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Abstract: Hydrogen fuel cells are systems that can be successfully used to partially replace internal
combustion propulsion systems. For this reason, the article presents an operational analysis of energy
flow along with an analysis of individual energy transmission systems. Two generations of the Toyota
Mirai vehicle were used for the tests. The operational analyses were carried out on the same route
(compliant with RDE test requirements), assessing the system’s operation in three driving sections
(urban, rural and motorway). Both generations of the drive system with fuel cells are quite different,
which affects the obtained individual systems operation results as well as the overall energy flow.
Research was carried out on the energy flow in the fuel cells, FC converter, battery and electric motor
using a dedicated data acquisition system. The analyses were carried out in relation to the energy of
fuel cells, battery energy and recovered braking energy. It was found that in the urban drive section
of the second-generation system (due to its much larger mass), a slightly higher energy consumption
value was obtained (by about 2%). However, in the remaining phases of the test, consumption was
lower (the maximum difference was 18% in the rural phase). Total energy consumption in the research
test was 19.64 kWh/100 km for the first-generation system compared to 18.53 kWh/100 km for the
second-generation system. Taking into account the increased mass of the second-generation vehicle
resulted in significantly greater benefits in the second-generation drive (up to 37% in individual drive
sections and about 28% in the entire drive test).

Keywords: hydrogen powertrain; fuel cell; energy flow; battery; energy consumption

1. Introduction

Modern exhaust emission limits mean that new, alternative sources of vehicle propul-
sion are in demand. A dozen or so years ago, natural gas provided hope for reducing
exhaust emissions and reducing carbon dioxide emissions. However, it has become a fuel
that only marginally reduces carbon dioxide emissions. At present, hydrogen fuel is the
most rapidly developing fuel technology with minimal exhaust emissions and low CO2
emissions [1]. Its use is now possible both in internal combustion engines [2] as well as
in fuel cells [3,4]. Although internal combustion engines have been on the market for
many years, their overall efficiency remains lower than that of a stack of fuel cells [5].
However, the technological costs are much higher for the current generations of fuel cells.
Nevertheless, they are much more often perceived as the vehicle propulsion systems to be
developed over the next several dozen years (not including electric vehicles).

The continuous development of fuel cell drives requires their analysis and further de-
velopment. PEM cells (proton exchange membrane) are used in such vehicles. However, bat-
teries already have a diverse design (nickel-metal hydride—Ni-MH or lithium-ion—Li-ion).
The electrical capacity depends on the type of storage systems used. The need to opti-
mize them makes it necessary to test such drives under different operating conditions.
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Typical tests (homologation tests) are used very often, but tests under typical real traffic
conditions are still the most in demand due to the greater consistency with the driving
style of the driver. The present work deals with the evaluation of the energy flow in
hydrogen propulsion.

2. Development of Hydrogen Technologies

Recent years have marked a huge advance for hydrogen in the economic and energy
strategies of many countries around the world. The growing interest in hydrogen as fuel
should be associated with increasing requirements due to the climate change setting high
goals for minimizing air pollution and its main advantage: zero emissions. Hydrogen is
also a reversible energy carrier and can be used for energy storage, which is particularly
important when trying to create a dispersed energy grid relying heavily on renewable
energy sources. For the above reasons, it has a chance to play an important role in the energy
transformation and decarbonization of many sectors—energy, heating, heavy industry
and transport.

However, one of the key challenges faced by the representatives of various industries is
the maturity and availability of various hydrogen-based technologies as a means of reaching
a neutral environmental impact. However, as the estimates of the International Energy
Agency suggest, currently, only about 30% of technologies in operation that are needed
to achieve climate neutrality are mature and ready. The remaining 70% are technologies
still in the prototype or demonstrator phases that have not yet been implemented on a
significant scale [6]. It is, therefore, interesting to look at the readiness assessment of
hydrogen technologies, including their applications in transport.

It means that so-called learning rates will determine the pace of convergence towards
highly efficient technologies ready to serve hydrogen economy. While the passenger car
market is traditionally seen as an innovation driven industry, it can also spur a lot of
spillovers to other industries. In this context, it would be valuable to assess what is the
current level of the technical readiness of the hydrogen technologies in automotive trans-
portation and what is the estimated learning rate for an integrated hydrogen technology
system, namely the hydrogen car.

Based on original and unique research conducted as a background of the Polish
Hydrogen Strategy, we used TRL (Technology Readiness Level) and CRI (Commercial
Readiness Index) classifications to assess the level of development and implementation
of hydrogen technologies. The first of them, developed in the 1970s by NASA, allows for
the assessment of the technology’s maturity for its commercial application, grading its
development from TRL 1, basic research, to TRL 9, technology proven in real conditions.
The second method of classification relates to the implementation of the technology on
the market, taking into account the number and variety of its applications. The CRI scale
is stretched between the CRI 1 value, which means the possibility of the technology’s
hypothetical use, and the CRI 6 value, which means its widespread recognition, application
and popularization, allowing it to become a universal asset that may be part of a financial
institution’s collateral. The CRI classification has been applied by the Australian Renewable
Energy Agency (ARENA) to implement public support for particular technologies.

Both of these classifications, TRL and CRI, are used increasingly more often in literature
as complementary methods of a technology’s maturity and dissemination assessment,
including low- and zero-emission technologies [7–9]—see Figure 1.

An analysis determining the knowledge base performed for the Polish Hydrogen
Strategy has provided the research results shown below. The research process was carried
out in April and May 2021 and consisted of steps including extensive consultation with
stakeholders in expert panels (about 100 experts—including both domestic and foreign),
in-depth interviews (16) and a survey on a sample of 30 specialists. The study, in its scope,
covered all of the elements of the hydrogen economy value chain—production, storage,
transport, distribution and use of hydrogen. However, since this article focuses on issues of
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transport and mobility, the cited TRL and CRI results were assessed selectively for the use
of hydrogen in various modes of transport.
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Figure 1. The TRL and CRI classification types [10].

When asked about the overall level of hydrogen technologies available in the world,
experts indicated that among the solutions mentioned in the field of transport applications,
the highest level of TRL can be observed for solutions in passenger vehicles and city buses.
The same applies to the results using the CRI level.

According to intuition, the lowest level of currently assessed technological readiness
and commercialization concerns the use of hydrogen in the field of commercial aviation
and large sea-going vessels—see Figure 2.
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Figure 2. Assessment of the TRL and CRI levels for hydrogen technologies in transport solutions [11]
(TRL 7–9 indicates the number of experts who determined a given technology/application to qualify
as TRL 7, TRL 8 or TRL 9 in the TRL classification; CRI 4–6 indicates the number of experts who de-
termined a given technology/application to qualify as CRI 4, CRI 5 or CRI 6 in the CRI classification);
FCEV—fuel cell electric vehicle, FCEB—fuel cell electric bus, LCV—light commercial vehicle.

The above-mentioned observations are also correlated with the prospect of implement-
ing individual technologies in Poland in the coming years. Respondents were asked about
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the period in which to expect the widespread use of hydrogen technologies in mobility:
2021–2025, 2026–2030, 2031–2035, 2036–2040 (Figure 3). Compared to the use of hydrogen
technologies in other areas of the value chain, mobility and transport seems to be a leader
with a clear presence in passenger vehicles and buses [12].
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3. Fuel Cell Testing for Automotive Applications

The automotive fuel cell market began to grow in 2014 in the U.S. Official U.S. sales
of Hyundai’s cars began in June 2014, Toyota’s in October 2015 and Honda’s in December
2016 (primarily in the state of California) [13].

The modern development of hydrogen propulsion systems is mainly centered around
Toyota and Hyundai vehicles. The second-generation Toyota Mirai is the equivalent of the
second-generation Hyundai Nexo. Despite belonging to a different segment of vehicles
(sedans and SUVs, respectively), these vehicles have fuel cells with a power of about 100 kW
(128 kW vs. 95 kW) and batteries with similar parameters (1.24 kWh vs. 1.56 kWh) [14].

A comparative analysis conducted by Jiao et al. [15] leads to the conclusion that, based
on the example of the Toyota Mirai, the power density of the fuel cell stack has increased.
The first generation of this drive reached a value of about 3 kW/dm3 (MY2014), while
the second generation was at 4.4 kW/dm3 (MY2020; these values include end plates—the
values may be higher otherwise). End plates play a critical role in the overall process of fuel
cell optimization, as evidenced, for example, by the work of Habibnia et al. [16]. Current
density in subsequent generations of Toyota Mirai propulsion was increased by 15% [17].
The European Union Fuel Cells and Hydrogen Joint Undertaking (EU-FCH JU) recently
demonstrated a PEMFC stack with a power density of 5.38 kW/dm3 (with end plates) at a
current density of 2.67 A cm−2 and a single-cell voltage of 0.6 V [18]. The goal is to reach
9.3 kW/dm3 by 2024 [19].

Research on fuel cells operation is carried out both in terms of simulation analyses
and actual tests on real vehicles.

Fuel cell simulation studies are performed with relation to the high degree of interac-
tions between the fuel cell’s internal humidity management as well as the anode circuit
and the temperature control strategy [20]. Similar studies are conducted in the field of
two-dimensional [21,22] or three-dimensional [23–25] fuel cell analyses.

The authors conducted experimental studies on a miniature fuel cell system with a
power of 30 W [26]. The research analyzed the cooperation between the fuel cell and the
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NiMH battery under various vehicle driving conditions. With low dynamics of travel,
the use of the fuel cell was about 50%, while with high dynamics, the use was about 25%.

Research on the Toyota Mirai drive system is also carried out in the field of simulation
analyses. The degree of drive hybridization analysis was conducted out by de Almeida
and Kruczan [27]. Analyses were made regarding the selection of the fuel cell stack and
the size of the battery. It was found that a high degree of hybridization (HF = 70%) results
in advantages in the propulsion characteristics and reduces the vehicle cost. Research by
Loshe-Busch et al. [28] concerned Mirai MY2016 tests on a chassis dynamometer, taking
into account various thermal conditions. It was found that energy consumption (in the
UDDS test) at −7 ◦C ambient temperature was 157% higher than at +25 ◦C. Experimental
research conducted at the Argonne National Institute concerned dynamometer tests in
various American vehicle test procedures. The efficiency of the fuel cell stack was found to
be 66%, and the overall drive system efficiency was at 63.7% [29].

The analysis of fuel cell degradation in typical tests was carried out by Raeesi et al. [30].
The degradation of the cells in both the NEDC and the FTP75 tests was found to lead to
an increase in hydrogen consumption of about 14%. Changizian et al. [31] also optimized
the performance of fuel cells together with batteries and ultracapacitors in driving tests.
The use of an ultracapacitor resulted in a reduction in hydrogen consumption of about 3%
and a reduction of about 20% in the different starting and end positions. Investigations of
fuel cells under real traffic conditions were investigated by Ferara et al. [32] for heavy duty
vehicles and Xu et al. [33] for buses. There are many fuel cell studies in the type approval
tests, but there is no RDE-based analysis of passenger cars under real traffic conditions.

The authors carried out earlier research on the analyzed drive type only using the
first version of the Toyota Mirai drive system [34]. These studies showed a low degree of
hybridization, as the fuel cells held over 70% of all available energy.

As the presented analyses and results show, no road tests correspond to the current
requirements of drive tests—especially European ones. Therefore, it is particularly impor-
tant to carry out road tests, which correspond much more accurately to real driving during
typical vehicle operating conditions. The authors follow the guidelines of the RDE test
requirements. This means that the tests of both drive generations meet the requirements of
the test. This test shows the requirements for driving time, speed, acceleration and length
of the individual driving times. For each of these indicators, however, there are ranges
in which the results should flow. All these requirements have been met. The innovative
power of research lies in the representation of actual energy flows under normal traffic
conditions. Driving tests still do not represent the typical conditions and fuel and energy
consumption of hybrid (exhaust or hydrogen) or electric systems.

4. Materials and Methods

The drive systems tests were conducted on two generations of Toyota (Toyota, Japan)
Mirai (first generation—MY2014 and second generation—MY2021). The first generation
used hybrid drive components (the energy management unit and the electric motor come
from a Lexus (Nagoya, Japan) RX 450 h model and the battery from a Toyota Camry). The
second generation of the vehicle is a different design. Changes were introduced in it that
influence the operating parameters of the drive system, including fuel cell with higher
power (+11%) and higher energy density (+42%), electric motor with higher power (+8%)
with a lower maximum torque value (−10%). The technical data of both models have been
presented in Table 1. The fuel cell with which the vehicle was equipped had a smaller
number of cells, but at the same time, had more power. Three (instead of two) hydrogen
tanks with increased hydrogen mass (+18%) were installed, which allowed (despite the
increased vehicle mass by 23%) to increase the range by about 25%.
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Table 1. Toyota Mirai powertrain system [17,35].

Component Parameter Mirai I Gen. Mirai II Gen.

Vehicle mass 1850 kg 2415 kg
top speed 179 km/h 175 km/h

acceleration 0 to 60 mph 9.6 s 9.2 s
range (homologation cycle) approx. 483 km 650 km

Fuel cell type PEM (polymer electrolyte)
power 114 kW (155 KM) 128 kW (174 KM)

power density 2.8 kW/kg; 3.5 kW/dm3 (excl. end plates) 5.4 kW/kg; 5.4 kW/dm3

(4.4—incl. end plates)
number of cells 370 330

Electric motor type permanent magnet synchronous
peak power 123 kW at 4500 rpm 134 kW at 6940 rpm

maximum torque 335 Nm 300 Nm at 0–3267 rpm
Maximum speed 13,500 rpm 16,500 rpm

Battery type Nickel Metal Hydride (NiMH) Li-Ion
capacity 6.5 Ah 4 Ah
output 25.5 kW × 10 s 31.5 kW × 10 s

nominal voltage 244.8 V (7.2 V × 34) 310.8 V (3.7 V × 84)
energy 1.59 kWh 1.24 kWh
mass 46.9 kg 44.6 kg

Hydrogen storage internal volume 122.4 dm3 142.2 dm3

nominal pressure 70 Mpa 70 Mpa
mass 4.6 kg 5.6 kg

Table 1 shows the main differences between the two drive generations. Mechanically,
the systems do not differ from each other. The differences mainly concern other fuel cell,
electric motor and battery solutions. The biggest mechanical difference is in the number of
hydrogen tanks: two in the older generation and three in the newer generation. For this
reason, only the changes in the number of hydrogen tanks in vehicle systems are shown
in Figure 4.
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The exact scope of the research and its analyses is shown in Figure 5. The hybrid
drive tests were carried out with the use of appropriate research equipment—a dedicated
diagnostic tester—Techstream. Measurements that were made included: (a) mechanical
(vehicle speed) and braking conditions with the use of an electric motor, (b) voltage and



Energies 2022, 15, 4734 7 of 20

current of the battery and other characteristic values necessary to determine the energy
flow in the drive system. Measurements of battery voltage and current, as well as changes
in the battery SOC, were compared with the driving conditions in individual test phases to
determine the conditions corresponding to the measured energy flow in the drive system.
The data acquisition resolution was 1 Hz, which was a sufficient value to also analyze the
driving conditions in the RDC test. Therefore, the necessary diagnostic data to determine
the performance and energy of batteries and fuel cells were collected. In addition, the
braking energy is specified. The benchmarking analysis allows a complete evaluation of
the two powertrain generations under real traffic conditions.
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Using the measurement data presented above, the following quantities were determined:

• Energy flow (for urban, rural and motorway sections):

∆Ei =
∫ t=tmax

t=0
UBAT · IBATdt (1)

where the instantaneous energy flow values ∆Ei were divided according to the following
criteria:

• Discharging (for urban, rural and motorway sections):

∆Edis =
∫ t=tmax

t=0
UBAT · IBATdt (if ∆Ei < 0), (2)

• Charging (for urban, rural and motorway sections):

∆Ech =
∫ t=tmax

t=0
UBAT · IBATdt

(
if ∆Ei > 0 and Treg ≥ 0

)
, (3)

• Regenerative braking (for urban, rural and motorway sections):

∆Ereg =
∫ t=tmax

t=0
UBAT · IBATdt

(
if ∆Ei > 0 and Treg < 0

)
, (4)

where UBAT—voltage (V), IBAT—current (A), dt—time interval (h) and Treg—braking
torque (Nm);

• Boost value (for urban, rural and motorway sections):

boost =
UHV

ULV
(5)

where ULV—low voltage side (V) and UHV—high voltage side (V);

• Specific energy (for urban, rural, and motorway sections):
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Em =
Ei

m
(6)

where m—vehicle mass.

5. Results
5.1. Driving Test Evaluation

The road tests were all carried out on the same route, which was in line with the RDE
test conditions (exhaust emission measurements were not performed as the testing only
focused on the energy flow in the vehicle drive system). The tests were performed and
repeated within a period of 4 months (April–August). The research results did not indicate
any relationship between the changing atmospheric conditions and the measured values of
the energy flow in the drive system.

The road driving test characteristic (Figure 6) shows that the two drive cycles were very
similar. In accordance with the test procedure requirements, urban, rural and motorway
travel sections were carried out (in that order). The second drive section was about 350 m
longer (0.33% of the difference). However, the DRE test guidelines were all still met
(including a limit of 120 min of test duration). Additionally, all of the requirements related
to the share of the individual test phases duration were complied with (these requirements
are included in Figure 6).
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Figure 6. Comparison of speed profiles during two test drives of first-generation Mirai (dashed line)
and second-generation Mirai (solid line).

The high similarity of the speed profiles enables a comparative analysis of the obtained
test results of two generations of drives equipped with hydrogen fuel cells.

5.2. State of Charge (SOC)

The initial and final SOC values for the first- and second-generation vehicles were
57.2/59.21 and 52.15/67.45, respectively. The SOC change was also, respectively, 7% and
15% in favor of the second-generation vehicle. The maximum SOC values while driving
were 60 and 67.45%, respectively. This means that the maximum SOC value for the second-
generation Mirai was also the final value (Figure 7).
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(bigger dots—first generation; smaller dots—second generation).

The analysis of SOC changes indicates much higher values obtained in the second-
generation drive. This is mainly due to this drive generation using a modern Li-ion battery.
Vehicle braking increases the overall braking energy and also its ability to accumulate in
the battery. The change in the number of brakes results from the real traffic conditions.
At the same time, energy storage can be increased due to the higher vehicle weight and
other battery types (Li-ion instead of Ni-MH). The peaks of SOC changes in Figure 6
indicated a large variation in SOC during driving. A characteristic feature is the fact that
for both vehicles—as the test phases changed—the mean SOC value was reduced. These
changes are not significant and amount to 2% for both generations. The addition of a Li-ion
battery also has another advantage—it enables greater discharge capabilities of the battery
system. In the range of SOC = 53–54%, the second generation of the drive works much
more frequently.

A detailed analysis of the battery SOC shows very similar shares of vehicle speed
values in both test drives (Figure 8—upper charts). In urban and rural drive sections, the
same profiles of the driving speeds share were obtained. Some differences were observed
for motorway driving, in which there was a notably greater share of speed in the range of
131–140 km/h (when driving the second-generation vehicle). These changes were not a
result of the difference between vehicle generations, but rather from the congestion level of
motorway traffic.

SOC changes depend on the type of battery used (Ni-MH type in the older generation,
Li-ion in the newer). Although the second-generation drive had a lower capacity battery
(4 Ah compared to 6.5 Ah), the actual usable capacity utilization range was 29% greater.
This is due to a 16% change in SOC, compared to the 7% change with the first-generation
drive. Similarly, if one takes into account the energy stored in the battery (with the linear
relation of its changes), the change of capacity was 46% greater. This is due to, as mentioned
previously, the changes in SOC (first generation—0.1113 kWh to 0.198 kWh in the second
generation of the drive). The higher battery voltage in the second-generation drive means
that the maximum power of this system was 31.5 kW (for 10 s), which is a value 20%
higher than the power of the battery in the first-generation vehicle. Despite the newer
battery system type and a lower energy capacity, the new vehicle mass has been reduced
by only 5%.
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Figure 8. Interval analysis of SOC relative to the vehicle driving speed with the shares of the selected
speed intervals: (a) for the first generation; (b) for the second-generation Toyota Mirai.

5.3. Powertrain Performance Evaluation

SOC variations of different battery types have an impact on the charging and discharg-
ing power of the batteries.

Despite the different nominal voltage values (Figure 9), the current intensity values
were similar. They oscillated around 100 A during operation (when the battery was
discharging) and also 100 A during its charging. The discharging values were slightly
higher for the older generation of batteries and for the newer generation during charging.
The nominal voltage values in a Ni-MH battery (first-generation Mirai) were practically
the minimum values of this voltage (Figure 9a). When the battery was discharged, the
supply voltage assumed a range of 244–300 V. Charging the battery causes these voltages
to be higher, reaching a range of 260–320 V. The maximum power analysis showed that its
values are the highest during battery charging (Ne-max = 32.7 kW). The maximum value
of Ne = 26.2 kW was recorded for discharging. This was 20% less than the value obtained
for charging.
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Figure 9. Battery charging and discharging characteristics: (a) for the first-generation Toyota Mirai;
(b) for the second-generation Toyota Mirai.

The second-generation vehicle drive was equipped with a Li-ion battery with a nom-
inal voltage of 311 V (Figure 9b). This value was the minimum value when charging
(the range achieved was 310–330 V). During battery discharge, lower voltage values in
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the range of 300–320 V were obtained). Despite different voltage values in the first- and
second-generation systems, the achieved discharge powers were similar (in the second
generation, the maximum value was 26.9 kW). Higher values were recorded during battery
charging, i.e., 42.1 kW, which was 27% higher in relation to the first generation of the
battery. The Li-ion battery also has a much narrower range of battery voltage changes,
which amounts to U = 30 V. In the older version, the range of changes was 80 V (which is
over 160% of the voltage range of the Li-ion battery).

5.4. EV and FC Operation an Energy Consumption

Modifying the fuel cell stack in the next generation of vehicle propulsion increased
power by 20%. At the same time, the cell width was reduced from 1.34 mm to 1.1 mm by
reducing the width of the separator (from 0.13 to 0.1 mm) and reducing the number of
flow channels from 3 to 2 [17]. Thanks to these measures, the size of the stack of cells were
reduced from 33 to 24 dm3 and their mass from 41 to 24 kg—excluding the end plates; as a
result, the number of cells was reduced from 370 to 330.

The analysis of the voltage and current relationship of the fuel cell stack (Figure 10)
showed similar values for the generated voltage (in the range of 300–650 V). Additionally,
in the first generation, single-area changes in voltage amplification were observed. In the
second-generation solution, two independent areas of the amplified voltage were visible:
closer to 400 V and in the range close to 600 V. The greater cell power in the second-
generation drive system was a result of the 17% higher current values provided by these
cells (cell power values up to I = 350 A are practically the same). The number of cells was
reduced by 11% (from 370 to 330), while increasing the cell power density by 92% (from 2.8
to 5.4 kW/kg).
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Figure 10. Current-voltage characteristics of a fuel cell stack: (a) first-generation drive; (b) second-
generation drive.

The voltage characteristics of the first-generation converter are steeper (Figure 10):
small changes in the input voltage corresponded to a significant change in the output
voltage (in the range of 70–200 A). In the case of the second-generation voltage converter,
the characteristics of the output voltage changes are shifted towards higher current values
(in the range of 100–230 A).

A more detailed analysis of the voltage and current values relative to the vehicle speed
allowed for additional observations (Figure 11). The first converter generation allowed
for greater changes in the voltage amplification values in each of the driving sections, i.e.,
at different driving speeds (Figure 11a). In the urban section, voltage changes in the range
of 330–500 V were observed. In the field of rural and motorway driving, the changes
achieve maximum values of voltage amplification equal to 650 V.
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Figure 11. Voltage and current characteristics of the fuel cell converter depending on the speed
profile: (a) first-generation FC; (b) second-generation FC.

The converter of the second-generation drive system enabled a slightly different form
of control: in the urban section, the maximum voltage amplification values were limited to
about 400 V, while in the rural section, they were 330–500 V (where high values appeared
sporadically)—see Figure 11b. The maximum voltage gain values appeared only in the
motorway driving section. Such changes in voltage control resulted in the appearance of
two characteristic conversion areas in the second-generation system.

Analyzing the electric motors operating conditions for both generations of drives
showed how different those operating conditions were. The usable speed range of the
first-generation engine was 20% more narrow than that of the second generation (maximum
engine speeds of both generations were higher by about 3500 rpm)—see Figure 12. Despite
the 10% smaller maximum torque value of the second-generation engine, its power was
10% greater (with 50% greater rotational speed at the same time).

The maximum voltage amplification values (650 V) occurred in similar areas of the elec-
tric motor operation characteristics for both generations. The total shares of the engines op-
erating time were slightly different: the first-generation drive system showed a greater share
of the engine operation during the tests. In the second generation of the drive, the share of
regenerative braking increased, reaching 24% to 16% in the first generation. The second-
generation engine had a slightly smaller maximum braking torque (100 Nm compared to
125 Nm), but its rotational speed range was significantly larger: 1000–4000 rpm compared
to the first-generation drive engine (1000–2000 rpm). Such changes can only partially be
explained by the speed increase in the second-generation engine.
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Figure 13 represents an assessment of the cooperation between the fuel cell and the
battery system. It shows that the first-generation control system was characterized by
a significant share of the cell’s power in relation to the battery. The area representing
a greater use of battery power than fuel cell power is minimal and is not significantly
impactful. At high cell powers, the battery power was low and applied on average to
power in the range of up to 10 kW (Figure 13a). With regard to the second generation of
the drive, the area of the graph for which the relationship Ne_BATT > Ne_FC was satisfied
is much larger. There is a significant share of points where the battery power was twice the
power provided by the fuel cell. This type of operation did not occur in the first-generation
drive system. As previously mentioned, this was a result of using a new generation Li-ion
battery. Although the maximum declared battery powers were stated as 25.5 and 31.5 kW,
respectively, such values are not commonly observed when analyzing the drive systems in
operation during drive tests.

Due to the lower FC power in the first-generation drive, a greater use of the battery
power was observed with an average cell load. The FC-BATT operation characteristics in
the second-generation drive system were different: the cooperation of both systems was
found to be in the cell power range up to 40 kW. In this range, the use of the battery was
notable (on average up to 10 kW). At higher cell power values, the battery was used in a
fairly narrow range of power (±3 kW)—see Figure 13b.
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Figure 13. Share of use between the fuel cell and the battery: (a) first-generation drive; (b) second-
generation drive.

It should be noted that the changes from one drive system generation to another do
not lead to significant differences in the use of battery power and fuel cell power (which is
also shown in Figure 11). In urban driving conditions, the second generation of the drive
was characterized by higher battery power values (during discharging and charging). This
was mainly due to the increased total mass of the vehicle. Nevertheless, the share of fuel
cell power was almost constant (the difference was 5%, which is not a significant change).
The changes in the mean battery power (during charging and discharging) between vehicle
generations amounted to 25% (where higher values were observed for the newer generation
drive)—see Figure 14. The battery in the first-generation drive was used on average in a
range of 2.6–4.6 kW (irrelevant of the vehicle speed), while for the second-generation drive,
it was used in a range of 4.2–4.7 kW. In this respect, there is a link between the driving
speed and the battery power used (higher driving speed relating to more power drawn
from the battery). Both generations of the drive systems used the battery mostly in the
power range from 0 to 5 kW, but it should be noted that there was a variation, where at the
maximum driving speeds, the share of the battery was the smallest (Figure 14).
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The mean power provided by the fuel cell in urban driving mode was twice that of
the battery. This property was the same for both generations of the drive system. It could
be noted that despite the greater mass of the second-generation vehicle, the mean power
drawn from the fuel cell in rural and motorway mode was lower. This indicates that the
energy management system in the vehicle was more modern (despite the use of similar
battery power). The mean cell power was twice as large as in rural driving conditions
in motorway driving. The ratio of medium powers in rural and urban modes in both
generations was almost 2.

In both drive systems generations, the energy recovery in the individual driving
sections was greater than the power consumption from the battery. In urban driving, this
ratio was 1.4:1 (recovery to power consumption) for both tested generations. The power
values in the newer generation were overall greater. In both drive systems, the highest
values of recovered power were observed within the speed range of 90–100 km.

6. Energy Flow

The energy flow analysis was performed in accordance with the conditions presented
in the Materials and Methods chapter.

The battery energy in both drive generations accounted for a small share of the total
energy used by the vehicle drive (irrespective of which drive system generation was
tested). Regardless of the drive section, the share of the battery power in the vehicle
drive was approximately 1%. This value was also independent of the generation of the
drive system. Additionally, in both generations, the share of the use of the fuel cell
was significantly increasing (which was also suggested by the increasing α angles—see
Figure 15a,b). The mean value of the battery energy used in the first-generation drive
varied from 100 Wh/100 km in the urban section to 200 Wh/100 km in the motorway
section. In the second-generation drive, these values were about 25% lower.
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Figure 15. The use of battery and fuel cells energy in road tests of both generations of Toyota Mirai
drives: (a) first generation; (b) second generation.

The conducted research concluded with the total energy consumption of the hydro-
gen propulsion systems being determined. The analysis of Figure 16 showed that the
first-generation system in relation to the second generation had lower battery energy con-
sumption in the urban section. This difference was about 30%. In the next section, these
differences were smaller (in the rural section, the use of the battery by the first-generation
drive system was lower by only 10%). The use of a fuel cell was more significant in the
second-generation system. In the urban section, it was 3% higher, while in the rural section,
it was 20% lower (despite the much greater vehicle mass). The total energy consumption
of the second-generation drive fuel cell was 6% lower (with a 30% higher battery energy
consumption and 27% more energy recovered).
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Figure 16. Energy consumption values for both generations of Toyota Mirai drive in individual test
drive sections as well as throughout the whole test (the height of bars corresponds to energy from the
battery, energy recovered and energy from the fuel cell).

The analysis of the total energy consumption (EFC + EBATT − EREG) indicates that a
higher consumption for the new generation drive only occurred in the first (urban) driving
section. Each subsequent section resulted in lower energy consumption. The greatest
differences were recorded in the rural section (due to significant differences in fuel cell
energy consumption). The total difference in the RDC test was 6% in favor of the second-
generation drive.

The total energy consumption appears in favor of the second-generation drive, al-
though that is not very obvious. The previously demonstrated differences exist but require
further analysis. Based on the data from Table 1, it is necessary to indicate a 30% increase
in the mass of the vehicle for the second-generation drive. The inclusion of this data in
relation to the energy consumed would allow for a more comprehensive comparison of the
tested drives.

Taking into account the above-mentioned mass increase for the second-generation
vehicle, the specific energy (energy related to the unit of vehicle mass) was calculated
for each test section and for the entire RDC test (Figure 17). By using such a variable,
a reduction in energy consumption in the second-generation drive was achieved for each
of the test sections. In the urban section, this reduction was 22%. In this case, the relation
between the sum of the specific energies of the cell and the battery after subtracting the
energy from regenerative braking was calculated. By using this approach, the greatest
energy reduction was observed in the rural section of the test drive (by about 37%). The total
energy reduction in the RDC test was 28%. The analysis of the three energy components
(FC, BATT and REG) shows that the most significant changes in the overall RDC test
relate to the reduction of the specific energy of the fuel cell (by almost 30%). The battery
specific energy consumption throughout the test was the same (despite slight differences
in the individual drive sections of the test). The second generation of the drive was also
characterized by a slightly lower energy recovery, of 3% (but in absolute values, it was
almost 30% greater—see Figure 15).
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7. Future Work

The analysis of future generations of hydrogen propulsion systems is not exhaustive
with the current analyses. Further work will focus on:

1. Detailed analysis of the functioning of fuel cells and their response rate to load changes
due to traffic conditions

2. Evaluation of the rate of degradation of fuel cells with regard to the analysis of
activation losses, resistance losses and mass transport losses.

These tests are particularly important, not for the registration test, but for the road test,
which best reflects real traffic conditions.

8. Conclusions

The analysis of both generations of hydrogen drives resulted in reaching the following
conclusions based on real road tests:

1. As the driving speed increased in the successive test sections, the battery SOC de-
creased (based on Figure 6). This means that the battery was not recharged to its initial
values. The use of a Li-ion battery in the second-generation system enabled much
wider limits of SOC changes: about 16% (only 7% for the first generation). Although
these changes were quite different in nature, the mean values of SOC drop regardless
of the drive generation were 3%.

2. The different types of batteries used in the two drive generations meant that their
charging powers were also different. The second-generation drive enabled 28% greater
power recovery (max 42 kW) than the first-generation system (this was achieved
thanks to the voltage values being higher by 3% and the current intensity higher by
20%). Despite the different energy storage systems, their discharge during the tests
took place with the same maximum power of about 26 kW.

3. The fuel cell voltage converter in the second-generation system worked differently
than that in the first generation. In the latest generation of the hydrogen drive system,
the maximum voltage values were achieved only in motorway driving sections. In the
urban section, the second-generation system limited the voltage to about 400 V (first
generation—up to 500 V).

4. The higher maximum rotational speed of the second-generation electric motors (by
20%) did not translate into changes in the voltage value in individual operating
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points. Despite the lower maximum torque value in the second-generation engines
(by 11%), the actual value of the useful torque was 12% greater. The second-generation
engine had a slightly smaller maximum braking torque value (100 Nm as compared
to 125 Nm), but the rotational speed range was significantly larger: 1000–4000 rpm
compared to the first-generation drive (1000–2000 rpm).

5. The mean value of the fuel cell power in the urban driving section was twice that of
the battery. This was true for both generations of the drive. Despite the greater mass
of the second-generation vehicle, the mean power of the cell in rural and motorway
sections was lower. This was a sign of a more modern energy management system
in the newer vehicle (despite using similar battery power). In motorway driving,
the mean cell power was double the value it reached in the rural driving section.

6. The mean battery energy value in the first-generation drive ranged from 100 Wh/100 km
in the urban section up to 200 Wh/100 km in the motorway test section. For the second-
generation drive, these values were about 25% lower. The energy consumption in
the RDC test of the first-generation drive was 19.63 kWh/100 km. This was 6% more
than for the second-generation drive (despite the 30% greater mass of the second-
generation vehicle).

7. It is necessary to consider the specific energy for both vehicles, which takes into
account the differences in the mass of both generations of vehicles. Despite the more
favorable absolute energy ratios (E), the specific energy values (Em) proved to be a
more accurate indicator when comparing the two drive systems.

8. The research confirms that passenger FCEV is one of the most mature and sophisti-
cated hydrogen technology in comparison to other mobility solutions. Simultaneously,
we found arguments that current technology still improves what means that learning
rates becoming positive contributing to technology improvement.
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