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Abstract: The increased penetration of renewables in power distribution networks has motivated
significant interest in local energy systems. One of the main goals of local energy markets is to promote
the participation of small consumers in energy transactions. Such transactions in local energy markets
can be modeled as a bi-level optimization problem in which players (e.g., consumers, prosumers, or
producers) at the upper level try to maximize their profits, whereas a market mechanism at the lower
level maximizes the energy transacted. However, the strategic bidding in local energy markets is a
complex NP-hard problem, due to its inherently nonlinear and discontinued characteristics. Thus,
this article proposes the application of a hybridized Cross Entropy Covariance Matrix Adaptation
Evolution Strategy (CE-CMAES) to tackle such a complex bi-level problem. The proposed CE-
CMAES uses cross entropy for global exploration of search space and covariance matrix adaptation
evolution strategy for local exploitation. The CE-CMAES prevents premature convergence while
efficiently exploring the search space, thanks to its adaptive step-size mechanism. The performance
of the algorithm is tested through simulation in a practical distribution system with renewable
energy penetration. The comparative analysis shows that CE-CMAES achieves superior results
concerning overall cost, mean fitness, and Ranking Index (i.e., a metric used in the competition for
evaluation) compared with state-of-the-art algorithms. Wilcoxon Signed-Rank Statistical test is also
applied, demonstrating that CE-CMAES results are statistically different and superior from the other
tested algorithms.

Keywords: bi-level problem; covariance matrix; Cross-Entropy Method; local energy market;
optimal bidding

1. Introduction

Smart grid technologies open the possibility of a large penetration of distributed
renewable energy sources, posing several challenges for utilities and operators [1]. In this
paradigm, local energy markets (LEMs) enable small agents to trade energy at the local
level and contribute to the reduction of environmental pollutants [2]. Thus, LEMs empower
end-users, incentivizing their organization in energy communities and the implementation
of fully transactive energy systems [3]. In fact, prosumers with low production capability
were unable to participate in electricity markets, due to legislative restrictions. LEMs
respond to this issue by facilitating a platform for prosumers, consumers and producers, to
actively participate in energy trading activities [4]. The energy transactions in LEMs can be
modeled as a bi-level optimization problem in which all agents strive to maximize their
profits by optimizing their bidding strategies.

The bidding optimization problem in local electricity markets is a problem that can be
tackled under different perspectives and solved by different approaches. For instance, the
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participation of players in LEMs is typically formulated as a bi-level optimization problem
and, despite taking different assumptions, modifications, and hybridizations of algorithms,
finding optimal and near-optimal solutions to the problem remains a major challenge in
the field.

Thus, it is important to develop a robust optimization method, which can provide near
optimal solutions solving this complex problem. Therefore, this work proposes the use of a
new hybrid Cross Entropy Covariance Matrix Adaptation Evolution Strategy (CE-CMAES)
to address a complicated bi-level bidding optimization issue in the environment of LEMs.
The main contributions of this work are as follows:

• An efficient computational intelligence method to solve an inherently non-linear and
complex bidding optimization problem in LEMs.

• The problem is modeled as a multi-period bi-level optimization problem in which
competitive agents at the upper level strive to maximize their profits (i.e., a multi-
leader problem). The agent bids/offers modify the market clearing price response
determined at the lower-level problem (i.e., a single-follower problem), resulting in a
strong interdependence of their decisions.

• A detailed description of the first ranked winner optimization algorithm entitled “CE-
CMAES”. The algorithm achieved the best performance in solving the testbed “bi-level
optimization of end-users’ bidding strategies in local energy markets” at the interna-
tional competition “Evolutionary Computation in Uncertain Environments: A Smart
Grid Application” held at the Genetic and Evolutionary Computation Conference
(GECCO 2020) and IEEE world Congress on Computational Intelligence (WCCI 2020).

• The effectiveness of the proposed algorithm was tested in a case study considering a
power system distribution network with renewable energy sources. Also, a compara-
tive analysis was performed showing that CE-CMAES achieves better profits for all
the agents compared with different state-of-the-art algorithms.

The remaining article is organized as follows. After the introduction in Section 1,
Section 2 presents a literature review of related works. The formulation of the bi-level opti-
mization problem is discussed in Section 3. Section 4 discusses the CE-CMAES algorithm
in detail. In Section 5, comparative analysis of the proposed method against state-of-the-art
algorithms is carried out in a practical case study considering a distribution system. Finally,
Section 6 outlines the main conclusions and future research work.

2. Literature Review

Bidding in LEMs is a problem that has been addressed considering different perspec-
tives and utilizing a wide variety of solution methods. For instance, ref. [5] proposed a
bi-level optimization problem to optimize offering prices of energy producers. The problem
was later converted into a mixed integer linear programming (ILP) problem, but demand
side bidding was ignored and not optimized. An optimal bidding strategy of transactive
agents, dividing the formulation into two sub-problems to reduce number of variables, was
proposed in [6]. Nonlinear constraints were replaced by linear inequalities to reduce the
computational burden, but the effect of renewables was ignored in the problem formulation.
A similar bi-level framework was used in [7] to optimize the charge and discharge power
of a battery storage system at the upper level, and the Active-Reactive optimal power flow
at the lower level. Similarly, the Active-Reactive reserve power flow optimization and
balancing of energy curtailment in the presence of wind energy in 41 bus electricity markets
was explored in [8,9].

Authors of [10] proposed a two-stage robust model to optimize the bidding in day-
ahead and real time markets, considering a virtual power plant environment. The opti-
mization problem was formulated using a linear programming (LP) model, simplifying
the problem up to a level in which the quality of solutions was compromised. In [11] a
hybrid optimal bidding strategy for a microgrid in a day-ahead market under the influence
of intermittent distributed generation and price responsive loads was proposed. Stochastic
models were used for the day-ahead market price and uncertain output of intermittent DG,
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while MILP was used to limit power imbalance, considering the uncertainty of the real
time market price. As expected, the hourly bidding curves obtained by the linear model
were less accurate than the original nonlinear problem. In [12] a robust based bidding and
offering strategy was proposed for a price-maker energy storage facility participating in
a day-ahead market. In [13], a unique dual bidding technique for multi-hierarchical P2P
energy trading, that incorporates both intra- and inter-community trade, while accounting
for uncertainties in solar irradiance and temperature, was presented. A bi-level max-min
MILP approach is used to represent the participation strategy and manage the risk of
uncertainty associated with forecasted hourly generation and demand price. The technique
demonstrated significant reduction in costs and increase in profits.

On the other hand, some authors have explored the use of metaheuristics to solve
bi-level problems in LEMs. An example of such applications can be found in [14], where
Particle Swarm Optimization (PSO) is used to solve a bi-level problem in which biddings of
power producers are optimized at upper level considering monthly contracts and balancing
markets. The work used a standard PSO, showing poor local exploitation search ability and,
thus, suffering from premature convergence. The work in [15] also used a standard Genetic
Algorithm (GA) to optimize the bidding price of retailers, considering probability-based
estimation of market prices. The results showed that GA is quite computationally expensive,
affecting the application capabilities of the approach. In [16], an Ant Colony Optimization
(ACO) algorithm was proposed to optimize the biddings of all market participants in an
LEM environment. In [17] a probabilistic approach to find the optimal bidding curve to
be submitted by an aggregator in day-ahead markets was proposed. Readers may refer
also to [17], finding more details about two-tier LEM mechanisms. Finally, optimal day-
ahead bidding strategies were analyzed in [18] from the perspective of multi-agent deep
deterministic policy gradient to approximate the Nash equilibrium.

In a particular line of research, similar to the proposed work, the bi-level optimization
model for bidding in LEM is solved using the vortex search single-solution-based meta-
heuristic algorithm, which takes into account the uncertainties of renewables and demand,
in [19]. The solutions obtained by state-of-the-art evolutionary computation methods solv-
ing the bi-level bidding optimization problem in LEM are statistically compared in [20].
Later on, ref. [21] proposed the use of ACO, HyDE-DF, vortex search (VS), and estimate
distribution algorithm (EDA) to solve a small variation of the problem.

The literature review reveals that the bidding optimization problem of market par-
ticipants is typically formulated as a bi-level optimization problem and, despite having
different assumptions, modifications, and hybridizations of algorithms, finding optimal
and near-optimal solutions to the problem remains a major challenge in the field. Concern-
ing the application of metaheuristics, the no free lunch theorem [22] of optimization also
proves that designing an algorithm that consistently provides effective and robust solu-
tions for all types of complex non-linear problems is not possible. Recently, hybridization
of evolutionary algorithms has attracted attention for solving energy market problems,
due to their ability to handle non-linearity and uncertainty [20,23,24]. Typically, a bi-level
optimization problem is inherently highly nonlinear [25], non-convex, non-differentiable,
discontinued and NP-hard [26]. Also, it is common to have a nonlinear lower-level problem
with multiple optimal solutions, as shown in Figure 1. In addition, upper- and lower-level
problems are mutually dependent.

The following sections introduce the optimization model and the developed evolu-
tionary algorithm CE-CMAES, to later evaluate its performance under a realistic case study.
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Figure 1. Graphical Representation of a bi-level Optimization Problem.

3. Optimization Problem Formulation

A day-ahead LEM bidding optimization problem is proposed in [27], in which agents
submit offers and bids to maximize their profits and minimize their costs, respectively.
Three types of agents are considered in the LEM, namely prosumers (consumers with power
generation capabilities), small producers and consumers. Also, all agents have access to
the main grid, which works as a back-up power system. We assume that all agents can
trade energy in the LEM with prices between the feed-in tariff

(
cF) and the grid electricity

tariff
(
cG). Also, it is assumed that cF < cG, and, therefore, direct energy transactions with

the main grid, are less beneficial than between agents in the LEM. The transmission and
distribution levels are not considered in this formulation under the assumption that agents
trade energy between limits imposed by a DSO [28]. Therefore, voltage violation problems
have not been considered in this work. We acknowledge that voltage violation problems
for low-voltage networks can play an important role in future energy markets. Therefore, it
will be considered in future work. Figure 2 shows the LEM scenario.
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3.1. Bi-Level Optimization Problem Formulation

The LEM bidding optimization problem is modeled as a bi-level optimization problem
in which the upper-level problem corresponds to the maximization of agents’ profits and
the lower-level problem to the maximization of energy transacted in the LEM [27]. Thus,
the solution of the lower-level affects the upper-level by modifying the profits of all agents.

3.1.1. Upper Level Problem

Assume a set of producer agents J =
{

1, 2, . . . , Np
}

and a set of consumer agents
I = {1, 2, . . . , Nc }, where each agent j wants to maximize its profits and each agent i wants
to minimize its costs.

The optimization problem (profit maximization) for the producers can be formulated
as Equation (1):

max. Pj = ∑
i

cp xj,i + cF Esellgrid
j − cmcGj (1)

where Pj is the profit of agent j, cp is the LEM clearing price (equal for buyers and sellers),

xj,i is the energy sold by agent j to agent i, cF is the feed-in tariff, Esellgrid
j is the energy sold

by agent j to grid, and cmcGj is the marginal cost associated to j. cmc is taken as zero for PV
generation. Let, cmc = cmc

CHP
(
Gj
)

be the marginal cost associated to a Combined Heat and
Power (CHP) generator, defined as a monotonically decreasing function [29], as given in
Equation (2):

cmc
CHP

(
Gj
)
=

bCHP

√
Gj

Gj
(2)

where bCHP is a constant cost factor of the CHP generation unit and Gj is the energy
produced by the CHP unit.

On the other hand, the optimization problem (cost minimization) for consumers can
be formulated as Equation (3):

min. Ci = ∑
j

cp xj,i + cG Ebuygrid
j (3)

where Ci is the cost of agent i, xj,i is the energy sold by agent j to agent i in the LEM, cG is

the Grid price, and Ebuygrid
j is the energy bought by agent i from the grid.

3.1.2. Lower Level Problem

The agents’ profits and costs depend on the LEM clearing price, which is determined
in the lower-level problem and depends upon the bidding process. The lower-level problem
is modeled as an asymmetric pool market in which the offers and bids are allocated using a
merit order mechanism to determine the energy supply and demand curves [10]. In other
words, the lower-level problem determines the clearing price (cp) and energy transacted
between the agents. The reader can be referred to [27] for a detailed modeling of the
lower-level problem (market clearing price procedure). After that, a simple deterministic
mechanism is used to determine the amount of energy traded with the grid (i.e., variables
Esellgrid

j and Ebuygrid
j in Equation (1) and Equation (3) respectively.) Producer j determines

the energy sold to the grid, considering its marginal cost cm, as in Equation (4):

Esellgrid
j =

 Pmax,j −∑
i

xj,i i f Pmarginal
j > Pj

O Otherwise

 (4)

where, Pmarginal
j are the profits that agent j could make considering the marginal cost of

producing its maximum capacity and selling the LEM non-traded energy to the grid and Pj
are the regular profits that the agent would make by selling only into the LEM. As a result,
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it is guaranteed that producers only sell energy to the grid if they can actually get some
profits with their remaining capacity. For PV generation, where the marginal production
cost can be considered zero, the agents will always sell their remaining energy to the grid.
Consumer i decides the energy bought from the grid following Equation (5):

Ebuygrid
j = Lmax,i −∑

j
xj,i (5)

where, Ebuygrid
j is the energy bought by consumer i from the grid, Lmax,i is the maximum

demand of consumer i, xj,i is the energy bought by consumer i from producer j in LEM. So,
using Equations (4) and (5), the second terms of Equations (1) and (3) can be found.

3.1.3. Formulation of Objective Function

In Equations (1) and (3), the clearing price is the equilibrium price at which supply and
demand curves intersect. The agents’ profits/costs are influenced by the LEM clearing price
cp, which is determined in the lower-level problem and depends on the bidding process.
The bid of each agent influences the market price, and thus a strong inter-dependency
exists between profits and costs of agents. The aim of the optimization is to maximize the
overall average profits of the power system and to provide optimal solutions that distribute
the earnings among all agents. Thus, the objective function is formulated as Equation (6):

max. ∑
j

( Pj

Np

)
−∑

i

(
Ci
Nc

)
(6)

where,
(

Pj
)

is the profit earned by the producer agent j by selling energy to consumer agent
i and to the grid; (Ci) is the cost of consumer agent i by buying the energy from the agent
j and grid. Thus, Equation (6) reflects the maximization of the overall mean profits. The
profits

(
Pj
)

and costs (Ci) are conflicting objectives, since all agents try to achieve the best
results for themselves.

3.2. Representation of Solutions and Fitness Function

As showed in Equation (6), the bi-level optimization model tries to maximize profit
of all agents by executing optimal bidding of agents in the LEM. Let, K = {1, 2, . . . .. Nk}
be a set including all agents (producers and consumers). The aim is to find the best tuple
(qk, pk)∀k ∈ K representing the quantity of active power and optimal price to bid in the
LEM for each agent. The bidding is done for all t ∈ T optimization periods. T = 24 periods
are considered for the day-ahead market. Thus, the vector of optimization variables

→
x

is represented as
→
x = ([qk,t]∪[pk,t]), where qk,t is the quantity and pk,t is the price that

the kth agent submits to the LEM at time period t. A sign convention is used to define
consumer and producer types. A positive quantity represents a bid (i.e., buying in the
LEM), and a negative quantity represents an offer (i.e., selling in the LEM). Thus, the
action of an agent can be controlled by defining the bounds of variables in which consumer
agents can submit bids in the LEM within the bounds [0, Lmax] (i.e., between 0 and their
maximum consumption limit), while producer agents can submit their offers within the
bounds [−PCmax,0] (i.e., between 0 and their maximum power production capacity). The
minimum and maximum boundary values for prices are in the range

[
cF, cG] and are

the same for all agents. Figure 3 shows the structure of a solution (i.e., a particle in our
algorithm). Such particles are evaluated in the fitness function returning the mean average
profit of all agents, plus the standard deviation, as per Equation (7):

Fitness
(→

x
)
= −mean(Pro f its) + std(Pro f its) (7)

where mean(pro f its) and std(pro f its) are functions that compute the average and standard
deviation of the profits that all agents obtained, considering the bids/offers encoded in
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the particle. The Equation (6) is the objective function to maximize the overall profits,
where Equation (7) is the fitness function, which is the sum of the objective function and
standard deviation. The negative sign in the first term is used to transform the profit
maximization problem into a minimization problem. The less the value in Equation (7),
the better the mean profits achieved by all agents. Equation (7) is optimized using the
proposed CE-CMAES method, which is described in the following section.
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4. CE-CMAES Method

CE-CMAES is a sequential hybridization of Cross Entropy (CE) proposed by Rubin-
stein [30] and CMAES was proposed by Nikolaus Hansen [31]. It has been applied to solve
the dynamic optimal power flow problem in [32]. Both are population-based iterative
metaheuristic optimization methods, like Particle Swarm Optimization [33] or Differential
Evolution [34]. However, unlike conventional metaheuristics, which directly act upon
prospective solutions (particles) to obtain optimal ones, these methods generate “distribu-
tion” of prospective solutions updating the parameters of the distribution to obtain the
optimal solutions. The CE method was used for global exploration of the search space in
the initial iterative process (50% of the iterations). CE has a small number of parameters
to be tuned, making it easy to be implemented. The CMAES method was used for local
exploitation of search space for the remaining 50% iterations. The update of mean values
in CMAES maximizes the likelihood of successful candidates, whereas the update of the
Covariance matrix increases the likelihood of successful steps towards optimal solutions.
Furthermore, the evolution path provides a unique adaptive step size, which prevents its
premature convergence and, thus, enhances its local exploitation capability. The following
section explains the theory behind the CE method.

4.1. Cross Entropy (CE) Method

The bids of all agents are optimized to minimize Equation (7). Firstly, a set of particles
are randomly generated, which obey the probability distribution function (pdf) f (.; θ),
where θ is the vector of parameters to be optimized. Generally, f (.; θ) is a Gaussian
distribution parameterized by its mean m and variance σ2, i.e., θ =

(
m, σ2). Secondly, a

threshold value (δ) of the fitness function is selected and only those particles, whose fitness
values are less than the threshold value, are considered, i.e., f (x) < δ. Such particles are
known as “elite particles” (µ). Then, the new parameterized distribution function f (.; θn)
with elite particles is updated to coincide with the target distribution function f (.; θ∗) by
minimizing Kullback-Leibler divergence. This procedure completes one iteration. In the
subsequent generations, a family of distribution functions f

(
.; θ(1)

)
. . . f (.; θ∗) are produced

according with δ(1) . . . δ(∗) to closely reach the optimal distribution function f (.; θ∗). The
following section shows the step-by-step procedure of CE-CMAES.
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Step: 1 Initialization of mean and standard deviation
Take generation (g) = 0, total no. of generations gmax = 500, number of particles

(NPa), dimension of the problem (D), elite particles (µ)(20%− 50% o f NPa), smoothing
parameters α and β, m(g) ∈ RD is the mean value of the search distribution for each
dimension at generation g, σ(g) ∈ R+ is standard deviation at generation g. xmin and xmax
are the minimum and maximum boundary limits of Dth dimension particle. (i.e., [0, Lmax]
for consumer bid quantities, [−PCmax, 0] for producer offers quantities and

[
cF, cG] for bid

prices). The mean and standard deviation of population are initialized as Equation (8) and
Equation (9), respectively: Equation (9) is used to initialize σ(0).

m(0) =
(xmin + xmax)

2
(8)

σ(0) =
(xmax − xmin)

4
(9)

Step: 2 Generation of population of particles
Generate the population of particles from the sampling distribution N

(
m(g), σ2(g)

)
as

Equation (10):
x(g+1)

i = m(g) + σ(g)randn() f or i = 1, . . . .., NPa (10)

where NPa is the total number of particles (Population Size), x(g+1)
i ∈ RD is the ith particle

obtained at generation (g + 1), m(g) ∈ RD is the mean value of the search distribution for
each dimension at generation g, σ(g) ∈ R+ is Step-size (Standard Deviation) at generation
g, randn() is a normally distributed random variable with parameters N(0, 1).

Step: 3 Adjustment of search distribution limit violations
The maximum and minimum boundary limits of all particles are checked and set as

Equation (11):
x(g+1)

i = x(g+1)
i , i f xmin < x(g+1)

i < xmax

x(g+1)
i = xmin, i f x(g+1)

i ≤ xmin

x(g+1)
i = xmax, i f x(g+1)

i ≥ xmax

(11)

Step: 4 Execution of lower-level problem
The bids and offers decoded from each particle are used to determine the market

clearing price (cp) through a merit order mechanism. This mechanism results in the energy
transacted between the agents using Equations (4) and (5).

Step: 5 Execution of Upper-Level Problem
Calculate the profit/cost of all agents using Equations (1) and (3).
Step: 6 Fitness Function Evaluations and ranking
The fitness of all particles is evaluated with Equation (7) which calculates the mean

average profit of all agents and its standard deviation. Sort (rank) all fitness values in
ascending order as given in Equation (12).

f (x1) < f (x2) < . . . < f (NPa) (12)

where, f (xi) is the fitness of ith particle, x1 is a Global Best (GBest) particle having the
minimum fitness among all particles. We also consider the top best 20% particles as
“elite” particles.

Step: 7 Updating the mean and standard deviation of elite particles
The mean

(
m(g+1)

µ

)
of the selected elite particles is found by Equation (13):

m(g+1)
µ =

1
µ

µ

∑
i=1

x(g+1)
i:NPa

(13)



Energies 2022, 15, 4838 9 of 20

where, x(g+1)
i:NPa

is the ith best particle among whole population at (g + 1) iteration. The index

i : NPa denotes the index of the ith rank particle. The standard deviation
(

σ
(g+1)
µ

)
of elite

particles is found by Equation (14):

σ
(g+1)
µ =

√√√√ 1
µ− 1

µ

∑
i=1

(
x(g+1)

i:NPa
−m(g+1)

)2

(14)

Step: 8 Smoothing of mean and standard deviation of population
As elite particles are near to sub-optimal solutions, more smoothing (weightage)

is applied to their mean value as compared to mean of whole population as shown in
Equation (15):

m(g+1) = αm(g+1)
µ + (1− α)m(g+1) (15)

where smoothing parameters α = 0.9, β = 0.1:
Similarly, the standard deviation of elite particles should be modified to a small extent

as they lie in the vicinity of sub-optimal solutions. So, less smoothing is applied to them
than the standard deviation of all particles, which requires more exploration and thus more
smoothing as given in Equation (16).

σ(g+1) = βσ
(g+1)
µ + (1− β)σ(g+1) (16)

Step: 9 Increment of generation count
Set g := g + 1
Go to step #2 and repeat steps 2–9 until 50% of gmax are completed. So, the CE method

is used for global exploration. Subsequently, the CMAES method is applied for local
exploitation, which is discussed in the following section.

4.2. CMAES Method

Step: 10 Initialization of mean of each dimension
Global Best (GBest) particle obtained from the CE method is considered as the mean

value of the corresponding dimension of CMAES, as shown in Equation (17). As a result, the
new search distributions (individuals) will be generated near the sub-optimal solutions. So,
the local exploitation of the search space becomes more effective than with the traditionally
initialized mean value of each dimension.

mg ← Gbest (17)

Step: 11 Sampling and generation of population of particles
The Covariance matrix C is initialized to Identity matrix with size (D ∗ D). A popula-

tion of particles (solutions or individuals) is generated by sampling a multivariate normal
distribution as shown in Equation (18).

x(g+1)
i = m(g) + σ(g)N

(
0, C(g)

)
f or i = 1, . . . .., NPa (18)

where, NPa is the total number of particles (Population Size), x(g+1)
i ∈ RD is the ith particle

obtained at generation (g + 1), m(g) ∈ RD is the mean value of the search distribution for
each dimension at generation g, σ(g) ∈ R+ is Step-size (standard deviation) at generation g,
C(g) ∈ R(D∗D) is the covariance matrix at generation g.

Step: 12 Adjustment of search distribution limit violations
The maximum and minimum boundary limits of all particles are checked and set

according to Equation (11).
Step: 13 Execution of lower-level problem
Particles’ bids and offers are used to determine market clearing price (cp) through merit

order mechanism. Obtain energy transacted between the agents using Equations (4) and (5).
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Step: 14 Execution of upper-level problem
Calculate the profit/cost of all agents using Equations (1) and (3).
Step: 15 Fitness function evaluations and ranking
The fitness of all particles is evaluated by using Equation (7) which calculates the

profits/costs of all agents and the standard deviation between the profits/costs of agents.
Sort (rank) all fitness values in ascending order and find GBest and top 50% elite particles
(µ) which have better fitness than the remaining 50% particles.

CMAES is an iterative method in which m(g+1), C(g+1) and σ(g+1) are updated in every
generation to obtain better solutions.

Step:16 Updating the mean
(

m(g+1)
)

The updated mean of the search distribution is a weighted average of selected µ elite
particles from the whole population according to Equation (19).

m(g+1) =
µ

∑
i=1

wix
(g+1)
i:NPa

m(g+1) =
µ

∑
i=1

wix
(g+1)
i:NPa

w1 ≥ w2 ≥ . . . .. ≥ wµ > 0

(19)

where, x(g+1)
i:NPa

is the ith best particle among the whole population at (g + 1) generation. The
index i : NPa denotes the index of the ith rank particle. w1 is the weight applied to GBest
particle. As a higher weight is applied to GBest particle, the new individuals will be pulled
towards it. The update of mean values maximizes the likelihood of successful candidates.

Step:17 Updating the covariance matrix
(

C(g+1)
)

A covariance matrix represents pairwise dependencies between the decision variables,
and it determines the shape of the distribution ellipsoid. It is updated such that the
likelihood of good points with better fitness and search steps is increased. A covariance
matrix for the next generation is produced from the current covariance matrix as per
Equation (20).

C(g+1) =
(
1− Cµ∑ wi

)
C(g) + Cµ

NPa

∑
i=1

wiy
(g+1)
i:NPa

y(g+1)T

i:NPa
(20)

where, Cµ is a learning rate for updating the covariance matrix, 0 ≤ Cµ ≤ 1.
If Cµ = 0: No learning takes place, if Cµ = 1: No prior information is retained

w1 ≥ . . . ≥ wµ > 0 ≥ wµ+1 ≥ wNPa
µ

∑
i=1

wi = 1

NPa
∑

i=1
wi ≈ 0

y(g+1)
i:NPa

=

(
x(g+1)

i:NPa
−m(g)

)
σ(g)

(21)

Here, y(g+1)
i:NPa

is the part of rank µ update of covariance matrix. Then, y(g+1)
i:NPa

is updated
by taking the sum of consecutive steps of distributed mean m as per Equation (21).

The learning rate for updating the covariance matrix is decided by the following
Equation (22).

Cµ = min
(

µe f f

D2 , 1− c1

)
(22)

µe f f =

(
µ

∑
i=1

w2
i

)−1

(23)
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where, µe f f is the variance effective selection mass for the mean obtained from the Equation (23).
c1 ≤ 1− Cµ, is the learning rate for the rank-one update of the covariance matrix.

To enhance this step-size, the “evolution path” is also used. It is the sum of consecutive
steps. To construct the evolution path p(g+1)

c , exponential smoothing is applied to assign
more weight to recent generations, according to Equation (24).

p(g+1)
c = (1− cc)p(g)

c +
(√

cc(2− cc)µe f f

)(m(g+1) −m(g)

σ(g)

)
(24)

where, evolution path at generation g is p(g)
c ∈ RD and p(0)c = 0. cc ≤ 1 is the learning rate.(√

cc(2− cc)µe f f

)
is a normalization constant for pc. µe f f=

(
µ

∑
i=1

w2
i

)(−1)

is variance

effective selection mass 1 ≤ µe f f ≤ µ.
By using Equation (24), rank-one update of the covariance matrix C(g) is obtained

according to Equation (25).

C(g+1) = (1− c1)C(g) + c1 p(g+1)
c p(g+1)T

c (25)

c1 ≈
2

D2 (26)

where, c1 is the learning rate find from the Equation (26).
The combination of Equations (23) and (25) yields covariance matrix adaption equation

as given in Equation (27).

C(g+1) =
(
1− c1 − cµ∑ wj

)
C(g) + c1 p(g+1)

c p(g+1)T

c + cµ

NPa

∑
i=1

wiy
(g+1)
i:NPa

(
y(g+1)

i:NPa

)T
(27)

Step: 18 Updating the Adaptive Step-size
(

σ(g+1)
)

The step-size is controlled by an evolution path, which is a sum of successive steps in
each dimension and it is given in Equation (28).

p(g+1)
σ = (1− cσ)p(g)

σ +
√

cσ(2− cσ)µe f f C(g)−1/2

(
m(g+1) −m(g)

σg

)
(28)

where, p(g)
σ ∈ RD is the conjugate evolution path at generation g with p(0)σ = 0.

The value cσ < 1 is the learning rate for conjugate evolution path,
√

cσ(2− cσ)µe f f is

a normalization constant and C(g)−1/2
is calculated as per Equation (29).

C(g)−1/2
= B(g)D(g)−1

B(g)T
(29)

where, B(g) is an orthonormal basis of eigenvectors and the diagonal elements of the diago-
nal matrix D(g) are square roots of the corresponding positive eigenvalues. The Euclidian
length

(
‖p(g+1)

σ ‖
)

of evolution path is compared with its expected length (E‖N(0, I)‖) to
update step size as given in Equation (30).

σ(g+1) = σ(g) exp

(
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N(0, I)‖ − 1

))
(30)

where, σ(g) > 0.
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The value dσ ≈ 1, is a damping parameter

f ‖p(g+1)
σ ‖ > E‖N(0, I)‖ ⇒ σ(g+1) increases

i f ‖p(g+1)
σ ‖ < E‖N(0, I)‖ ⇒ σ(g+1) decreases

i f ‖p(g+1)
σ ‖ = E‖N(0, I)‖ ⇒ σ(g+1) remains unchanged

The step-size (standard deviation) is adaptively changed, which ultimately pre-
vents premature convergence of CMAES [35] and improves local exploitation of the solu-
tion space.

Step: 19 Increment of generation count and Convergence check
Set g := g + 1
Go to step #11 and execute steps #11–19 repeatedly until maximum number of genera-

tions are exhausted. The output of CE-CMAES are optimized prices, quantities (powers),
and costs/profits of all agents. The flowchart of the bi-level bidding optimization using
CE-CMAES is given in Figure 4.
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5. Case Study and Result Analysis

In this section, the case study, and the application of a set of algorithms to solve the
bi-level optimal bidding problem described in earlier sections, is presented.

We used the case study from the 2020 ERM competition [36] that considers nine agents,
three of which are consumers, three prosumers (i.e., consumers with PV generation capa-
bilities), and three small generators (i.e., CHP generators). The case study data generated
from the reference power profiles of residential houses and PV systems were developed
using the open datasets available on the PES ISS website [37]. Figure 5 shows the base
profiles and range of power of three normal houses and a PV power profile used to gen-
erate the data. To do this, a randomized function with a uniform distribution of 20% of
those profiles was applied. We also included generator agents represented as small CHPs
generators with a maximum generation power of 2 kW and a marginal cost determined
using Equation (2) with a factor of bchp = 0.18 EUR/kWh [29]. Feed-in and grid tariffs were
set to cF = 0.12 EUR/kWh and cG = 0.28 EUR/kWh as in [27].
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The purpose of the bi-level optimization is that all agents maximize their profits. With
this purpose, the CE-CMAES algorithm was applied to solve the problem. To prove its
effectiveness, the results of CE-CMAES were compared with 11 algorithms participating in
the 2020 competition on “Evolutionary Computation in the Energy Domain: Smart Grid
Applications” [36,38]. The MATLAB™ codes of the participating algorithms are available
at http://www.gecad.isep.ipp.pt/ERM-competitions/2020-2 (accessed on 18 June 2022).
The 11 algorithms included Recursive Differential Grouping 3-Differential Evolutionary
Particle Swarm Optimization (RDG3-DEEPSO), Ensembled method of CBBO, Cauchy and
DEEPSO algorithm, Enhanced Hybrid Levy Particle Swarm Variable Neighborhood Search
Optimization (EHL_PS_VNSO), CUMDANCauchy++: a Cellular EDA [39], HFEABC, Dif-
ferential Evolutionary and Estimation of Distribution Algorithm (DEEDA), Differential
Evolution and Teaching Learning Based Optimization (DE-TLBO), GASAPSO, AJSO, Hy-
brid Adaptive Differential Evolution with Decay Function (HyDE-DF) and Particle Swarm
Optimization with Global Best Perturbation (PSO-GBP). To check the effectiveness and
robustness of the algorithms, we considered the 20 final solutions (one for each run) of the
problem for each of the competing algorithms. A limit of 50,000 function evaluations were
considered in each run. The results of all the above-mentioned algorithms were collected
from the competition database [36].

5.1. Fine-Tuning of CE-CMAES Parameters

One of the most critical aspects of the design of any metaheuristic technique is the
calibration of the strategic parameters. The CE-CMAES method has only two smoothing

http://www.gecad.isep.ipp.pt/ERM-competitions/2020-2
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parameters to be tuned, i.e., α and β. Thus, a variety of experiments were carried out to
evaluate their optimum values of the proposed CE-CMAES method. In these experiments,
we fixed the population size, i.e., NPa = 100, and number of maximum iterations, i.e.,
(gmax) = 500 and changed the smoothing parameters α and β within their feasible range of
(0.7,1) and (0,0.3), respectively. The results of the experiments gave the optimum values of
the smoothing parameters α and β, which were 0.9 and 0.1, respectively, based on the best
value of the mean fitness, as shown in Table 1.

Table 1. Tuning the smoothing parameters of CE-CMAES.

α β Mean Fitness

0.7 0.3 2.1128
0.75 0.25 2.1118
0.8 0.2 2.1112

0.85 0.15 2.1105
0.9 0.1 2.1088

0.95 0.05 2.1127
1 0 2.1184

5.2. Performance Comparison and Results

After tuning the CE-CMAES smoothing parameters, the algorithm was applied to solve
the bi-level optimization problem. To measure the CE-CMAES algorithm’s performance,
it was compared with contemporary state-of-the-art optimization algorithms in terms of
fitness value for each run, as shown in Table 2. The fitness value displayed in Table 2
is the average value of the fitness function over the 50,000 function evaluations of each
run. Table 2 clearly shows that CE-CMAES achieved the best fitness value in eighteen
runs out of 20 runs, where RDG3-DEEPSO had the best fitness value in two out of 20 runs.
The results suggest the robustness of the CE-CMAES algorithm relative to other tested
algorithms. Table 2 also reveals that the eleventh run of CE-CMAES offered the best fitness
value with 2.0988. It means that, in this run, CE-CMAES provided the best solution to the
bi-level optimization problem. The optimal bids/offers and prices of all agents obtained by
CE-CMAES in the eleventh run are presented in Appendix A (Table A1).

Table 2. Fitness value of the tested algorithms over 20 runs.

Run

FITNESS VALUE (EUR)

CE-
CMAES

RDG3-
DEEPSO

E-CBBO-
CAUCHY-
DEEPSO

EHL_PS_
VNSO

CUMDANCA
UCHY++: A
CELLULAR

EDA

HFEABC DEEDA DE-
TLBO GASAPSO AJSO HYDE-

DF
PSO-
GBP

1 2.113 2.131 2.131 2.149 2.149 2.153 2.153 2.203 2.181 2.298 3.094 4.396
2 2.109 2.125 2.131 2.149 2.150 2.153 2.172 2.329 2.232 2.326 3.077 4.518
3 2.105 2.137 2.138 2.149 2.150 2.174 2.169 2.383 2.376 2.201 3.055 4.282
4 2.103 2.119 2.137 2.149 2.149 2.151 2.160 2.325 2.272 2.315 3.037 4.433
5 2.106 2.125 2.137 2.149 2.151 2.149 2.151 2.264 2.328 2.341 2.862 4.276
6 2.110 2.125 2.143 2.144 2.149 2.159 2.159 2.206 2.295 2.351 2.956 4.332
7 2.110 2.107 2.138 2.149 2.149 2.152 2.156 2.149 2.158 2.266 2.994 4.279
8 2.110 2.119 2.137 2.149 2.149 2.170 2.149 2.137 2.297 2.239 2.954 4.578
9 2.105 2.131 2.133 2.149 2.152 2.149 2.165 2.453 2.305 2.239 3.016 4.379
10 2.117 2.125 2.136 2.149 2.149 2.158 2.158 2.482 2.249 2.301 2.992 4.397
11 2.098 2.177 2.137 2.149 2.150 2.159 2.159 2.171 2.313 2.308 3.038 4.377
12 2.103 2.137 2.132 2.149 2.150 2.180 2.153 2.182 2.234 2.243 2.953 4.348
13 2.108 2.125 2.135 2.149 2.153 2.157 2.165 2.277 2.250 2.318 3.022 4.362
14 2.111 2.198 2.126 2.149 2.149 2.157 2.158 2.281 2.224 2.271 3.200 4.542
15 2.103 2.184 2.136 2.149 2.149 2.171 2.164 2.212 2.307 2.255 2.952 4.473
16 2.123 2.119 2.132 2.149 2.149 2.150 2.155 2.113 2.326 2.207 3.101 4.348
17 2.119 2.131 2.125 2.149 2.149 2.167 2.149 2.119 2.206 2.260 3.140 4.139
18 2.105 2.119 2.126 2.149 2.149 2.150 2.157 2.115 2.284 2.346 3.050 4.575
19 2.101 2.137 2.138 2.149 2.150 2.172 2.172 2.176 2.336 2.327 3.047 4.238
20 2.108 2.125 2.145 2.149 2.149 2.200 2.161 2.127 2.284 2.272 3.103 4.211

All algorithms were run 20 times, and the results were recorded to obtain the mean
value of those 20 runs. Table 3 gives the total overall costs of the system, the costs/profits
of the group of agents (i.e., producers, prosumers and consumers), the mean fitness, the
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standard deviation, R.I. and the average time taken by each algorithm to execute the 20 runs.
The mean fitness is the average fitness over 20 runs (trials). The Ranking Index (R.I) is the
sum of the mean fitness and the standard deviation over 20 runs. Table 3 also includes
the overall costs/profits that agents could attain in the absence of an LEM (used as a
baseline). The CE-CMAES algorithm achieved the first rank in terms of R.I with the lowest
value of 2.1148. Also, EHL_PS_VNSO and CUMDANCauchy++: a Cellular EDA achieved
the second and third rank with R.I of 2.1491 and 2.1506, respectively. Also notice that,
CE-CMAES achieved the best overall costs of 3.1840 EUR for the system compared to all
tested algorithms. In terms of execution time, CE-CMAES took an average of 17.0210 min
to solve the problem, which was lower than the EHL_PS_VNSO (25.4820 min). It proves
the advantage of hybridization of CMAES with CE, as the best solution obtained by
CE was used for the initialization of CMAES. As a result, CMAES was near to the sub-
optimal solutions. Therefore, CE-CMAES has good convergence capabilities. Despite some
algorithms having faster execution times as compared to CE-CMAES, they had worse
values of R.I, mean fitness and overall costs. Overall, the CE-CMAES results suggest it
provided the best solution to this testbed, as compared to all tested algorithms.

Table 3. Overall costs/profits, mean fitness, standard deviation, execution time and R.I achieved by
the tested algorithms.

Algorithms Overall Costs
(EUR)

Costs/Profits by Group of Agents (EUR)
MeanFit

(EUR) Std R.I
Average Time

for 20 Runs
(min)

Costs Profits

Consumers Prosumers Producers

CE-CMAES 3.1840 2.7850 0.2950 0.1040 2.1088 0.0061 2.1148 17.0210
RDG3-DEEPSO 3.2528 2.8038 0.2978 0.1513 2.1353 0.0236 2.1589 16.5985

E- CBBO_Cauchy_DEEPSO 3.2762 2.8286 0.3191 0.1285 2.1536 0.0402 2.1938 26.2037
EHL_PS_VNSO 3.2732 2.7954 0.2889 0.1888 2.1446 0.0045 2.1491 25.4820

CUMDANCauchy++: a Cellular EDA 3.2867 2.7984 0.2896 0.1987 2.1500 0.0006 2.1506 13.8346
HFEABC 3.3081 2.8066 0.3018 0.1997 2.1584 0.0058 2.1642 1.8408
DEEDA 3.3125 2.8152 0.2974 0.1999 2.1605 0.0092 2.1697 16.9520

DE-TLBO 3.4716 2.9555 0.3957 0.1205 2.2357 0.1115 2.3473 16.0524
GASAPSO 3.5583 3.0624 0.4131 0.0828 2.2734 0.0554 2.3288 1.8695

AJSO 3.6664 3.0856 0.4606 0.1202 2.3130 0.0797 2.3927 3.6674
HyDE-DF 4.9823 3.9897 1.1648 −0.1722 3.0326 0.0773 3.1099 1.8578
PSO-GBP 7.8080 5.3994 2.1901 0.2185 4.3410 0.1493 4.4903 16.8510

No LEM (baseline) 8.9985 6.1541 2.8444 0 4.9705 0 4.9705 0

In Table 3, compared with the baseline (the last row “No LEM”), all groups of agents
enhanced their costs/profits. In the baseline, producer agents presented ‘0’ profits, due to
their unwillingness to sell their energy capacity to the grid at the feed-in tariff. The reason
was that CHP generators had a marginal cost higher than the feed-in tariff and were not
eligible for the incentive. Even if eligible, these generators would not sell the energy to the
grid if they could not recover at least their marginal costs. To examine the profits made by
the involved agents, Figure 6 shows the profit/cost made by each agent. In Figure 6a,b,
a positive value indicated cost, and a negative value indicated the agents’ profits. Here,
the profit and cost of prosumer/small generators were based on the difference between
marginal cost and feed-in/grid tariffs. Figure 6a shows the individual profit/cost in the
baseline scenario, which confirmed that, when LEM was unavailable, the safest choice for
generators’ agents was not selling to the grid (see bars 7, 8, and 9). That situation resulted
in zero profits/costs for producers, which was not suitable without bilateral contracts. Also,
since there was no LEM in the base scenario, prosumers 4 and 5 were unable to sell their
excess of PV energy and this increased the cost of prosumer 6. Figure 6b demonstrates that
the best solution found by CE-CMAES improved the condition of all agents in terms of
costs and profits when the LEM was available. As a result, consumer agents 1 to 3 reduced
their costs; prosumer agents 4 and 6 increased their profits, and prosumer 5 reduced its
cost; and finally producer agents 7 to 9 increased their profits.
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Finally, the convergence behavior of the top four algorithms, in terms of their fitness
values, was analyzed. Figure 7 illustrates the fitness of the top four algorithms over
50,000 function evaluations. In Figure 7, CE-CMAES gave slow convergence at the start.
Nevertheless, convergence became fast in the final iterations, and it achieved a better final
solution than all evaluated algorithms. The CE-CMAES had a slow convergence due to the
50–50% contribution of CE and CMAES algorithms.
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5.3. Percentage Contribution of CE and CMAES in CE-CMAES

Table 4 depicts the mean fitness of the CE-CMAES algorithm for a different contri-
bution of iterations in CE and CMAES out of the total number of maximum iterations,
expressed in percentage. The comparison given in Table 4 proves that CE-CMAES al-
gorithm achieved the best mean fitness when both CE and CMAES were balanced with
50% each of the total maximum number of iterations allowed. This combination gave
the slowest convergence of CE-CMAES, due to the time taken by the CMAES for local
exploitation of the search space. CMAES finally improved the solution in the last iterations,
as shown in Figure 7. For this reason, we used CE first for 50% of total iterations for the
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global exploration of search space and CMAES for the remaining 50% of total iterations for
the local exploitation of search space.

Table 4. Mean Fitness of CE-CMAES algorithm for a different contribution of iterations (%) in CE
and CMAES.

CE CMAES Mean Fitness

10% 90% 2.8096
20% 80% 2.7466
30% 70% 2.7546
40% 60% 2.1107
50% 50% 2.1088
60% 40% 2.1132
70% 30% 2.119
80% 20% 2.1823
90% 10% 2.3354

5.4. Wilcoxon Signed Rank Test

A comparison focused on mean fitness, R.I., and overall cost is insufficient to conclude
the performance of the results. Apart from the fact that CE-CMAES outperformed all
the methods in terms of the provided performance parameters, it was essential to check
whether all the algorithms had a statistically significant difference, as given in Table 3. A
statistical Wilcoxon signed rank test was used for this purpose [40].

The Wilcoxon signed rank test is a non-parametric test that compares two paired
groups (algorithms) to detect the significant differences between their behaviors. This
test measures the difference in fitness between the pairs and analyses the differences.
This test was carried out in a pairwise comparison between the CE-CMAES and the rest
of the contestant algorithms. The Wilcoxon signed rank test is used to accept (or reject)
the null hypothesis that two samples representing two separate populations [41]. In this
regard, a validation of the hypothesis confirmed the performance of the algorithm. The
significance level was set to 5% to verify all the tested algorithms’ statistical differences.
The Wilcoxon signed ranks test provided a meaningful finding if the value of ‘P’ given
by the pairwise comparison was below 0.05, and then it might be assumed that there
was statistical evidence that the algorithm was significantly better 95% of the time.

To determine whether algorithm CE-CMAES reached a statistically better solution
than other tested algorithms, or, if not, whether the alternative hypothesis was valid,
the sizes of the ranks provided by the Wilcoxon Signed-Rank Test (i.e., T+ and T−, as
defined in [40] were examined. In Table 5, ‘+’ indicates cases in which the null hypothesis
was rejected, and the CE-CMAES algorithm exhibited statistically superior performance
in the pair-wise Wilcoxon Signed-Rank Test at the 95% significance level (p = 0.05). As
shown in Table 5, the Wilcoxon signed ranks test gave the value of ‘P’ below 0.05 for all
the pairwise comparisons. This implied that CE-CMAES outperformed the contestant
algorithms in each run. In terms of R.I, mean fitness, execution time, and overall cost, the
CE-CMAES algorithm outperformed all tested algorithms. So, overall, the CE-CMAES
provided the best solution for bi-level optimization problem with statistical proof.

Table 5. Wilcoxon Signed Ranks Test Results.

PAIR p-Value T+ T− Winner

CE-CMAES-E-CBBO_Cauchy_DEEPSO 0 0 210 +
CE-CMAES-EHL_PS_VNSO 0 0 210 +

CE-CMAES-CUMDANCauchy++: a Cellular EDA 0 0 210 +
CE-CMAES-HFEABC 0 0 210 +
CE-CMAES-DEEDA 0 0 210 +

CE-CMAES-DE-TLBO 0.006 0 210 +
CE-CMAES-GASAPSO 0 0 210 +

CE-CMAES-AJSO 0 0 210 +
CE-CMAES-HyDE-DF 0 0 210 +
CE-CMAES-PSO-GBP 0 0 210 +
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6. Conclusions and Future Works

This paper presented the application of the hybrid CE-CMAES method to solve the
complex bi-level bidding optimization problem in local energy markets. The bi-level
bidding optimization is difficult to solve since all agents intend to maximize their profit
at the upper level while modifying the market-clearing price in the local market lower
level as a product of their bids. Thus, it creates a strong interdependence between both
levels. It was demonstrated that CE-CMAES provides the best solution in terms of mean
fitness, Ranking Index (R.I) and overall cost and profit/cost of all agents compared with the
state-of-the-art algorithms of the competition “Evolutionary Computation in the Energy
Domain: Smart Grid Applications”. Using the proposed optimization algorithm, the profit
of all the producer agents was maximized by optimal scheduling of generation in LEM
at optimal bidding price. It also reduced the cost of the consumer agents by buying the
energy from the LEM and grid at competitive price. To confirm the superiority, Wilcoxon
Signed Rank Statistical test was used to prove that CE-CMAES was statistically different
from the rest of the contestants.

Regarding possible implementation of an LEM, in this work it was assumed that the
various agents (consumers, producers and prosumers) and market operator posed adequate
infrastructure in terms of communication and information technologies. Thus, from the
obtained optimized results, the local market operator (e.g., an aggregator) might send the
command signals to various market participants to change their output power to maximize
their profits in a smart grid system. Our work was proposed under the idea that agents
exchange energy between the limits imposed by a DSO. As a result, voltage violation issues
were not addressed in this work. While voltage violation issues in low-voltage networks
might be a critical aspect to be tackled in future energy markets, we recognize that it is a
limitation of this work to be taken into account in upcoming work.

For future work, the CE-CMAES could be applied to the LEM bidding problem
considering the distribution system constraints and also the cost of the network in the
LEM. The proposed method could be additionally applied in reactive power bidding,
considering active-reactive power optimization. The network states and interconnection
with upper levels of the energy chain (like the distribution level) are important research
avenues for future research. In addition, the LEM model could be modified to include
bidding optimization in external markets as well (e.g., wholesale market, capacity markets,
and ancillary services markets). Finally, new hybridized methods, based on the CE-CMAES
approached, could be analyzed to enhance the quality of solutions.
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Appendix A

The optimal solution of the CE-CMAES algorithm is provided in Table A1.

Table A1. Solution of CE-CMAES.

Agents Consumer (1 to 3)
Power Bid (kW)

Prosumer (4 to 6)
Power Bid (kW)

Producer (7 to 9)
Power Bid (kW)

Consumer (1 to 3)
Price Bid

(EUR/kWh)

Prosumer (4 to 6)
Price Bid

(EUR/kWh)

Producer (7 to 9)
Price Bid

(EUR/kWh)

Hours

1 0.20 0.87 0.16 0.23 0.78 0.19 −2.00 −1.26 −2.00 0.28 0.25 0.28 0.28 0.28 0.28 0.16 0.12 0.12
2 0.12 2.07 0.08 0.10 2.88 0.09 −2.00 −2.00 −2.00 0.28 0.28 0.28 0.28 0.28 0.28 0.26 0.28 0.12
3 0.53 1.76 0.08 0.52 1.93 0.10 −2.00 −2.00 −2.00 0.28 0.28 0.28 0.28 0.28 0.28 0.12 0.18 0.23
4 0.11 0.08 0.08 0.09 0.06 0.09 −2.00 −0.35 −0.81 0.28 0.28 0.28 0.28 0.28 0.28 0.12 0.20 0.12
5 0.04 0.06 0.09 0.04 0.05 0.09 −1.69 −1.10 −1.42 0.28 0.28 0.28 0.28 0.28 0.28 0.12 0.12 0.28
6 0.05 0.08 0.08 0.04 0.10 0.07 −1.58 −1.68 −1.57 0.19 0.28 0.28 0.28 0.28 0.28 0.12 0.12 0.28
7 0.08 0.07 0.07 0.06 0.05 0.07 −1.10 −1.84 −0.93 0.28 0.28 0.28 0.28 0.28 0.28 0.12 0.12 0.12
8 0.00 0.97 0.13 −0.06 0.77 0.09 −1.35 −2.00 −0.84 0.23 0.28 0.28 0.28 0.28 0.28 0.27 0.12 0.28
9 0.13 2.21 0.18 0.00 2.09 0.00 −2.00 −2.00 −2.00 0.28 0.28 0.28 0.12 0.28 0.12 0.12 0.26 0.28
10 0.12 1.34 0.20 −0.43 0.92 −0.27 −1.34 −1.93 −2.00 0.28 0.28 0.28 0.12 0.28 0.12 0.12 0.12 0.12
11 0.18 0.06 0.11 −0.65 −0.09 −0.77 −1.64 −0.56 −1.42 0.28 0.28 0.28 0.28 0.12 0.12 0.28 0.12 0.28
12 0.13 0.07 0.07 −0.16 −0.55 −0.79 −0.33 −1.39 −0.56 0.28 0.28 0.28 0.19 0.27 0.12 0.28 0.12 0.12
13 0.18 0.07 0.11 −0.67 −0.70 −0.73 −1.39 −1.05 0.00 0.28 0.28 0.28 0.28 0.12 0.28 0.28 0.28 0.28
14 0.16 0.07 0.19 −0.92 −0.74 −0.23 −1.66 0.00 −1.13 0.28 0.28 0.28 0.12 0.12 0.18 0.28 0.12 0.28
15 0.19 0.10 0.19 −0.40 −0.61 −0.51 −1.08 −0.98 −0.80 0.28 0.28 0.28 0.28 0.12 0.12 0.28 0.12 0.12
16 0.16 0.07 0.29 −0.51 −0.52 −0.16 −0.94 −0.79 −1.00 0.28 0.28 0.28 0.12 0.12 0.12 0.15 0.28 0.12
17 0.17 0.05 0.31 0.00 −0.30 0.00 −2.00 0.00 −0.17 0.28 0.14 0.28 0.13 0.28 0.28 0.12 0.12 0.12
18 0.12 0.18 0.23 −0.28 0.00 0.00 −1.87 −2.00 −0.78 0.28 0.28 0.28 0.28 0.28 0.28 0.12 0.21 0.25
19 0.16 0.19 0.25 0.00 0.00 0.02 −2.00 0.00 −0.99 0.28 0.28 0.28 0.21 0.18 0.20 0.28 0.12 0.21
20 0.29 0.67 0.22 0.17 0.44 0.12 −2.00 −1.04 −1.09 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.27 0.12
21 0.42 0.38 0.26 0.38 0.30 0.25 −2.00 −1.02 −1.29 0.28 0.28 0.28 0.28 0.28 0.28 0.23 0.12 0.12
22 0.32 0.39 0.21 0.33 0.28 0.24 −2.00 −0.89 −0.83 0.28 0.28 0.28 0.28 0.22 0.28 0.12 0.14 0.17
23 0.22 1.55 0.24 0.19 1.45 0.22 −2.00 −2.00 −1.72 0.28 0.28 0.28 0.28 0.28 0.28 0.15 0.28 0.14
24 0.26 0.24 0.26 0.31 0.26 0.29 −1.05 −0.71 −2.00 0.28 0.28 0.28 0.28 0.26 0.28 0.12 0.28 0.28
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