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Abstract: An accurate prediction of the remaining useful life (RUL) of a proton exchange membrane
fuel cell (PEMFC) is of great significance for its large-scale commercialization and life extension.
This paper aims to develop a PEMFC degradation prediction method that incorporates short-term
and long-term predictions. In the short-term prediction, a long short-term memory (LSTM) neural
network is combined with a Gaussian process regression (GPR) probabilistic model to form a hybrid
LSTM-GPR model with a deep structure. The model not only can accurately forecast the nonlinear
details of PEMFC degradation but also provide a reliable confidence interval for the prediction
results. The results showed that the proposed LSTM-GPR model outperforms the single models
in both prediction accuracy and confidence interval. For the long-term prediction, a novel RUL
prediction model based on an extended Kalman filter (EKF) and GPR is proposed. The GPR model is
used to solve the problem that the EKF cannot update the model parameters in the prediction stage.
The results showed that the proposed EKF-GPR model can achieve better RUL prediction than the
model-based approach and the data-driven approach.

Keywords: proton exchange membrane fuel cell; remaining useful life prediction; long short-term
memory (LSTM); Gaussian process regression (GPR); extended Kalman filter (EKF)

1. Introduction

Proton exchange membrane fuel cell (PEMFC) with its merit of high-efficiency and
zero-pollution has been considered one of the most promising alternative energy sources
in the future and is widely deployed in many fields such as electric vehicles, unmanned
aerial vehicles, and portable power supplies [1–3]. However, the lack of durability due
to its material degradation limits its large-scale deployment and commercialization [4–6].
Accurate prediction of the remaining useful life (RUL) can help users take maintenance
measures at the right time to avoid unnecessary failures and reduce equipment down-
time [7]. Depending on the length of the prediction horizon, the degradation prediction can
be classified into short-term and long-term predictions. Short-term prediction focuses on
the local degradation changes, while long-term prediction focuses more on the aging trend.
The existing PEMFC prognostic methods can be divided into three types: model-based
methods, data-driven methods, and hybrid methods.

The model-based method [8–13] predicts the degradation of PEMFC by constructing
physical models such as: mechanistic, empirical, semi-mechanical, or semi-empirical
models [5]. This method does not require a large amount of training data and enables the
intuitive observation of the internal degradation state of the PEMFC through the established
physical model. Jouin et al. [8] proposed a method to predict the RUL of PEMFC based
on a particle filtering framework, and the RUL prediction performances of three empirical
models (linear, logarithmic, and exponential) were tested. Bressel et al. [9] introduced the
extended Kalman filter (EKF) algorithm to RUL estimation and developed a semi-empirical
degradation model derived from the polarization curve. The degradation model contains
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two health state indicators (the limit current and the total resistance). Additionally, the
robustness of both the algorithm and model under different operating conditions was
verified by experiments. Chen et al. [10] developed a fused health indicator consisting of
stack voltage and power and implemented the RUL prediction based on the second-order
Gaussian degradation model with an unscented particle filter. Chen et al. [11] applied
the unscented Kalman filter (UKF) algorithm to the PEMFC degradation prediction and
tested the prediction algorithm performance under real conditions. The results showed that
the UKF method could accurately estimate the degradation trend of the fuel cell. Zhang
et al. [12] proposed a health indicator consisting of stack voltage and stack health state and
implemented RUL prediction by particle filter.

Since the degradation mechanism of fuel cell has not been fully discovered, it is
hard to describe the degradation process accurately with models [14,15]. Data-driven
approaches [16–28], on the contrary, can make predictions without fully understanding the
degradation mechanisms as long as sufficient data are available. Therefore data-driven
approaches have received wide attention [26]. Silva et al. [16] proposed an adaptive neuro-
fuzzy inference system (ANFIS) based on time series. Aiming at the sudden changes in
output voltage, the voltage signal is divided into two parts, the normal output and the
external disturbance. Simulation results showed that ANFIS is suitable for predicting
the degradation trend of the PEMFC but has a large error in short-term prediction. Hua
et al. [17] introduced the echo state network (ESN). In addition to the stack voltage, op-
erating parameters such as stack current, temperature, and the pressure of the reactants
were also considered in the degradation prediction. Zhu et al. [20] developed a prediction
method based on the Gaussian process state space (GPSS) model, and the 95% confidence
interval of the prediction results can be obtained from the variance calculated by the
GPSS model. Zhang et al. [25] developed a long short-term memory (LSTM) network to
implement the short and long-term prognostics of PEMFC. In the short-term prediction,
five multi-step-ahead prediction strategies were compared. In the long-term prediction, a
variable-step strategy was proposed, but it requires short-term prediction for correction.
Wang et al. [26] used a navigation sequence to drive the LSTM network to improve the
prediction performance of LSTM models and overcome the error accumulation in long-
term prediction. However, the data-driven approach also has drawbacks. Its prediction
performance depends significantly on the quantity and quality of data in the training set.
Furthermore, the changes in the internal aging state and parameters of the fuel cell cannot
be observed due to its black-box nature [14].

The hybrid method [14,15,29,30] is a combination of model-based methods and data-
driven methods. Cheng et al. [29] developed a hybrid prediction algorithm based on
the least squares support vector machine (LSSVM) and a regularized particle filter (RPF)
and used the prediction results of LSSVM to solve the problem that RPF cannot update
the model parameters during the prediction process. Pan et al. [14] proposed a hybrid
prognostic method based on an adaptive extended Kalman filter (AEKF) and a nonlinear
autoregressive, with an external input (NARX), neural network. The predicted voltage
consists of two components; AEKF is responsible for predicting the aging trend, while the
recovery and detail information is predicted by NARX. Xie et al. [30] fused the model-based
particle filtering (PF) with the data-driven long and short-term memory network (LSTM).
The method enables both RUL estimation and short-term degradation prediction. In the
short-term prediction, the weighted average of the particle filter and LSTM outputs is used
as the final prediction result. Additionally, in the long-term prediction, the LSTM is used to
update the model parameters.

In summary, for short-term forecasting, the existing research [18,19,21,22,24,25] has
achieved progress in improving the short-term prediction accuracy. However, the confi-
dence degree of the forecasting results was not taken into consideration. Confidence degree
is an important indicator that can improve the reliability of prediction and provide more
information for the health management of PEMFC systems [31]. GPR is a probabilistic
prediction method that can rigorously compute the estimation uncertainty [32,33]. The
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DGP prediction model with depth structure not only has a strong aging feature learning
capability but also can provide confidence intervals [31]. However, the distribution of con-
fidence intervals of the DGP method is far beyond satisfaction when the training samples
are not sufficient. Considering the powerful nonlinear time series prediction ability of
LSTM [26,32], combining the LSTM network and GPR model to form the LSTM-GPR model
with a depth structure is expected to achieve accurate degradation voltage prediction and
reliable confidence interval prediction. For long-term forecasting, model-based approaches,
such as EKF [9], have a lower forecasting accuracy due to the absence of measurement
data as observations during the forecasting process. Hybrid methods [15,29,30] used the
predicted values of data-driven methods as the observation of model-based methods. How-
ever, the measurement noise variance needs to be set empirically and is kept constant
during the prediction phase, which is inconsistent with the actual situation. Combining
the probabilistic prediction method with the EKF, during the prediction phase, the GPR
model is used to provide the observed stack voltage and its variance for the EKF, which is
expected to achieve high-precision RUL predictions.

The remaining parts of this paper are organized as follows. In Section 2, the fuel cell
aging experimental setup and implementation are presented. Section 3 introduces the
design details of the proposed fuel cell degradation prediction method. The experimental
results and discussion for the short- and long-term prediction of PEMFC are presented in
Section 4. Additionally, the conclusion is given in Section 5.

2. Experiment and Dataset Analysis

Our research is grounded on the datasets from the PHM 2014 Challenge and the
FCLAB Research Federation [34].

The experimental platform is as shown in Figure 1. The PEMFC system consists of
five monolithic fuel cells, and each of them has an active area of 100 cm2. The nominal
current density of the stack is 0.70 A/cm2, and its maximum value is 1 A/cm2. In the aging
experiments, the PEMFC stack continued to operate for more than 1000 h at the nominal
current density. In addition, considering the long operating time of the stack and the possi-
bility of failures during the aging experiments, characterization tests (polarization tests and
electrochemical impedance spectroscopy measurements) were carried out approximately
once a week. In order to ensure that the fuel cell worked in a normal condition, operating
conditions parameters, such as fuel cell temperature, cathode and anode pressure, and air
relative humidity were all controlled at appropriate values. At the same time, the voltage,
current, temperature, and other operational data of the stack were measured and recorded
online. In this paper, the output voltage of PEMFC was chosen as the health indicator to be
considered.

Since the raw voltage data contains a lot of noise and spike, the data needed to be
preprocessed. The singular spectrum analysis (SSA) method can well extract the trend,
periodic, and noise signals from the fuel cell voltage [31]. Therefore, the raw data were
denoised by SSA in this paper. The detailed steps of SSA [31] are as follows:

Suppose the raw PEMFC degradation voltage series is Y = [y1, y2 · · · yN ], and L = N/2
is the window length. The L-lagged vectors can be defined as Xi = [yi, yi+1 · · · yi+L−1]. The
trajectory matrix can be obtained:

X =


y1 y2 · · · yN−L+1
y2 y3 · · · yN−L+2
...

...
...

...
yL yL+1 · · · yN

 (1)
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S is the covariance matrix and S = XXT . The singular value decomposition (SVD) is
used to produce the eigenvalue λ1, λ2, · · · λL and eigenvector U1, U2, · · ·UL. Let d = max
{i}(λi > 0), and Vi = XTUi

√
λi(i = 1, 2, · · · , d); the SVD of X can be described as follows:

X =
d

∑
i=1

√
λiUiVT

i (2)

Assuming that a group of indices I =
[
i1, i2 · · · ip

]
, XI is described as XI = Xi1 + Xi2 +

· · ·Xip, the trajectory matrix is X = XI1 + XI2 + · · ·XIm.
Let Z be a L× K matrix, K∗ = max(L, K), L∗ = min(L, K), and set z∗ij = zij(L < K);

else z∗ij = zji. Diagonal averaging transfers matrix Z into a series {z1, z2, · · · , zN} by
Equation (3):

zk =



1
k

k
∑

q=1
z∗q,k−q+1 1 ≤ k ≤ L∗

1
L∗

L∗

∑
q=1

z∗q,k−q+1 L∗ ≤ k ≤ K∗

1
N−K+1

N−K∗+1
∑

q=k−K∗+1
z∗q,k−q+1 K∗ ≤ k ≤ N

(3)
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Figure 1. PEMFC system experimental platform [34].

In addition, since the voltage sequence denoised by SSA still contains more than
140,000 data points, it will take a lot of time to process and calculate. Therefore, the denoised
voltage sequence was resampled at an interval of 1 h, to obtain a reconstructed voltage
sequence containing 1155 data. The preprocessed voltage data are shown in Figure 2.
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3. Methodology
3.1. LSTM Architecture

As a special type of recurrent neural network (RNN), LSTM has the ability to avoid
the long-term dependency. Thus, the ability to remember information for a long time is
inherent in LSTM. The architecture of LSTM is shown in Figure 3. LSTM has two memory
states, the hidden state (ht) and the cell state (Ct). The memory states of LSTM are controlled
by three types of gates, namely the input gate it, the forget gate ft, and the output gate ot.
The expressions of LSTM [21] are as follows.

ft = σ
[
W f ·(Xt, ht−1) + b f

]
(4)

it = σ[Wi·(Xt, ht−1) + bi] (5)

C̃t = tan h[Wc·(Xt, ht−1) + bc] (6)

ot = σ[Wo·(Xt, ht−1) + bo] (7)

Ct = ft
⊙

Ct−1 + it
⊙

C̃t (8)

ht = ot
⊙

tan h(Ct) (9)

where Xt is the input sequence at the current moment, and ht and ht−1 denote the current
and previous outputs of hidden state, respectively. Ct and Ct−1 denote the memory cell
state of the current and previous moment, respectively. W f , Wi, WC, and Wo represent
weights matrixes, and b f , bi, bC, and bo represent the bias vectors. σ represents the sigmoid
function, and tan h is the hyperbolic tangent function.

The fundamental procedure of LSTM is as follows. First, the LSTM determines what
information in the cell state is supposed to be retained or forgotten, which is decided by
the forget gate. Then, the hidden state ht−1 of the last LSTM cell and the current input xt
are taken to determine the information that needs to be stored in the cell state. After the
current cell state is acquired, the hidden state can be calculated by using the cell state and
the current input.
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3.2. Gaussian Process Regression

GPR is a probabilistic prediction algorithm based on statistical learning and Bayesian
theory [35,36]. For a given training dataset D = {(xi, yi)|i = 1, 2, · · · , n} = (X, y), where
xi ∈ Rd is the d dimensional input vector, X = [x1, x2, · · · , xn] is the d× n dimensional
input matrix, yi ∈ R is the corresponding output scalar, and y is the output vector, a simple
regression model can be described as [36]:

y = f (x) + ε (10)

where y is the observation contaminated by additive noise, x is the input vector of the
training set, and f denotes the functional relationship. Suppose ε is a Gaussian distributed
noise with variance of σ2

n , ε ∼ N
(
0, σ2

n
)
. Then, the prior distribution of the observation y

can be derived.
y ∼ N

(
0, K(X, X) + σ2

n In

)
(11)

Based on Bayesian principle, the joint Gaussian distribution of the predicted output
f ∗ and the observation y is obtained.(

y
f ∗

)
∼ N

(
0,
(

K + σ2
n In KT

∗
K∗ k∗∗

))
(12)

where K(X, X) is the kernel function, and In is the n-dimensional identity matrix. The
kernel function K = k(X, X) denotes the symmetric positive definite covariance matrix
for computing the covariance of the training set X itself. Similarly, the covariance of the
test set x∗ itself and the covariance between X and x∗ can be calculated by k∗∗ = k(x∗, x∗)
and K∗ = K(x∗, X) = K(X, x∗)T , respectively. Then, based on the Bayesian framework, the
posterior distribution of the predicted value f ∗ can be obtained.

f ∗|X, y, x∗ ∼ N(µ∗, σ2∗) (13)

µ∗ = K∗(K + σ2
n In)

−1y (14)

σ2∗ = K∗∗ − K∗(K + σ2
n I)−1KT

∗ (15)

where µ∗ is the predicted value of the test set data x∗ calculated by the Gaussian process
regression model, and σ2∗ is the variance corresponding to the predicted value.



Energies 2022, 15, 4844 7 of 17

Then, based on µ∗ and σ2∗, the 95% confidence interval of the predicted value can
be obtained as [µ∗ − 1.96σ2∗, µ∗ + 1.96σ2∗]. In this paper, Matern 5/2 was chosen as the
kernel function, and the expression is as follows.

kM 5
2

(
x, x′

)
= σ2

(
1 +
√

5
|x− x′|

l
+
√

5
|x− x′|2

3l2

)
· exp

(
−
√

5
|x− x′|

l

)
+ σ2

n I (16)

where σ and l are the hyperparameters of the kernel function that can be obtained by
maximizing the likelihood function during the training process.

3.3. Extend Kalman Filter

The semi-empirical degradation model [9] is shown below.

Vst = n
(

E0 − Ri− ATln
(

i
i0

)
− BTln

(
1− i

iL

))
(17)

where Vst is the stack voltage; E0 is the open-circuit voltage; n is the number of cells; R is
the total resistance of the stack; T is the stack temperature; i, i0, and iL are the stack current,
the exchange current, and the limiting current, respectively; and A and B are the Tafel
constant and the concentration constant, respectively. According to [9], R and iL are chosen
as time-varying parameters to depict the degradation phenomenon. In addition, the other
initial parameters of the semi-empirical degradation model were acquired from [14].

R(t) = R(1 + α(t)) (18)

iL(t) = iL(1− α(t)) (19)

α(t) =
∫

β(t)dt (20)

where α denotes the degradation degree of the fuel cell, and β denotes the degradation rate
which can be considered as constant. Thus, the degradation of the fuel cell voltage can be
described as a nonlinear process as shown in Equation (21). Additionally, the observation
equation of the model is shown in Equation (24).{

Xk+1 = AXk + Wk
Yk+1 = g(Xk, Uk) + Vk

(21)

Xk = [αk, βk]
T (22)

A =

[
1 1
0 1

]
(23)

g(Xk, Uk) = n
(

E0 − R0(1 + αk)i− ATln
(

i
i0

)
− BTln

(
1− i

iL0(1− αk)

))
(24)

where Xk is the system aging state; Uk and Yk are the system input and output, respectively;
and Wk and Vk denote the process noise and measurement noise, respectively. The process
of the EKF algorithm [9] is illustrated in Table 1.

Table 1. The process of the EKF.

EKF Algorithm Step Formula

1. Initialization X0|0 = E[x0], P0|0 = E
[(

X0 − X0|0

)(
X0 − X0|0

)T
]

2. Prediction Xk|k−1 = AXk−1|k−1, Pk|k−1 = APk−1|k−1 AT + Q

3. Update
Kk = Pk|k−1 HT

k

(
HkPk|k−1 HT

k + R
)−1

, Hk =
∂g(Xk|k−1 ,Uk)

∂Xk|k−1

Pk|k = (I − Kk Hk)Pk|k−1, Xk|k = Xk|k−1 + Kk

(
Zk − g

(
Xk|k−1, Uk

))
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3.4. The Novel Hybrid Method for PEMFC Prognosis

As mentioned above, in the short-term prognostic, most of the existing research only
focuses on improving prediction accuracy, and the confidence degree of the prediction
results is not considered. For long-term prognostics, the variation in measurement noise
variance is not considered during the prediction phase in some hybrid methods. In this
paper, a short- and long-term prognostic method for PEM fuel cells based on Gaussian
process regression is proposed.

The novel hybrid performance degradation prediction method of PEMFC is shown
in Figure 4, which consists of three main parts: the main flow of the fuel cell degradation
prediction method, the short-term degradation prediction method based on LSTM-GPR,
and the long-term degradation prediction method based on EKF-GPR.
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3.4.1. Short-Term Prediction Based on LSTM-GPR

The short-term prediction algorithm based on LSTM-GPR consists of a training phase
and prediction phrase. During the training phases (TPs), the LSTM is first trained using
the training set D1 = [Xtr, Ytr], where Xtr and Ytr are the input vectors and observations
of the training set, respectively. Second, input the training set Xtr into the trained LSTM
to obtain the prediction result Ỹtr. Then, use the training set D2 =

[
Ỹtr, Ytr

]
to train the

GPR to establish the relationship between the LSTM prediction results and the real voltage.
During the prediction phase, LSTM predicts the next moment voltage based on the current
moment voltage. Then, LSTM prediction results are fed to GPR for the second prediction. In
Figure 4, Vstack, Ṽ′stack, and Ṽstack are the real fuel cell voltage, LSTM predicted voltage, and
GPR predicted voltage, respectively. The training and prediction process of the LSTM-GPR
method is shown in Algorithm 1.
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Algorithm 1: LSTM-GPR Method Algorithm

Split training sets D1 = [Xtr , Ytr ] and testing sets
For j = 1:TP

LSTM training using Xtr and Ytr

Get LSTM network and prediction Ỹtr based on training sets
End
For j = 1:TP

GPR training using Ỹtr and Ytr
Get GPR network

End
For i = TP: length

Ṽ′stack(i + 1) = LSTM(Vstack(i)),
Ṽstack(i + 1) = GPR(Ṽ′stack(i + 1)),

End
Using the Ṽstack as the final prediction

3.4.2. Long-Term Prediction Based on EKF-GPR

The long-term prediction algorithm based on EKF-GPR consists of a training phase
and prediction phrase. During the TPs, the aging parameters are estimated by the EKF,
and the fuel cell output voltage is used to train the GPR. During the prediction phase, the
EKF estimates the stack voltage based on the voltage and variance predicted by the GPR.
The estimation result of the EKF at the current moment is then sent to the GPR for the
next prediction. In Figure 4, V̂′stack and R̂′ are the fuel cell voltage and variance predicted
by GPR, respectively, and V̂stack is the voltage estimated by the EKF. The training and
prediction process of EKF-GPR method is in Algorithm 2.

Algorithm 2: EKF-GPR Method Algorithm

For j = 1:TP
GPR training, EKF estimation
Get V̂stack(i) and GPR network
End
For i = TP: length[

V̂′stack(i + 1), R̂′(i + 1)
]
= GPR

(
V̂stack(i)

)
,

Using V̂′stack(i + 1) as the observation of EKF,
Using R̂′(i + 1) as the measurement noise variance of EKF
Get V̂stack(i + 1)

End
Using the V̂stack as the final prediction

4. Experimental Results and Discussion

For short-term degradation prediction, the performance of the prediction method
can be evaluated by mean absolute error (MAE), mean absolute percentage error (MAPE),
and root mean square error (RMSE). The evaluation criteria of prediction performance of
PEMFC are defined as follows.

MAE =
1
n

n

∑
i=1
|ŷi − yi| (25)

MAPE =
1
n

n

∑
i=1

|ŷi − yi|
|yi|

(26)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (27)

where n is the number of voltage points in the test set, ŷi is the predicted voltage, and yi is
the true stack voltage.
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For long-term degradation prediction, assuming that the prediction starts at time t,
the predicted RUL is defined as the difference between the predicted end-of-life (EOL) time
and the current time [37], as shown in the following equation.

RUL(t) = TEol(t)− t (28)

4.1. Short-Term Prediction Results Based on LSTM-GPR
4.1.1. Performance Comparison of Different Prediction Methods

In order to verify the effectiveness of LSTM-GPR, the proposed hybrid model is
compared with the individual models, namely the LSTM model and the GPR model. It
should be noted that the LSTM model and GPR model are completely consistent with the
corresponding parts in the hybrid model, respectively.

In the comparison experiments, all models are trained with the first 450 h of voltage
data, and the employed training datasets are the voltage data that has been SSA denoised
and resampled. In addition, each method makes predictions based on the voltage data one
hour before the target moment. The single-step prediction results of the three methods are
illustrated in Figure 5, and the prediction performance comparison is shown in Table 2.
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Table 2. Comparison of the prediction results of the proposed method with individual model
methods.

Method RMSE MAE MAPE

GPR 0.0072 0.0058 0.0018
LSTM 0.0066 0.0053 0.0016

LSTM-GPR 0.0049 0.0036 0.0011

It can be seen from Figure 5a,b that all three methods can track the target voltage very
well. The LSTM-GPR prediction model has a higher prediction accuracy than the other
two models. As is seen in Table 2, all indicators of LSTM-GPR are better than the other
two models. This is due to the deep structure formed by the combination of LSTM and
GPR in the hybrid model, which has a stronger learning ability and can more accurately
characterize the nonlinear details and the degradation trend of PEMFC.

By comparing Figure 5c,d, it can be seen that as the prediction time goes on, the voltage
predicted by the GPR model will gradually deviate from the true voltage. Although the
95% confidence interval provided by the GPR model can cover most of the target voltage
values, it will gradually increase with the prediction time, showing a divergence trend.
Owing to the high-precision prediction of the LSTM network and the second prediction of
the GPR, the predicted voltage curve of the LSTM-GPR model can better track the actual
voltage curve, and the confidence interval can not only cover most of the target voltage but
also has a more reliable distribution.

4.1.2. Performance Evaluation of LSTM-GPR with Different Sizes of Training Samples

The size of the training data has a significant impact on the performance of the
degradation prediction model. The model is trained using the first 550 h, 650 h, 750 h, and
850 h aging voltage data as training data, respectively, to investigate the effect of the size of
the training data in this section. The prediction results are illustrated in Figure 6. As can
be seen, the size of the training data affects not only the prediction performance but also
the distribution of the confidence interval. When the LSTM-GPR model is trained with
more data, the prediction accuracy will be improved, and the distribution of its confidence
interval will be more reliable.

In order to verify the robustness of the LSTM-GPR method in PEMFC performance
degradation prediction, the LSTM-GPR model is compared with DGP [31], which also
has a deep structure at different TPs. The results are presented in Table 3; it can be seen
that compared with DGP, LSTM-GPR has a higher accuracy at TPs of 450 h, 550 h, and
650 h. When TP is 750 h, both LSTM-GPR and DGP achieve a relatively high accuracy.
Furthermore LSTM-GPR is less affected by the size of the training data.

Table 3. Comparison of the prediction results of the proposed method with the DGP method at
different training phases.

Evaluation
Criteria Method 450 h 550 h 650 h 750 h

RMSE
DGP [31] 0.0070 0.0057 0.0047 0.0045

LSTM-GPR 0.0049 0.0048 0.0046 0.0046

MAE
DGP [31] 0.0055 0.0043 0.0031 0.0030

LSTM-GPR 0.0036 0.0034 0.0030 0.0030

Based on the above analysis, it can be concluded that the proposed LSTM-GPR short-
term degradation prediction model possesses advanced prediction performance and better
robustness. Additionally, the method can not only predict the degradation details of
PEMFC accurately but also provide reliable confidence intervals for the prediction results.
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4.2. Long-Term Prediction Results Based on EKF-GPR

To verify the effectiveness of the EKF-GPR model in the long-term aging prediction of
PEMFC, the model was trained using the first 600 h voltage data. According to [25], the
voltage threshold of end-of-life was set to 3.5% of the initial voltage (Vinit = 3.345 V) of the
fuel cell. Then its actual initial RUL is 792 h. The prognostics results of EKF-GPR at TP of
600 h are displayed in Figure 7. From Figure 7a, it can be seen that EKF-GPR can predict the
degradation trend of fuel cell voltage very well. Additionally, the predicted RUL value is in
good agreement with the actual data. In addition, it can be seen from Figure 7b that during
the prediction stage, the measurement noise variance predicted by EKF-GPR is a divergent
trend with the prediction time. It is because the prediction error will accumulate when there
is no measured voltage data for model parameters updating during the prediction phase,
resulting in the increase of the measurement noise variance. The experimental results show
that the EKF-GPR method can achieve effectively RUL prediction.

To test the accuracy and generality of the proposed method in RUL prediction, the
proposed method is compared with EKF and GPR. The voltage prediction results of the
three methods at different TPs (including 500 h, 550 h, 600 h, 650 h, 700 h, and 750 h) are
depicted in Figure 8.
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As is shown in Figure 8, the prediction results of GPR model show a nonlinear trend
but are far from the actual voltage data. Since there is no actual measurement data to
update the model parameters, the prediction results of EKF show a linear trend. Therefore,
the voltage degradation rate predicted by EKF is almost constant. It should be noted that
the RUL prediction results of EKF at a TP greater than 600 h are more consistent with the
actual RUL than that at a TP less than 600 h. It is because the prediction of EKF is based on
the model parameters identified in the last step of TP, and its prediction performance is
greatly affected by the status of the starting point. However, the EKF-GPR can predict the
degradation trend very well at different TPs, thanks to its hybrid structure. The core idea
of the EKF-GPR method is to use the predicted voltage of GPR as the observation of EKF
and the predicted variance of GPR as the measurement noise variance of EKF. In addition,
the input to GPR is the voltage filtered by EKF. Since GPR has good nonlinear prediction
performance in the short term and can give reliable uncertainty, although the long-term
prediction result of EKF is poor, it can also be improved by the prediction result of GPR.

Since the RUL prediction results of GPR are not available in most cases, this paper only
presents the RUL prediction results of EKF and EKF-GPR methods, as shown in Figure 9.
To obtain satisfactory results, the estimated RUL should be within the bounds ±10% of
the true RUL. It can be seen from Figure 9 that most of the RULs estimated based on the
EKF-GPR method are within the bounds ±10% of the actual RULs, and the prediction
fluctuations are comparatively small. In contrast, the EKF method cannot guarantee the
prediction accuracy at different TPs. Most of the estimated RULs of EKF are out of the
bounds and fluctuate largely. The comparison results show that the proposed EKF-GPR
method can achieve a more accurate RUL prediction.
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5. Conclusions

In this paper, a hybrid prognostic method is proposed to achieve short-term and long-
term degradation predictions of PEMFC under stable operating conditions. The results
showed that in the short-term prediction, the proposed LSTM-GPR method can extract
depth degradation features from PEMFC degradation data due to its depth structure. This
method effectively improves the short-term prediction accuracy and confidence interval
reliability. Specifically, compared with the individual models (LSTM and GPR), the LSTM-
GPR method could improve RMSE, MAE, and MAPE by at least 25.8%, 32.1%, and 38.9%,
respectively. In comparison with DGP [31], which also has a deep structure, the average
RMSE and MAE values of the LSTM-GPR method are reduced by nearly 13.7% and 18.2%,
respectively. In the long-term prediction, the proposed EKF-GPR method has a higher
accuracy compared with the EKF method and GPR method. Most of the RULs estimated by
the EKF-GPR method are within the bounds ±10% of the actual RULs. However, the GPR
method cannot obtain RUL prediction results in most cases, and the EKF method cannot
guarantee the accuracy at different TPs. In summary, the proposed hybrid degradation
prediction method has perfect performance in both short-term and long-term prognostics.

Nevertheless, there are also limitations in this study. Neither the short-term nor long-
term prediction method takes into account variable load conditions. The adaptability of
this method under complex operating conditions remains an issue. In addition, the PEMFC
degradation mechanism has not been fully discovered, and how to construct an accurate
PEMFC degradation model requires further research.
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