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Abstract: In this paper, the role of the accumulated surface charge on the surfaces of nanoparticles
on breakdown strength for liquid and solid dielectrics is presented. The breakdown strengths of
a nanofilled liquid dielectric and a solid dielectric are evaluated. The evaluation was conducted
considering different nanoparticle material types with different nanofiller loadings. Accordingly, the
preparation of transformer oil nanofluid and silicone rubber nanocomposites was performed with
different nanofillers of the same average particle size. Breakdown voltage was measured for all the
prepared samples, both liquid and solid. The interpretation of the obtained results is presented.
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dielectric constant

1. Introduction

Recently, the use of nanotechnology to improve the dielectric properties of liquid and
solid insulating materials has increased. The increase in using nanotechnology to improve
the dielectric properties of electrical insulation (liquid or solid) is due to the promising
properties achieved by the addition of small amounts of nanoparticles. Hence, the addi-
tion of semi-conductive nanoparticles to transformer oil results in increased breakdown
strength [1–5], as well as improved thermal properties [5–7]. Adding magnetic nanopar-
ticles to transformer oil was also found to increase the breakdown strength of liquid
dielectrics [8,9]. Regarding solid dielectrics, nanofillers can also increase their breakdown
strength. This was validated with epoxy [10–18], silicone rubber [16,19], ethylene propy-
lene diene monomer rubber (EPDM) [16] and cross-linked polyethylene dielectrics [20].
In fact, breakdown strength is one of the most important dielectric properties for both
liquid and solid insulation. Therefore, it is very important to know the role of nanoparticles
in improving the breakdown strength for these types of insulation (liquid and solid). In
other words, a full understanding of the breakdown mechanisms for nanofluids and solid
nanocomposites is required.

Regarding breakdown mechanisms, researchers attribute the increase in the break-
down strength of nanofluids to different reasons. Moisture binding resulting from the
hydrophilic nature of nanoparticles [21] is one such reason. The hydrophilic nature of
nanoparticles decreases the spread of moisture through the insulating liquid due to binding.
Therefore, adding nanoparticles to insulating liquids increases its breakdown strength.
Charge trapping is another reason that leads to the improved breakdown strength of
nanofluids: this occurs as a result of the free electrons being trapped in oil [22]. The trap-
ping process decreases the energy of free charges due to the ionization process, which leads
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to an increased breakdown strength in the nanofluid. Electric field distortion also has a
vital role in the percentage increase in nanofilled-oil breakdown strength, as demonstrated
in [23]. It was found that the increase in nanofiller content distorts the electric field that
leads to a decrease in breakdown strength when it is increased beyond the optimal loading.
On the other hand, breakdown strength of solid nanocomposites is mainly improved due
to charge trapping that leads to the reduced energy of free electrons which share in the
breakdown process, as introduced in [24–27].

According to [3,28], increasing the dielectric constant of nanoparticles results in a
higher percentage increase in the breakdown strength of transformer oil nanofluids. How-
ever, the increase in the dielectric constant of nanoparticles results in a lower percentage
increase in the breakdown strength of polymer nanocomposites [26]. In fact, this effect
needs to be further discussed taking into account both liquid and solid insulation and
also the effect of the nanofiller dielectric constant on the accumulated nanoparticle surface
charge. Therefore, the main objective of this paper is to highlight the effect of the nanoparti-
cle dielectric constant on breakdown strength for both liquid and solid insulation, while
taking the mechanism of nanoparticle surface charge accumulation into consideration.

In this paper, the effect of accumulated nanoparticle surface charges and their role
in the breakdown process of nanofluids and solid nanocomposites are presented. As the
nanoparticle dielectric constant has a very close relation with the formation of surface
charges on its surface, the effect of the nanofiller dielectric constant on the breakdown
strength of liquid and solid insulation is introduced. This effect was studied in transformer
oil as it is a commonly used liquid insulation. Silicone rubber was chosen as a solid insula-
tion due to its widespread use in electric power equipment. The preparation of transformer
oil nanofluid and silicone rubber nanocomposite samples was undertaken with nanofillers
with different dielectric constants at different concentrations. The breakdown strength
for all the prepared samples, either liquid or solid, was measured and evaluated. The
evaluation was conducted based on average breakdown strength, as well as on breakdown
at 10% and 50% probabilities. The obtained results are interpreted and a statement in
terms of the effect of the nanoparticle dielectric constant is given. Finally, this paper makes
important recommendations about the selection roles of nanofiller material types for liquid
and solid insulation.

2. Sample Preparation and Characterization

In this section, the preparation of samples of transformer oil nanofluids and silicone
rubber nanocomposites is presented. The nanofillers used in the present study were
spherically shaped (SiO2, ZrO2 and TiO2), such fillers having a particle size of 20–30 nm.
Characterization of the prepared silicon rubber nanocomposite samples was performed
using field scanning electron microscopy (FESEM) to examine nanoparticle dispersion
inside the prepared samples.

2.1. Sample Preparation

The transformer oil nanofluid samples were prepared using highly purified trans-
former oil (Diala B). The addition of each specified type of nanoparticle to transformer oil
was carried out at different concentrations. These concentrations were 0.02, 0.08, 0.14, 0.2
and 0.25 g/L for each nanomaterial. The prepared mixture was stirred in a magnetic stirrer
(Model MSH-20D) for 20 min. Next, ultrasonic waves were applied to the mixture using an
ultrasonic homogenizer (Model UP400S) for a further 20 min. The prepared samples were
degassed in a vacuum chamber for 24 h to prevent the formation of air bubbles during the
preparation process and their effect on the breakdown strength results.

On the other hand, preparation procedures for the silicone rubber nanocomposite
samples were performed using 10 g liquid silicone rubber mixed homogenously with 10 g
of its hardener. Ethyl Methyl Ketone (2-butanone) solvent (with a purity greater than 99%,
supplied by ReAgent) was added to the mixture to reduce its viscosity. A quantity of
nanoparticles of the same specified types was then added to the mixture and stirred for
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10 min (the same stirrer as that used for the transformer oil). In order to achieve a good
dispersion of nanoparticles, the mixture was subjected to ultrasonic waves for 30 min (using
the same ultrasonic homogenizer used in the transformer oil preparation). The mixture
was left in a vacuum chamber at room temperature for 20 days to dry. Again, the vacuum
chamber was used to prevent the formation of air bubbles in the prepared samples. These
procedures were repeated for all the adopted concentration levels, i.e., 0.1, 0.5, 1 and 2%wt.

2.2. Sample Characterization

The nanomaterials used were purchased from US Research nanomaterials, Inc. The
purity of these materials was greater than 99.5%. The nanoparticle sizes were confirmed
through transmission electron microscope (TEM) characterization; see Figure 1, which is
provided in the supplied material datasheet [29]. In addition, the dispersion of nanofillers
in the prepared silicone rubber samples was examined using a JEOL field emission scanning
electron microscope (FESEM). SEM images with a 0.5%wt concentration for the adopted
nanofillers are shown in Figure 2. A good dispersion of nanoparticles in the silicone rubber
nanocomposites samples can be observed for the adopted nanomaterials; however, some
agglomerations are observed.
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3. Breakdown Strength Measurements

A breakdown voltage test was performed on the transformer oil nanofluid samples
at room temperature (20 ± 5 ◦C) using a liquid dielectric test set according to ASTM
D1816 standard. A schematic diagram of the experimental setup is shown in Figure 3. The
breakdown voltage test was carried out using 500 mL of each prepared oil sample (at each
concentration) using the standard test cell, also shown in Figure 3. The test cell used in
the test had two mushroom-shaped (VDE) electrodes with a 2 mm spacing between them,
complying with the adopted standard. During the test, the rate of voltage rise was kept
constant at 500 V/s and the frequency of the applied voltage was 50 Hz. Each sample
was tested 10 times using the same sample, with a 2 min time interval between each two
consecutive breakdowns. The average breakdown strength and breakdown strength at
10% and 50% probabilities were estimated according to Weibull’s statistical technique. An
evaluation of breakdown strength based on 10% probability was conducted as it gives an
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indication about oil reliability, while the breakdown strength at 50% probability gives the
average value using a statistical technique.
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Figure 3. Experimental setup for breakdown strength of transformer oil samples.

The breakdown strength for silicone rubber samples was measured at room temper-
ature (20 ± 5 ◦C) using the same test-cell configuration and the same rate of voltage rise.
The schematic diagram of the test setup is shown in Figure 4. During the measurement of
breakdown strength, the silicone rubber sample was inserted between the two electrodes
through the liquid insulation (transformer oil) to prevent the occurrence of surface flashover.
Each sample was tested 10 times (using a new specimen for each breakdown voltage test);
average breakdown strength, as well as breakdown strength at 10% and 50% probabilities,
was calculated using Weibull’s statistical technique.
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4. Experimental Results

In this section, the breakdown strengths of nanofilled transformer oil and silicone
rubber nanocomposites are evaluated. The evaluation was carried out taking into account
the effects of the nanoparticle dielectric constant and nanofiller concentration. The effect
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of the dielectric constant of nanofillers was studied using the three previously specified
nanomaterials, which have different dielectric constants. These materials were SiO2 (dielec-
tric constant = 4.3), ZrO2 (dielectric constant = 70) and TiO2 (dielectric constant = 100). The
evaluation was based on the average value of breakdown strength, as well as breakdown
strength at 10% and 50% probabilities.

4.1. Breakdown Strength of Transformer Oil Samples

In this section, the breakdown strengths of nanofilled and pure transformer oil were
evaluated in terms of average value and breakdown strength at 10% and 50% probabil-
ities. Figure 5 shows the effect of the nanoparticle filler concentration level, as well as
the nanoparticle dielectric constant on the average value of breakdown strength. The
figure shows that as the nanofiller concentration level increases, the average breakdown
strength increases up to an optimal concentration level; the average breakdown strength
then decreases. The same behavior is observed for the three adopted nanomaterials. More-
over, the nanoparticle material type (nanomaterial dielectric constant) affects the optimal
concentration level. The maximum percentage increase in breakdown strength is about
46% and was obtained by adding 0.14 g/L SiO2 (dielectric constant = 4.3). However, adding
ZrO2 (dielectric constant = 70) to transformer oil at 0.08 g/L increases the maximum percentage
increase in breakdown strength to 72.8%. In the case of adding TiO2 (dielectric constant = 100)
to transformer oil at 0.2 g/L, the maximum percentage increase in breakdown strength
increases to 84%. Therefore, the increase in the dielectric constant of nanoparticles results
in a higher percentage increase in breakdown strength of transformer oil nanofluids.
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Figure 5. Average breakdown strength of transformer oil. 
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Figure 6 shows Weibull’s probability curves for the breakdown strength of transformer
oil containing TiO2, which gives the maximum percentage increase. It demonstrates that,
by increasing the TiO2 concentration level, the breakdown strength increases at all prob-
abilities. Figures 7 and 8 show the effect of concentration level, as well as nanoparticle
material types, on the breakdown strength at 10% and 50% probabilities. These figures
demonstrate that the breakdown strength at 10% and 50% probabilities increases by increas-
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ing the nanoparticle concentration level up to its optimal value, after which it decreases.
Furthermore, the nanoparticle material type (dielectric constant) affects the breakdown
strength of transformer oil. It can be seen that adding TiO2 to transformer oil gives a
maximum percentage increase in breakdown strength at 10% and 50% probabilities com-
pared with the other two particle material types. This, therefore, validates the increase in
the nanoparticle dielectric constant giving a higher increase in the breakdown strength of
transformer oil nanofluids.
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4.2. Breakdown Strength of Silicone Rubber Samples

In this section, the breakdown strength of silicone rubber nanocomposites is evaluated.
This evaluation was carried out using the same adopted nanoparticle material types,
SiO2, ZrO2 and TiO2, which were used with transformer oil, as previously mentioned.
Figure 9 shows the effect of nanofiller types (dielectric constants) and filler loading on the
breakdown strength of silicone rubber. It was found that the average breakdown strength
increases with the increase in filler concentration to a certain level and then decreases
by increasing the filler concentration. In addition, the nanoparticle dielectric constant
significantly affects the breakdown strength of silicone rubber. The results demonstrate that
the maximum percentage increase in average breakdown strength by adding SiO2 (dielectric
constant = 4.3) is about 30% at a filler concentration level of 1%wt. However, by adding ZrO2
(dielectric constant = 70), the maximum percentage increase reaches 19.6% at the same filler
concentration level. The maximum percentage increase in average breakdown strength is
16.5% with the addition of TiO2 (dielectric constant = 100) at the same filler loading of 1%wt.
Therefore, the nanofiller dielectric constant significantly affects the breakdown strength of
solid nanocomposites. The increase in the nanoparticle dielectric constant results in a lower
percentage increase in the breakdown strength of silicone rubber nanocomposites.

Figure 10 shows Weibull’s probability curves for breakdown strength of silicone
rubber nanocomposite samples containing SiO2, which produces the maximum percentage
increase. The results show that adding SiO2 to silicone rubber increases the breakdown
strength at all probabilities. Figures 11 and 12 show the effect of nanoparticle material types
(dielectric constant) on the breakdown strength of silicone rubber, considering 10% and
50% probabilities. It can be seen that the maximum increase in the breakdown strength at
10% and 50% probabilities is obtained by adding SiO2 to silicone rubber compared with the
other two nanofiller material types (ZrO2 and TiO2). This provides another verification of
a higher dielectric constant of nanoparticle producing a lower percentage increase in the
breakdown strength of solid nanocomposites.
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As previously mentioned, the nanoparticle dielectric constant affects the average
breakdown strength of both transformer oil nanofluids and silicone rubber nanocomposites.
The effect of the dielectric constant on the maximum percentage increase in the average
breakdown strength of transformer oil nanofluids and silicone rubber nanocomposites is
summarized in Figure 13 and Table 1. From this figure, it can be seen that the increase in
nanoparticle dielectric constant results in a higher percentage increase in average break-
down strength of transformer oil nanofluids. In contrast, the increase in nanoparticle
dielectric constant results in a lower percentage increase in the breakdown strength of
silicone rubber nanocomposites. Therefore, the role of nanoparticle dielectric constants in
improving breakdown strength in transformer oil nanofluids (liquid insulation) is signifi-
cantly different compared with its role in silicone rubber nanocomposites (solid insulation).
The interpretation of this point is discussed further in the next section.
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Table 1. Maximum breakdown strength and maximum percentage increase for transformer oil and
silicone rubber.

Nanofiller Maximum BS Maximum Percentage Increase

Transformer Oil Silicone Rubber Transformer Oil Silicone Rubber

SiO2 13.87 kV/mm 18.85 kV/mm 46% 30%
ZrO2 16.42 kV/mm 17.34 kV/mm 72.8% 19.6%
TiO2 17.48 kV/mm 16.89 kV/mm 84% 16.5%

5. Discussion and Interpretations

Looking at the obtained breakdown results, the increase in nanofiller concentra-
tion level results in an increase in the breakdown strength for both nanofluids and solid
nanocomposites until the optimum concentration. However, a reduction in breakdown
strength occurs after the optimal concentration level in both nanofluids and solid nanocom-
posites. This reduction is due to agglomeration and electric field distortion, as reported
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in [9]. This is because when an external electric field is applied to a nanofluid, the elec-
tric field is increased at the nanoparticle/liquid interface. This behavior was validated
through the calculation of the electric field distribution, using finite element analysis (FEM).
Accordingly, a nanoparticle having a particle size of 10 nm was simulated as a spherical
particle. The nanoparticle was simulated as being immersed in a dielectric liquid with a
dielectric constant of 2.3, as shown schematically in Figure 14. An external electric field of
10 kV/mm was applied between the electrodes. The nanoparticle dielectric constant was
taken to be 4.3, 70 and 100. The presence of the nanoparticle in the dielectric fluid increased
the electric field intensity at the nanoparticle/liquid interface, as shown in Figure 15. The
electric field at the interface increased with the increase in nanoparticle dielectric constant,
as proven from the electric field calculation. This increase in electric field intensity results
in the charge trapping of free charges resulting from ionization processes in the dielectric
liquid. The increase in the dielectric constant of nanofillers, therefore, results in more
improvement in the breakdown strength of nanofluids. However, when the nanoparticle
traps the free charges, a distortion in the electric field occurs. The degree of distortion
depends on the number of trapped charges. This was validated by using the simulated
system in Figure 16, using FEM with a nanoparticle with a dielectric constant of 100. Mixed
surface charges (positive and negative with a surface charge density of 10−5 C/m2) were
also simulated for two cases, as shown in Figure 16. The first case (Case I) had an angle θ = 60◦,
whereas the second case (Case II) had an angle θ = 30◦. The presence of surface charges on
the nanoparticle surface resulted in a distorted electric field, as shown in Figure 17. This
figure (Figure 17) illustrates that the increase in nanoparticle surface charges results in
more electric field distortion. With the increase in the nanofiller concentration level, the
number of nanoparticles increases. Therefore, the space charges increase, causing a severe
electric field distortion. The severe electric field distortion can cause partial discharges at
the nanoparticle/liquid interface that leads to breakdown at lower voltages. Furthermore,
with the increase in nanofiller concentration level, the distance between the nanoparticles
decreases. This can cause agglomerations due to the Coulomb’s forces between them. These
agglomerations result in lower charge trapping due to the lower resultant surface area, as
the increase in particle size reduces its surface area per unit volume. Therefore, because
of the agglomerations, the total surface area is reduced with the same filler loading. This
effect reduces the capability of charge trapping, which in turns reduces the breakdown
strength of nanofluids.

It was also found that the increase in the nanofiller dielectric constant results in a
higher percentage increase in the breakdown strength of the nanofluid. However, a lower
percentage increase was found to occur when using solid nanocomposites, as previously
described in Figure 13. This behavior requires further discussion to achieve a deeper
understanding of the role of nanofillers in improving the breakdown strength for both
liquid and solid dielectrics. According to the published literature, the increase in break-
down strength considering nanofluids is a result of moisture binding [21] and the charge
trapping process [22]. Moisture binding results from the hydrophilic nature of nanopar-
ticles that reduces the spread of moisture in the fluid, leading, in turn, to an increase in
breakdown strength. However, charge trapping reduces the spread of free charges in
the fluid; therefore, increased breakdown strength is achieved. On the other hand, the
increase in breakdown strength in solid nanocomposites mainly results from the charge
trapping process, as reported in the published literature [24–27]. Researchers, therefore,
attribute the improvement in breakdown strength of both liquid and solid dielectrics to the
charge-trapping action of nanoparticles. From the obtained results, the percentage increase
in breakdown strength increases with the increase in the dielectric constant of nanofillers
with liquid dielectrics; however, it decreased with the increase in the nanofiller dielectric
constant with solid dielectrics. In our opinion, this behavior is achieved due to the effect of
the nanofiller dielectric constant on the formation of surface charges of nanoparticles, as
illustrated in the following subsections.
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Figure 14. Simulated nanoparticle in liquid dielectric.
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Figure 17. Electric field distortion considering accumulation of surface charges on nanoparticle
surface (Nanoparticle material dielectric constant = 100).

5.1. Surface Charge Formation on Nanoparticle Surface

When an external electric field is applied to a nanodielectric, either liquid or solid,
electric charges on the nanoparticle surface start to accumulate on the surface, as mentioned
above. This results from the effect of the polarization of nanoparticle that makes the
negative charges in the nanoparticle accumulate on the side facing the positive electrode.
However, the positive charges in the nanoparticle accumulate on the opposite particle side,
i.e., the side facing the negative electrode. As the external electric field is applied to the
dielectric, whether liquid or solid, nanoparticles start to trap free electrons or the positive
ions resulting from the ionization process of the dielectric (liquid or solid). The trapping
process turns the nanoparticle into a completely negatively or positively charged particle
depending on its dielectric constant. Hence, nanoparticles with low dielectric constants
become negatively charged; however, nanoparticles with a high dielectric constant become
positively charged. This behavior was previously illustrated in [4]. Nanoparticles having
high dielectric constants are, therefore, attracted to the negative electrode when a high DC
voltage is applied to nanofluids. However, nanoparticles having low dielectric constants are
attracted to the negative electrode when the nanofluids are exposed to a high DC voltage.
This means that:

• Charges accumulate on nanoparticle surfaces when exposed to an external electric field.
• Charged nanoparticles can move within the fluid due to the effect of an external

electric field.
• However, nanoparticles cannot move within a solid dielectric due to the nature of

bonding between the particle and the solid material matrix.

Therefore, the difference between nanofluids and solid nanocomposites is the presence
of nanoparticle motion in nanofluids; however, the nanoparticle is stationary in solid
nanocomposites, as illustrated schematically in Figure 18.
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5.2. The Role of the Nanofiller Dielectric Constant in Improving Breakdown Strength of Liquid and
Solid Dielectrics

As mentioned earlier, surface charges accumulate on nanoparticles surfaces when the
nanodielectric, whether liquid or solid, is exposed to an external electric field. The accu-
mulation of surface charges, called trapping, is the major reason behind the improvement
in breakdown strength of both liquid and solid dielectrics. Hence, the charge-trapping
process reduces the energy of free charges generated by ionization, which leads to a higher
breakdown strength. The increase in the dielectric constant of nanofillers results in a higher
increase in the breakdown strength of nanofluids. As the increase in the nanofiller dielectric
constant results in more surface charges on the nanoparticle surface, this latter increase
in surface charge results in a higher attraction force with the electrodes. This results in a
higher nanoparticle speed and, therefore, a greater reduction in the kinematic energy, as
well as the momentum, of free charges in liquid dielectrics. This leads to a higher nanofluid
breakdown strength with the increase in nanoparticle dielectric constant. However, the
increase in the nanoparticle dielectric constant leads to higher electric field strength at the
nanoparticle/solid interface due to the formed surface charges on nanoparticle surface.
This increase in electric field strength allows local discharges at the nanoparticle/solid inter-
face and, therefore, a lower percentage improvement in its breakdown strength. This means
that using nanoparticles with high dielectric constants is recommended with nanofluids
in order to obtain higher percentage increases in their breakdown strength. However,
nanoparticles with lower dielectric constants are recommended with solid nanocomposites
to increase their breakdown strength.

6. Conclusions

The role of the nanoparticle dielectric constant on the surface charge of nanoparticles
and the breakdown strength of nanofluids and solid nanocomposites were studied. The
study was conducted by preparing nanofluid and silicone rubber nanocomposite samples
at different nanofiller concentration levels, using three types of nanoparticle materials. The
breakdown strength of all prepared samples, both liquid and solid, was measured and the
following conclusions can be drawn:

• As the nanofiller concentration increases, the average breakdown strength increases
above pure dielectric up to a maximum value and then decreases at higher concentra-
tions for both nanofluids and silicone rubber nanocomposites.

• The percentage increase in breakdown strength increases with the increase in the
dielectric constant of nanofillers with liquid dielectrics; however, it decreases with the
increase in the nanofillers dielectric constant with solid dielectrics.

• The increase in the nanofiller dielectric constant results in an increase in the accumu-
lated charges on a nanoparticle surface.
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• It is recommended that nanoparticles with higher dielectric constants be used to
increase the breakdown strength of nanofluids. However, lower nanoparticle dielectric
constants are preferred to increase the breakdown strength of solid nanocomposites.
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