressure; the reverse flow

1. Introduction

In the field of petroleum and chemicals, premixed methane–air causes a number of
explosion accidents. Premixed gas results in extremely destructive explosions. After the
flow field is disturbed by the obstacles, it causes the flow field to change from deflagration
to detonation [1–4] if the premixed methane–air explodes in the closed space with obstacles,
and the destructive explosion might be aggravated again. Therefore, from the perspective
of production safety, this study is of great significance for preventing premixed methane–air
explosions in a closed space with obstacles disturbance.

These obstacles, with different geometries, positions [5,6], blocking probability [7,8]
and numbers of obstacles [9], all have different effects on the combustion and explosion
of premixed gas. The research on this problem was mostly carried out through experi-
ments [10,11] or simulations [12,13]. Patel et al. [14] built a platform of closed pipe with
three flat obstacles and found the pressure of premixed methane–air drastically increased.
Meanwhile, Xu et al. [15] suggested there were four development stages for the pressure,
and Wang et al. [16] also found in the premixed gasoline and air explosion experiments
that the progress of the pressure not only included four stages but further showed that the
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progress had nothing to do with combusted materials. Further, Wen et al. [17] reached a
similar conclusion about the pressure by changing the number and location of three plates
based on Patel’s experiment, and the times of the maximal pressure value were nearly equal
for different operating conditions. In addition, Shiryanpour et al. [18] verified Patel’s exper-
iment by simulation and suggested that the block shape obstacles also caused high pressure
in a simulation experiment. Gubba et al. [19] found that the flame propagation could be
influenced by the number of obstacles and its blocking rate and low pressure areas could
appear [12] around the next plates, whereas its blocking rate decreased during the experi-
ment of combining the block shape with plates. In addition, Na’inna et al. [20] suggested
that it can cause higher pressure for appropriate blocking rate and separation distance of
obstacles. After experimentation, Li et al. [21] suggested these obstacles could have a great
influence on the explosion overpressure and the flame propagation based on the different
shapes of trapezoid, circle, square and rectangle. Sheng et al. [22] and Yu et al. [23] found
that compared with other geometric barrier plates, triangular barrier plates produced the
largest overpressure and had the strongest influence on flame turbulence, which should be
related to the sphericity coefficient of obstacles [24]. Xiao et al. [25] proposed that obstacles
with tips would promote the generation of flow instability and produce more intense flame
propagation behavior. Meanwhile, Li et al. also suggested cylindrical obstacles [26] or
continuous round hole plates [27] had a similar influence for increasing pressure. If the
shapes of obstacles were more complex, Qin et al. [28] suggested these obstacles can make
overpressure more intense; in particular, plate obstacles with re-entrant had a significant
influence on the overpressure. Li et al. [29] suggested that the overpressure explosion
might stimulate the flame propagation and accelerate the flame propagation again, but the
vortex caused by the obstacles can make the flame propagation unsteady [4]. The explosion
overpressure, however, can also cause the flame to oscillate [30]. Luo et al. [31] found by
conducting a numerical simulation that that flame front tip instability was related to the
length of the obstacle, and the longer the obstacle, the faster the explosive overpressure
and flame propagation speed in the tube. Meanwhile, Qin et al. [32] also believed that
Rayleigh–Taylor (R–T) instability always accompanied and affected flame propagation in
the process of combustion and explosion, whereas Kelvin–Helmholtz (K–H) instability had
a greater impact on the flame front surface. Baroclinic torque is formed by the interaction
between density gradient and pressure gradient.

The flame might appear the reverse flow in the deflagration. Chen et al. [33] found
that there was a structure of reverse flow induced by the blocking obstacles in the flow field
of premixed methane–air combustion during the experiment. In addition, Wang et al. [8]
also showed that the flow field of premixed hydrogen and air also appeared as a unique
structure in the experiment. Meanwhile, Chen et al. [34] suggested that the plate gaps also
could stimulate the reverse flow, which showed that the blocking obstacles were similar to
the plate gaps. That is to say, under the disturbance of obstacles in the deflagration, the
structure of the flow field and the characters of the overpressure were influenced by the
obstacles after explosion.

Many studies mainly focused on the numbers and shapes of the obstacles but didn’t
take the characteristics of the overpressure and the flame behaviors for the volume fraction
of the unburned premixed methane–air in the closed duct into consideration. The unburned
volume fraction might be a significant factor in causing their change around the pressure
and the flame surface; during the pressure-increasing stage, the flame has not yet been
released from the closed pipe. With the same blocking rate, U-type obstacles were different
from plates in the spatial structure. The combustion total of the unburned premixed gas
can be changed by changing the height of the U-type that could not make unburned
premixed gas instantly combust; so U-type might influence the flow structure and the flame
propagation characteristics during the explosion.

This paper aims to investigate whether the characteristics of the overpressure and the
flame behaviors in a closed tube are related to the volume fraction of unburned premixed
gas with U-type obstacles. We firstly verified the effectiveness of the numerical simula-
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tion by reviewing the literature [35] and then carried out numerical simulation to study
the subject.

2. Materials and Methods
2.1. Physical Model and Mesh

In this paper, the experimental model of Wen et al. [35] was mainly used. As shown in
Figure 1a, there were three obstacles with dimensions of 75 mm × 10 mm × 150 mm in a
square pipe of 150 mm × 500 mm × 150 mm, and the distance between each obstacle was
100 mm. Before the explosion, stoichiometric premixed methane–air was contained in the
pipe and the top and bottom of the pipe were closed, and the top was covered with a thin
PVC membrane to prevent the leakage of premixed methane-air. An ignition device was
set at the center of the bottom of the pipe, and a pressure sensor was set 40 mm next to the
ignition source to monitor the change of pressure.
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Figure 1. Physical model and mesh model of the experiment.

As Figure 1b shows, a mesh model was used in the simulation of the experiment. To
meet the calculation requirements, as the Table 1 shows, the fluid area was divided into
structured hexahedral grids with a uniform cell size by the ANSYS ICEM.

Table 1. The details of grids.

Parameter Value

Cell size 3 mm 4 mm 5 mm
The total of hexahedral grids 415,950 183,198 91,740

The total of nodes 439,824 197,028 100,564
Angle 90◦ 90◦ 90◦

Aspect ratio 1.0~1.2 1.0~1.18 1.0~1.5
Quality 1 1 1

2.2. Combustion Model

The premixed combustible with the non-adiabatic model was used to calculate the
combustion. To solve the problem that the initial flame thickness [36] was thin in the
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premixed combustible, the Zimont combustion model [37] made the flame front surface
thicker. The equation of turbulent flame speed was as follows:

Ut = A∗
(
µ′∆

)4/3S1/2
L X

−1/4L1/4
∆ , (1)

where, Ut is the turbulent flame speed, A∗ is a model constant and is equal to 0.5, SL is the
laminar flame speed, µ′∆ is the sub-grid velocity, X is the unburnt thermal diffusivity and
L∆ is the turbulence length scale.

The coupled equations of pressure and velocity were solved by the SIMPLE algorithm,
where the under-relaxation factors ranged from 0.7 to 0.9.

2.3. Boundary Conditions and Initial Conditions

The vertical, bottom faces and obstacles of the closed pipe were set to adiabatic and
non-slip wall because the ignited premixed methane–air was in contact with those surfaces
for a very short time. In order to decrease the influence on the reflection of the pressure
wave during the calculation, the top surface of the closed duct was set as the pressure outlet
with non-reflection, without considering the influence of the thin PVC membrane for the
pressure in pipe. The boundary condition can be seen in Table 2.

Table 2. Boundary condition and influence.

Boundary Momentum Thermal Species Note

outlet 0.0 Pa 300 K 0 Non-Reflection
Wall No Slip 0 W/m2 - Adiabatic

2.4. Numerical Details

Before calculation, the initial temperature and pressure were 300 K and 0 Pa, respec-
tively. In addition, those parameters were set to zero for the velocity components, energy
and reaction progress variables. A hemisphere with a radius of 5 mm [18,38] was patched
in the center of the bottom of the tube as the ignition point, and the reaction progress
variable of the patched part was set to 1 to simulate ignition.

Stoichiometric, premixed methane–air was considered as an ideal gas, where the
specific heat was approximated by a piecewise polynomial fitting related to temperature;
its viscosity was calculated using Sutherland’s law and the laminar flame velocity was re-
garded as a constant value, 0.36 m/s [7]. The heat of combustion was set to 55,643,750 J/kg,
and the unburnt fuel mass fraction was set to 0.055. The details of the premixed gas are
shown the Table 3.

Table 3. Detailed computational conditions.

Parameters Value Parameters Value

Heat of Combustion (J/kg) 55,643,750 Specific Heat (J/kg·K) Piecewise Polynomial
Laminar Flame Speed (m/s) 0.36 Viscosity (kg/m·s) Sutherland’ law
Unburnt Fuel Mass Fraction 0.055 Initial patch radius (mm) 5

In order to ensure the convergence of the calculation results, the time step size was
set to 1 × 10−6, and 40 iterations were required in each time step. Except for the energy
equation and the progress variable equation, whose convergence criteria were lower than
1 × 10−6 and 1 × 10−3, respectively, all other equations were lower than 2 × 10−5.

2.5. Numerical Verification

The experiment of (Wen et al.) aims to investigate the deflagration characteristics
of the premixed methane–air in the closed tube with the obstacle plates in the different
positions. The simulated results of the LES model in the paper are reliable according to the
comparison with the experimental results of Wen et al. As Figure 2a shows, the premixed



Energies 2022, 15, 4909 5 of 12

gas was successfully ignited in the experiment during the 5 ms period [35]. The flame
propagated in the pipe formed the shape of a hemisphere [39] and fingertip before 25 ms
had elapsed. At the 25 ms mark, the flame front surface connected with the first obstacle
plate, and the flame shape became symmetrical horns on each side of the plates. The shape
of flame propagation was a symmetrical antler in the closed duct until the flame rushed out
of the pipe. Comparing the simulated progress of flame combustion with the experiment,
as Figure 2b shows, the simulation results of the flame propagation progress might be
similar to the experiment when the flame structure of the experiment is regarded as the
comparison standard. In addition, the flame structure that was simulated also not did not
contact the tube shell during the flame propagation.
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According to the overpressure comparison curves from the Figure 3, the overpressure
curves of LES were similar to the experiment with meshes of three different cell sizes
before the peak value of the pressure. The decrease speed of the simulated pressure was
slower than the experiment because the walls were set to be adiabatic and non-slip, so
the high temperature could not shed heat from the closed tube after the peak value of the
pressure [40]. There was a small pressure peak that might relate to the rupture process of
the PVC membrane at the opening of the tube [4], such as the Pv in Figure 3. However, the
simulated pressure did not appear as the small peak value because the PVC membrane
wasn’t considered during the simulation process. From 40 ms to 48 ms, the burned and
unburned premixed gas rushed out the tube with the rupture of the PVC membrane; there
was negative pressure in the tube. The air outside the tube was drawn into the tube because
of the pressure difference, so the unburned premixed gas inside the tube was burned again,
which created a small pressure peak, such as the PH in Figure 3. With the disappearance
of the premixed gas in the tube, the pressure of the content of the tube gradually drops
to 0. The process of numerical simulation was simplified by covering the PVC membrane
at the outlet; therefore, there was not such a small pressure peak and it slowly returned
to zero [8].
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Figure 3. The comparison of the overpressure and the frame front position between the simulation
with three meshes and the experiment from the ref. [35].

The simulated results of the flame front position, as Figure 3 shows, were also lower
than the results of the experiment, but the changing tendency of the pressure curves
was similar to the experiment. However, only the cell size of 4 mm was more accurate
than others. To save computer resources, the cell size of 4 mm might be considered for
other cases.

3. Results and Discussion

As Figure 4 shows, the obstacles of the experiment from the reference [35] have been re-
constructed as U-types with three different heights (20 mm, 35 mm and 50 mm, respectively)
without changing their blocking rates.
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3.1. The Flame Structure

The flame structure of premixed gas during flame propagation is shown in Figure 5.
The flame structure was gradually changed from the shape of a hemisphere to a fingertip
to the symmetrical horns to the symmetrical antler in the closed duct with four U-type
obstacles. At 26 ms, the front top of flame made contact with the surface of the first obstacle.
At 30 ms, with the height of the U-type obstacles increasing, the flame propagation can
not bend to the space between the adjacent plates and its propagation continued to extend
along each side of the plates. This is because the flame propagation was obstructed by
the U-type obstacles, which prevented the premixed methane–air between the plates from
combusting. At 33 ms and 35 ms, the unburned premixed methane–air began gradually
to burn when the flame propagation passed the second and third obstacles. The volume
fraction of unburned premixed gas, however, slowly decreased between the adjacent plates
because the flame propagation was obstructed by the increasing height of the U-type
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obstacles. At 37.5 ms, the spreading flame gradually advanced to the opening of the duct,
but the volume fraction of burned premixed gas of the U-50 obstacle was less than that of
the other U-type obstacles because of the restriction of those obstacles.
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3.2. The Relation of the Flame Propagation, Velocity and Pressure

During the progress of flame propagation, the change of pressure and velocity in the
field are shown in Figure 6. In order to study the coupling function of overpressure, velocity
and flame front position, the fluid structure at 30 ms, 33 ms and 35.5 ms were regarded
as research subjects. With high pressure in the field, the burned, premixed methane–air
around the four obstacles formed vortexes behind the plates and created high pressure
around the vortexes, as the annotated areas show, which related to the unburned premixed
gas compassed in the flame front areas when the burned gas rapidly moved toward the
opening of the duct.
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Some unique structures of reverse flow were formed between the adjacent plates
because of the influence on the vortex and high-pressure areas when the flame front
position passed the obstacles, which was the result of the coupling function of the vortex
and high pressure. However, these structures gradually decreased and even faded away
with the increasing height of the U-type plates, as shown at 35 ms in Figure 5. When the
height increased, the areas influenced by high pressure and the pressure values decreased
with the decreased height at the same time because the influence of unburned premixed
gas was gradually decreased, such as in the annotated areas at 30 ms and 33 ms. The
flame of reverse flow continually burned those unburned premixed gases and caused those
unburned gases to be compressed and combusted. Therefore, the created high-pressure
areas could move toward the reverse direction of the flame propagation, as the annotated
rectangles at 33 ms and 35 ms in the U-20 show. However, the phenomenon of moving high
pressure didn’t appear in U-20, which related to the height of the U-type. This is because
the flame in the U-0 plates bent to the space between two plates and the unburned premixed
gases were also combusted by the flame front tip. Those spaces with high pressure can not
create the pressure gradient, and the high-pressure areas cannot move toward the back.
When the flame surface entirely passed all plates, the high-pressure field of the flame front
position moved toward the opening of the closed tube with the increase of height of the
U-type plates, such as in those annotated areas at 35.5 ms.
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3.3. The Relation of the Unburned Premixed Gas and Pressure

Based on the analysis of the pressure, the velocity field and the flame shown in Figure 6,
the overpressure is related to the volume fraction of unburned premixed methane–air in
the closed tube. The change of overpressure and the volume fraction of unburned gas
are shown in Figure 7. After ignition, the volume fraction of the unburned premixed
gas rapidly decreased because the flame front position with different height continually
went forward towards the opening of the duct, but the explosion overpressure, similarly,
increased rapidly. The overpressure curves included four stages [16], and the peak value of
pressure values appeared after the flame rushed out of the closed tube [41]. The time that
the peak value of pressure appeared in U-20, U-35 and U-50 was later than that in U-0.
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Before the flame front surface made contact with the obstacles, the volume fraction of
unburned premixed gas gradually decreased, and the burned premixed gas also displayed
relatively lower overpressure. It turned out that the pressure in the tube firstly can con-
siderably increase because unburned gas was compressed and combusted and its volume
fraction began to rapidly decrease when the flame front position was between the first and
second plates, from 26 ms to 32 ms in Figure 7. With the flame propagating continually, the
unburned premixed gas between the first and second plates burned further, and the gas
began to burn when the flame passed the space between the second and third plates, which
caused the overpressure in the closed duct to increase, from 32 ms to 35 ms in Figure 7.
Until the flame entirely rushed out of the tube, the pressure in the closed tube increased
for the last time and the volume fraction of unburned premixed gas still rapidly decreased
after 35 ms, as shown in Figure 7.

The maximum overpressure growth rate (max(dp/dt)) appeared in this stage as the
black marks in the overpressure curves. As for U-0, the amount of the volume fraction
of unburned gas of U-0 decreased, mostly because the volume fraction might decrease
slowly with the increasing height, which caused a huge increase in the overpressure of
the U-type. Similarly, the overpressure of U-50 could be a small increase, as its volume of
fraction decreased was minor.

After 35 ms, as Figure 5 shows, when the flame has entirely passed all types of
obstacles, the unburned premixed gas of the flame front tip became less and less, but there
was a surplus of unburned gas, which caused the unburned gas to be combusted by the
burned flame of reverse flow, and the pressure in the tube continually increased. The
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overpressure gradually began to decrease and became atmosphere in the tube because
unburned gas can not ensure continual combustion when the flame rushes out of the
opening of tube.

4. Conclusions

For the U-type obstacle plates with a spatial structure that is different from that of
the plates, the characteristics of the overpressure and flame behavior during the discharg-
ing process are closely related to the volume fraction of unburned premixed gas in the
closed tube. Moreover, the importance of the analysis is that it can illuminate the special
mechanism of combustion and explosion and thereby greatly decrease oil and gas deflagra-
tion accidents caused by obstacle disturbance. The potential significance of the research
results is that it can greatly provide scientific guidance for the investigation of oil and gas
deflagration accidents. According to the study, the following conclusions can be drawn:

(1) In the process of combustion and explosion, the flame front surface that has been
burned cannot access the gap between the adjacent plates in time after increasing
the height of U-type obstacles, which causes the unburned premixed gas between
the adjacent plates to not be burned in time. Furthermore, it also makes the burning
premixed gas volume fraction in the whole tube decrease and eventually leads to an
explosion overpressure value lower than that in the complete combustion.

(2) The faster the volume fraction of unburned premixed gas decreases in the process of
discharging explosion, the faster the explosion overpressure rises, and the maximum
overpressure growth rate also appears in the period that the flame front tip completely
breaks out of the tube.

(3) After increasing the height of the U-type obstacles, the moving direction of the high-
pressure areas between the plates is opposite to that of the flame, whereas the high
pressure areas in front of the flame moves in the same direction as the flame when the
flame propagation passes all obstacles.

(4) The reverse flow structure of flame between the plates is the result of the coupling
between the high-pressure areas induced by the combustion of unburned premixed
gas and the vortex structure.
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