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Abstract: In this paper, we review the application of a recent formula for the lattice thermal conduc-
tivity to silicon and germanium, which are two of the most commonly used materials in electronic
devices, and to graphene, one the most promising new materials. The formula, which is based on a
hierarchy of macroscopic models that generalize the Cattaneo equation, is capable of reproducing
the results achieved by means of the well-known Callaway formula. In semiconductors, energy
transport is largely due to acoustic phonons, therefore one can choose suitable moments of their
occupation numbers as variables of the models. Equations determining the time evolution of these
state variables are derived from the Boltzmann–Peierls transport equation by integration, while the
maximum entropy principle (MEP) is used to obtain closure relations for the extra variables. All
relevant phonon scattering mechanisms are taken into account. We present numerical results re-
garding the steady-state and dynamical thermal conductivities of silicon, germanium, and graphene,
showing their main characteristics and how these are affected by the various scatterings. The re-
sults are in good qualitative and quantitative agreement with those in the literature, confirming
that MEP is a valid method for developing macroscopic models of charge and energy transport in
semiconductor materials.

Keywords: thermal conductivity; moments method; maximum entropy principle; silicon; germanium;
graphene

1. Introduction

In the last decades, scientific interest in and research on the thermal conductivity κ
of semiconductor materials have significantly increased [1–9]. Indeed, from a theoretical
point of view, since the ability of a material to conduct heat heavily depends on its atomic
structure, understanding it is important to gain insight into many other properties of the
material. While, from a practical perspective, two contradictory demands have emerged.

On one side, the ongoing miniaturization of electronic components has made heat re-
moval from chips an issue of crucial importance [10–12]. To achieve this aim, it is important
to adjust device parameters and geometry in such a way as to make thermal conductivity
large enough along appropriate directions. On the other side, a lower thermal conductivity
is required to improve the efficiency of solid state energy conversion devices [9,13]. Conver-
sion efficiency can be measured in terms of the dimensionless figure of merit ZT = TσS2/κ,
where σ and S are respectively the electrical conductivity and the Seebeck coefficient of
the material, and T is the temperature. The higher ZT, the more efficient thermoelectric
energy conversion will be, which is the key to making solid-state thermoelectric converters
competitive with traditional electric generators or refrigerators. By looking at its expression,
it is clear that reducing κ is an efficient way to enhance ZT.

Since, in semiconductors, heat is mostly transferred by phonons, these two contra-
dictory demands can be satisfied by modifying phonon modes and interactions in an
appropriate way. Enhancement can be achieved by reducing impurities or imperfections in
the crystal, by isotopically purifying it, or by using new materials such as graphene [5,14].

Energies 2022, 15, 4718. https://doi.org/10.3390/en15134718 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15134718
https://doi.org/10.3390/en15134718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2506-8066
https://doi.org/10.3390/en15134718
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15134718?type=check_update&version=2


Energies 2022, 15, 4718 2 of 28

Reduction can be obtained by alloying or by nanostructuring the thermoelectric semicon-
ductor materials, since nanoparticles act as extrinsic phonon-scattering centers [3,13].

The theoretical study of thermal conductivity requires knowledge of crystal vibration
spectra and of anharmonic forces, as well as of isotope effects, phonon interaction with
the sample boundaries, crystal defects, etc. [15–17]. Steady state thermal conductivity has
been understood for many decades. Typically, it is assumed that all the phonon scattering
processes can be described by relaxation times that depend on the phonon frequency and
temperature. Additionally, linear energy relations are assumed, neglecting dispersion.

At the lowest temperatures boundary scattering predominates and the phonon mean
free path is comparable with the crystal dimensions, which causes the conductivity to
increase as T3. The maximum conductivity occurs at T ≈ 0.05 θD, where impurities
are the dominant interaction, θD being an averaged Debye temperature over all phonon
branches. As temperature further increases, umklapp processes become prevalent, and the
conductivity decreases as the inverse of T.

As clock speeds of modern microprocessors have increased, studies on short time
scale energy transport have been recently prompted [2]. In fact, the current speed of
microprocessors is in the order of gigahertz and is expected to reach 100 GHz in the near
future. Thermal conductivity is frequency dependent, and dielectric and semiconductor
materials are strongly insulating at frequencies of temperature disturbances near to or
exceeding the phonon inverse mean relaxation time.

Finally, graphene has gained great attention due to the ease in isolating a single sheet
of graphite and to its very good mechanical, thermal and electric properties [10,18]. In
particular, graphene nanoribbons are potentially excellent thermoelectrics owing to their
very high thermoelectric figure–of–merits [19].

The main aim of the present review paper, which is also its main novelty, is to recast
the results about thermal conductivity obtained in [20–22] into a common framework
suitable for describing energy transfer in both 3D and 2-D materials. The results shown
for the materials taken into account examine the main thermal conductivity characteristics
listed above and are in good qualitative and quantitative agreement with those found
in the literature. We also underline that these results are relative to different values of
temperature, dimensions and other physical characteristics of the materials with respect to
those in [20–22]. The paper can be considered a natural continuation of a previous review
paper [23] and together with it confirms that MEP is a reliable method for devising, in a
systematic way, macroscopic models for semiconductor materials.

The paper is organized in the following way. In Section 2, we briefly introduce the
kinetic description of phonon transport and the formulas of the steady-state and the dynam-
ical thermal conductivity which can be derived from it. In Section 3, we present a hierarchy
of hydrodynamic-like models for energy transport both in 3D and 2–D materials, whose
closure can be obtained by means of MEP. In Section 4, we revisit the formula for the lattice
thermal conductivity which can be retrieved from the hierarchy of models. In Section 5, we
apply the formula to the study of silicon and germanium conductivity, and we analyse the
conductivity reduction which can be obtained by embedding germanium nanoparticles
into a Si0.7Ge0.3 alloy crystal. Eventually, in Section 6, we study the case of bulk graphene
and graphene nanoribbons, taking into account a scattering which has recently been con-
sidered for explaining the ultra-low thermal conductivity of 2-D phononic crystals. This
scattering is related to the presence of undercoordinated atoms at the longitudinal edges of
the nanoribbons.

2. Kinetic Model and Callaway Formula for the Thermal Conductivity

Energy transport in semiconductors is essentially due to the collective movement or
excitations of atoms in a crystal, which can be described in terms of phonons: the quanta
of lattice vibrations [24]. The number of normal modes of vibration of a crystal lattice is
equal to three times the number ν of atoms in the unit cell, which is the smallest repeating
portion of a crystal lattice. If ν = 1 there are only three acoustic modes which produce
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nearly in phase oscillations of neighbour atoms and have long wavelength. For ν = 2 three
optical modes are also present, which produce nearly in anti-phase oscillations. In this
paper we will not consider the case ν > 2. Acoustic phonons give rise to sound in solids,
while optical phonons are easily excited by light. The three acoustical and the three optical
modes have different directions of polarization: there are, in fact, one longitudinal and two
traversal oscillations, for both optical and acoustic modes, which are indicated as LA, TA,
LO, TO respectively. In the semiclassical approximation, valid when relevant length/time
scales on which the single-particle Green’s function varies are much longer than coherence
lengths and times [25], the state of a phonon in a given branch can be described by its
wave vector q and its polarization, q varying in the first Brillouin zone B of the reciprocal
lattice, which is the Fourier transform of the crystal lattice. For values of q not far from 0,
the dispersion relation, which relates the phonon energy ε to the wave vector, is almost
linear for the acoustic branches (Debye approximation), while it is almost flat for the optical
branches (Einstein approximation):

εac ≈ h̄vac|q|, ac = LA, TA, εop ≈ cost, op = LO, TO,

with h̄ the reduced Planck constant and v the modulus of the phonon group velocity
v := 1

h̄∇qε, which is constant for the acoustic phonons and negligible for the optical
ones. Therefore, within a good approximation, energy transfer can be ascribed only to
longitudinal and transverse acoustic phonons, which are the only ones we will take into
account in the following.

At a kinetic level, the description [17] of phonon behavior can be done by using the
phonon occupation number gp(x, t, q), which depends on the space vector x, the time t,
the phonon wave vector and polarization p = LA, TA. The Boltzmann–Peierls equation
governs the time evolution of g:

∂gp

∂t
+ vp · ∇xgp = Cp(gp), p = LA, TA, (1)

where the collision operator Cp, p = LA, TA describes the scattering mechanisms of
phonons among themselves, with the boundaries of the crystal, as well as with lattice
imperfections. As regards interaction among phonons, it is due to fact that the various
monochromatic waves freely propagate through the crystal without interacting only in
the harmonic approximation. Higher order terms of the lattice potential, due to atomic
oscillations around equilibrium positions, are taken into account as various processes of
decay and scattering among these waves. Three phonon processes can be classified into
normal and umklapp ones. A normal process conserves energy and momentum, whereas
an umklapp one only conserves energy [26].

The expression of the collision operator is rather complex and a simplification, due
to Callaway [15] and based on a relaxation time approximation, is usually adopted in the
device simulations. It reads:

Cp = −
gp − g(0)p

τR
p

−
gp − g(1)p

τN
p

,

where the τR
p ’s are the relaxation times for the resistive processes, which include umklapp

scatterings and interactions with boundaries and imperfections, and conserve energy but
not momentum, while the τN

p ’s are the relaxation times for the normal processes, which,
as said, conserve momentum too. The resistive scatterings make the phonon distribution
converge to the Planckian one,

g(0)p =
[

exp
( εp

kBT
)
− 1
]−1

, p = LA, TA,
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with kB the Boltzmann constant and T the local temperature [27]. While g(1)p is the displaced
Planck distribution to which, due to the normal processes, gp tends to

g(1)p =
[

exp
( εp − λp · q

kBT
)
− 1
]−1
≈ g(0)p +

T
εp

dg(0)p

dT
λp · q.

In [2,15], the following expression of λp is used:

λp = −h̄βp|vp|2
∇xT

T
,

where there appear the applied temperature gradient and a parameter βp (Callaway pa-
rameter), with the dimension of a relaxation time. The latter is found by requiring that the
total phonon momentum production, for N processes, equals zero:

∫
B

q
gp − gp(λp)

τN
p

dq = 0. (2)

Following the procedure used by Callaway, Ezzahri and Joulain [2] have found a
formula able to reproduce the key aspects of the dynamical thermal conduction by phonons
and to give the steady-state conductivity as a particular case. They make the following hy-
potheses:

1. gp depends on x only through T so that ∇xgp =
dgp
dT ∇xT,

2. dgp
dT ≈

dg(0)p
dT .

Under these hypotheses (see [2] for details), Equation (1) becomes:

τC
p

∂gp

∂t
+ gp = g(0)p − τ

e f f
p

dg(0)p

dT
vp · ∇xT, (3)

where (
τC

p
)−1 :=

(
τR

p
)−1

+
(
τN

p
)−1, τ

e f f
p :=

(
1 +

βp

τN
p

)
τC

p

are the combined total and the effective relaxation times, respectively. Equation (3) can be
solved by Fourier transforming both sides, obtaining

ĝp(x, Ω) =
1

1− i ΩτC
p

ĝ(0)p −
τ

e f f
p

dg(0)p
dT

1− i ΩτC
p

vp · ∇̂xT, (4)

where the hat indicates the Fourier transform, i is the imaginary unit and Ω is the circular

frequency. Here, there is the additional hypothesis that τC
p , τ

e f f
p and

dg(0)p
dT , p = LA, TA,

have negligible time dependence [2].
This solution can be used to compute the Fourier transform of the heat flux Q̂,

which reads:

Q̂ := ∑
p

yp

∫
B

εpvp ĝpdq = −
[

∑
p

yp

∫ τ
e f f
p εp

1− i ΩτC
p

vp ⊗ vp
dg(0)p

dT
dq

]
· ∇̂xT

= : −κ(Ω)∇̂xT,

from which the dynamical lattice thermal conductivity κ(Ω) can be defined, yLA = 1
(2 π)3 ,

yTA = 2
(2 π)3 being the longitudinal and transversal acoustic phonon density of states, and

⊗ indicating the tensor product.
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It is easy to see that the real and imaginary parts of the thermal conductivity respec-
tively read:

κr(Ω) = ∑
p

4 πyp k4
BT3

3h̄3vp

∫ θD
p /T

0

τ
e f f
p (x)

1 + (ΩτC
p (x))2

x4 ex

(ex − 1)2 dx, (5)

κi(Ω) = ∑
p

4 πyp k4
BT3

3h̄3vp

∫ θD
p /T

0

ΩτC
p (x)τe f f

p (x)

1 + (ΩτC
p (x))2

x4 ex

(ex − 1)2 dx, (6)

where θD
p is the Debye temperature [5] of the acoustic branch p = LA, TA, and x := εLA/TA

kBT .
Eventually, by imposing (2) , one finds:

βp =

∫ θD
p /T

0
τC

p (x)
τN

p (x)
x4 ex

(ex−1)2 dx∫ θD
p /T

0
τC

p (x)
τN

p (x)τR
p (x)

x4 ex

(ex−1)2 dx
.

3. Macroscopic Models

In [20], by exploiting a hierarchy of hydrodynamic–like models, it has been derived a
new formula for lattice conductivity, from which it is possible to find results comparable to
those coming from (5) and (6).

These macroscopic models can be built by applying the moments method to the
Boltzmann–Peierls Equation (1). In particular, the following weight functions of q can
be considered:

{ψp(q)} : = {εp, ε
M̃(1)
p vp, . . . , ε

M̃(M̄)
p vp},

where

M̃ = M̃(M) :=

{
M−1

s1
, if M = 1, . . . , s1 + 1,

1 + M−s1−1
s2

, if M = s1 + 2, . . . , M̄,

with s1, s2, M̄ ∈ N to be suitably fixed. The moments of gp corresponding to the above–
chosen weight functions are:

Wp = yp

∫
B

εp gp dq,

(7)
QM

p = yp

∫
B

ε
M̃(M)
p vp gpdq, M = 1, . . . , M̄.

The state variables Wp, p = LA, TA are the phonon average energies, the Qp := Qs1+1
p ,

p = LA, TA are the heat fluxes, while the other variables do not have an immediate physical
meaning. Different moments can be chosen [20,28,29] according to the physical situation
one wants to describe, which governs also the choice of s1, s2 and M̄. Here, only the
energies and vector moments are taken into account, since we are interested in thermal
conductivity, and the results indicate that these moments are very appropriate to its study.
By multiplying the Boltzmann–Peierls equation and integrating over the Brillouin zone,
one can derive the evolution equations for the state variables (7):

∂

∂t

(
Wp
QM

p

)
+∇x ·

(
Qp
TM

p

)
=

(
CWp

CQM
p

)
,

M = 1, . . . , M̄. (8)

In the above–written equations, the following extra–fluxes and production terms
are present:
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TM
p = yp

∫
B

ε
M̃(M)
p vp ⊗ vpgpdq, M = 1, . . . , M̄.

CWp = yp

∫
B

εpCp(gp) dq,

CQM
p
= yp

∫
B

ε
M̃(M)
p vp Cp(gp)dq, M = 1, . . . , M̄,

which are further unknowns. The variables Ts1+1
p , CWp and C

Q
s1+1
p

, p = LA, TA, respectively

are the fluxes of the energy fluxes, and the energy and energy flux productions, while the
other extra-fluxes and production terms do not have an immediate physical meaning.

The number of the unknowns present in the evolution equations is greater than
the number of the equations, therefore one needs constitutive equations for the extra–
variables. A physically well sound method to get these constitutive equations is based
on the exploitation of MEP [30–35]. This principle states that the occupation number can
be approximated by that which maximizes the total entropy under the constraints that
it reproduces the moments which have been chosen to describe the phonon state. If we
neglect the mutual interactions, the phonon entropy can be written as

S = −kB ∑
p

yp

∫
B

[
gp ln gp −

(
1 + gp

)
ln
(

1 + gp

)]
dq.

The solution of this constrained extremum problem is given by:

g ME
p =

1

exp (εpΛWp + vp ·∑M ε
M̃(M)
p ΛQM

p
)− 1

. (9)

Under the same hypotheses as in [2,15], we suppose that the phonon system is not
too far from local equilibrium, therefore linearizing (9) with respect to the vector variables,
one gets:

g ME
p ≈ 1

exp (εpΛWp)− 1
−

exp (εpΛWp
)

(exp (εpΛWp)− 1)2 vp ·∑
M

ε
M̃(M)
p ΛQM

p
. (10)

The Lagrange multipliers Λ are related to the state variables through the constraints (7).
From the inversion of these relations, one can obtain occupation numbers which depend
on (x, t) only through the state variables, therefore the needed closure relations can be
retrieved by substituting (10) into the integrals which define the extra-variables. It can also
be noticed that (10) is closely associated to the Grad’s distribution which is extensively
employed in extended thermodynamics [29,36,37].

Closure

Here, the inversion of the constraint relations (7) is performed, after substituting the
approximate MEP occupation numbers, and the closure relations are found.

For usual semiconductors, both three-dimensional and two-dimensional, from the
scalar constraints, the following expressions of the energy multipliers can be obtained:

ΛWp = d−1
p (Wp),

where the d−1
p ’s are the inverse of the functions:

dp(ΛWp) := yp

∫
B

εp

exp (εpΛWp)− 1
dq,
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which are invertible since d′p(ΛWp) < 0, where the prime indicates the derivative of the
function with respect to its argument.

Moreover, if the dispersion relations are invariant for rotations of π
2 around any of the

coordinate axes, one finds for the vector Lagrange multipliers:

ΛQM
p
= ∑

K
bp

MK(Wp)QK
p ,

where the M̄ × M̄ matrices Bp :=
(

bp
MK

)
are the inverse of the matrices Ap :=

(
ap

MK

)
of elements:

ap
MK := −yp

∫
B
|vp|2(n1)

2 ε
M̃(M)+M̃(K)
p exp (εpΛWp)

(exp (εpΛWp)− 1)2 dq,

where n1 is the component along the x axis of q
|q| .

The above-written expressions of the Lagrange multipliers can be used to get the
constitutive equations for the extra-variables. As regards the extra-fluxes, one has:

TM
p = K̃p

M(T) In,

with In the identity tensor of rank equal to the dimensionality n of the material, and

K̃p
M(T) = yp

∫
B
|vp|2(n1)

2 ε
M̃(M)
p

exp (εpΛWp)− 1
dq, M = 1, . . . , M̄.

In order to compute the production terms, it is necessary to get the asymptotic occu-
pation numbers relative to the resistive processes and the normal ones, respectively. We
remind that the approximate collision operator has the form:

−
gME

p − g(0)p (λp)

τR
p (εp)

−
gME

p − g(1)p (λp, λp)

τN
p (εp)

,

where the unknowns λp and λp have to be determined in such a way to ensure the
conservation of energy, and, as regards the normal scattering, also that of momentum.
Exploiting the first requirement, one has

0 =
∫
B

εp
gME

p − g(0)p (λp)

τR
p (εp)

d q +
∫
B

εp
gME

p − g(0)p (λp)

τN
p (εp)

d q

=
∫
B

εp

[
exp (εpΛWp)− 1

]−1
− g(0)p (λp)

τR
p (εp)

d q

+
∫
B

εp

[
exp (εpΛWp)− 1

]−1
− g(0)p (λp)

τN
p (εp)

d q,

from which we find
λp = ΛWp .

Since, from extended thermodynamics [27,32], the relations between the acoustic
phonon local temperature T and the Lagrange multipliers corresponding to their energies
are given by:

ΛWp = 1/kBT,

we can conclude that
λp = 1/kBT.
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After that, imposing condition (2), see [15], which in the present case reads:

C(N)
Pp

= −
∫

h̄q/τN
p

[
−

yp exp (εpΛWp
)

(exp (εpΛWp)− 1)2 vp ·∑
M

ε
M̃(M)
p ΛQM

p

−
yp exp (εpΛWp

)

(exp (εpΛWp)− 1)2
λp · q
kBT

]
d q = 0,

with Pp := yp
∫
B h̄q gp dq, the p–phonon momentum, and C(N)

Pp
:= −yp

∫
B h̄q

gp−g(1)p (λp)

τN
p

dq,

the part of its production resulting from normal scattering, we have

λp = −kBT ∑
M

J̃(p,N)
M (ΛWp)

J̃(p,N)(ΛWp)
ΛQM

p
, p = LA, TA,

where

J̃(p,N)(ΛWp) :=
∫
B
|q|2

exp (εpΛWp
)

τN
p (exp (εpΛWp)− 1)2 (n1)

2 dq,

J̃(p,N)
M (ΛWp) :=

∫
B
|q||vp|

ε
M̃(M)
p exp (εpΛWp

)

τN
p (exp (εpΛWp)− 1)2 (n1)

2 dq,

having assumed that vp = |vp| q
|q| .

After that, it is possible to compute all the production terms relative to the phonon
interactions that have been considered. They have the following form:

CWp = 0,

C(N)

QM
p

= ∑
K,η

cp, η
M K(T)Q

K
p , p = LA, TA,

where the sum over K goes from 0 to M̄ and that over η takes into account the specified
scattering types. Eventually, the expressions of the coefficients cη

MK depend, as we will see,
on the phonon dispersion relations of the material taken into account and the relaxation
times of phonon processes.

4. A Formula for the Lattice Thermal Conductivity

In this section, exploiting the previously introduced hierarchy of hydrodynamical
models, we show how it is possible to derive a formula for the steady–state and dynamical
conductivity of semiconductors. Let’s consider the evolution equations of the fluxes QM

p ,
M = 1, . . . , M̄, substituting in them the closure expressions, they read:

∂

∂t
(QM

p )i + K̃′pM(T)
∂T
∂xi

= ∑
K,η

cp, η
M K(T)

(
QK

p
)

i, i = 1, . . . , n, M = 1, . . . , M̄. (11)

It is worth noticing that the equation for the heat flux (M = s1 + 1) is Cattaneo’s equa-
tion, and for this reason it is possible to consider the hierarchy of models as generalizing
this equation. Assuming, as in [2], that the time variation of the K̃′pM, and C p := ∑η(c

p, η
M K),

p = LA, TA, M, K = 1, . . . , M̂, is negligible, making the Fourier transform of (11) and
solving the resulting system with respect to the Fourier transform of the fluxes, one gets

(̂QM
p )i = ∑

L

(
C p + iΩIM̄

)−1
MLK̃′pL (T)

∂̂T
∂xi

, i = 1, . . . , n,
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with IM̄ the identity tensor of rank M̄. For M = s1 + 1, we have the relation between
the Fourier transforms of the heat flux and of the temperature gradient, from which the
following expression for the dynamical thermal conductivity is retrieved:

κ(Ω) = − ∑
p,M

(
iΩIM̄ + C p(T)

)−1

1M
K̃′pM(T)

= − ∑
p,L,M

(Ω2IM̄ + (C p)2)−1
1L (C

p)LMK̃′pM + iΩ ∑
p,M

(Ω2IM̄ + (C p)2)−1
1MK̃′pM. (12)

In the previous expression the real and imaginary parts of κ(Ω) are the Hilbert trans-
forms of one other, which implies the fulfillment of the causality requirement: the tempera-
ture gradient and the heat flux are the cause and the effect, respectively [2].

Taking Ω = 0 in (12), one obtains the steady-state thermal conductivity, and it is
worth noticing that it is the same one would get by applying the Maxwellian iteration
procedure to Equation (8). At the first order, one has to introduce the equilibrium moments
in the left-hand sides of (11), obtaining in such a way a relation between the fluxes and the
temperature gradient. The Maxwell iteration has been employed, e.g., to get the viscosity
and thermal conductivity of gases [29,37]. In addition, we wish to point out that the result
for the thermal conductivity would not be affected by using further scalar moments and/or
tensor moments of higher order.

Let us analyse the condition according which the variation in time of the temperature
is much slower than that of the fluxes [2]. Let us rescale the variables, by introducing a
characteristic time t̄, temperature T̄, length l̄ and collisional frequency ν̄c:

T = T̄ T̃, QM = (kBT̄)M−1 κT̄
l̄

Q̃M, x = l̄x̃, t = t̄ t̃.

From Equations (8) and (11), one can deduce:

∂T̃
∂t̃

∝ − κT̄
cV l̄2 ,

∂Q̃M

∂t̃
∝ −ν̄cQ̃M, or greater in magnitude,

with cV = dW
dT the material’s heat capacity. From a comparison of the last two expressions,

it is possible to deduce that, if the condition

l̄ >>
( κ

cV ν̄c

) 1
2

is satisfied, then the assumption is valid, which means that the distance over which the
temperature changes has to be large enough. e.g., in the case of Si, over a temperature

range 200–800 K,
(

κ
cV ν̄c

) 1
2

is at most of the order of tenths of microns.

5. Three–Dimensional Materials

In the case of three–dimensional materials, in addition to take linear dispersion rela-
tions for the acoustic phonon microscopic energy, in the literature the first Brillouin zone is
usually approximated with a sphere. This is commonly done to obtain the values of the
physical parameters present in the relaxation times. For example, the effective sample diam-
eter and the Grüinesen constants, which appear in the relaxation times of the normal and
boundary processes respectively, are obtained by taking a fitting of the experimental data
for the steady-state thermal conductivity [5]. If one would use different dispersion relations,
new fittings would be required. Nonetheless, the model can deal with generic dispersion
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relations (see e.g., [16,38] and the case of graphene in Section 6), the only disadvantage
being more complicated integral expressions for closure relations.

In the following, we report the relaxation times of the main phonon scattering mecha-
nisms present in 3D materials. For the normal scattering processes, one has [5]:

[τN
LA]
−1 = BN

LA

(
kB
h̄

)2

x2T5, BN
LA =

k3
Bγ2

LAV

Mh̄2v5
LA

,

[τN
TA]
−1 = BN

TA
kB
h̄

x T5, BN
LA =

k4
Bγ2

TAV

Mh̄3v5
TA

,

where the γ’s are the Grüinesen constants, V is the volume per atom, and M is the average
mass of an atom in a crystal. The inverse resistive relaxation time is given by the sum of the
boundary, umklapp, and impurity inverse relaxation times, which conserve only energy.
They respectively read:

[τU
p ]−1 = BU

p

(
kB
h̄

)2

x2T3 exp (−θD
p /3T), BU

p =
h̄γ2

p

Mv2
p θD

p
, p = LA, TA,

[τB
p ]
−1 =

vp

d
, p = LA, TA,

d being the effective diameter of the sample,

[τ I
p]
−1 =

Vk4
BΓ

4πh̄4v3
p

x4T4, p = LA, TA.

If, as impurities, we consider the several naturally occurring isotopes which make up
a single element, the mass-fluctuation phonon scattering parameter Γ reads:

Γ = ∑
i

ci

[
mi −M

M

]2

, M = ∑
i

cimi,

with mi the atomic mass of the ith isotope and ci its fractional atomic natural abundance.
As regards the functions appearing in the inversion and closure relations, one has:

dp(ΛWp) =
4π yp

h̄3v3
pΛ4

Wp

Kp
3 (ΛWp),

with

Kp
α(ΛWp) :=

∫ ΛWp kBθD
p

0

xα

ex − 1
dx, α ∈ Q+,

ap
MK(T) := −4

3
π yp

(kBT)M̃(K)+M̃(M)+3

(h̄3vp)
Jp
M̃(M)+K̃(K)+2

,

with

Jp
α (T) :=

∫ θD
p /T

0

xα ex

(ex − 1)2 dx.

K̃p
M =

4
3

πyp
(kBT)M̃(M)+3

(h̄3vp)
Kp

M̃(M)+2
(T),
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c(p,η)
ML = ∑

K
q(p,η)

MK bp
KL, p = LA, TA,

where η = U, N, B, I respectively labels the umklapp, normal, boundary, and imperfections,
and

q(p,N)
MK (T) =

4πyp

3h̄3vp
(kBT)M̃(M)+M̃(K)+3

[
J(p,N)

M̃(M)+M̃(K)+2
−

J(p,N)

M̃(M)+3
J(p,N)

M̃(K)+3

J(p,N)
4

]
,

q(p,η)
MK (T) =

4πyp

3h̄3vp
(kBT)M̃(M)+M̃(K)+3 J(p,η)

M̃(M)+M̃(K)+2
, η = U, B, I,

with

J(p,η)
α (T) :=

∫ θD
p /T

0

xα ex

τ
η
p (x)(ex − 1)2

dx.

5.1. Application to Si and Ge

In this subsection we investigate the thermal conductivity of Si and Ge, which are
two of the most used materials in semiconductor devices. The values of the physical
parameters present in the formulas, are reported in Tables 1 and 2 for the cases of Si and Ge
respectively, see, for example, [5]. We underline that no other parameter is used here and
in the following.

Table 1. Physical parameters for Si.

Parameter Value Parameter Value

vL 8430 m/s θD
L 586 K

vT 5840 m/s θD
T 240 K

γL 1.1 M 4.66 × 10−26 Kg
γT 0.6 V 2 × 10−29 m3

d 4 × 10−3 m Γ 2 × 10−4

Table 2. Physical parameters for Ge.

Parameter Value Parameter Value

vL 4920 m/s θD
L 333 K

vT 3540 m/s θD
T 150 K

γL 1.1 M 12.6 × 10−26 Kg
γT 0.6 V 2.27 × 10−29 m3

d 4 × 10−3 m Γ 6.08 × 10−4

For the case of Si, in the interaction with impurities we have taken into account that
silicon consists of three isotopes: 28Si, 29Si, and 30Si, with concentrations 92.2%, 4.7%, and
3.1% respectively. While, the natural composition of germanium is the following: 20.5%
70Ge, 27.4% 72Ge, 7.8% 73Ge, 36.5% 74Ge and 7.8% 76Ge.

The behavior of Si and Ge thermal conductivity is shown in Figure 1, where a compar-
ison is made with the results of Morelli, Heremans and Slack in [5], found by means of (5)
with Ω = 0.
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Figure 1. (Left): Silicon steady-state thermal conductivity vs. temperature. (Right): Germanium
steady-state thermal conductivity vs temperature.

One can notice that by using eight vector moments the agreement is excellent in all the
range of temperatures; however, out of the range [0, 200] K only two moments are already
good. This is probably due to the fact that in the region [0, 200] K the phonon interaction
with impurities is dominant, and its inverse relaxation time goes as ε4, therefore more
vector moments are required for a correct description. We also underline that the use of
weight functions with fractional powers of the energy is advantageous since the matrices
iΩI + C and Ω2I + C2, which have to be inverted are better conditioned.

In Figure 2 it can be seen that the conductivity can noticeably be increased by iso-
topically purifying the semiconductors. For example, the increase is around 13% and 29%
respectively for silicon and germanium at room temperature. Moreover, the maximum
conductivity is reached at slightly higher temperatures.

Figure 2. Pure silicon and germanium conductivities vs. temperature.

We also examine the dynamical conductivity, which is the behavior of the phonon gas
in a bulk semiconductor when there is a dynamical temperature gradient due to an external
disturbance. In Figure 3 the real and imaginary parts of Si and Ge thermal conductivities
are represented in the frequency interval that goes from 10−1 Hz to 160 THz, while in
Figure 4 the amplitude and the phase are reported, the former, for low frequencies, being
essentially equal to the real part. In qualitative agreement with [2], the amplitude has a
constant value at low frequencies and starts rapidly diminishing at higher frequencies
where the contribution of the imaginary part becomes relevant. Typically, this is a behavior
of a first order low–pass thermal filter, which is caused by the fact that when the disturbance
frequency becomes very high, the phonon gas is unable to follow it and the material acts as
an insulator. The imaginary part has a Lorentzian shape, and the resonance frequency is
equal to about 1 × 1010 Hz for both materials, corresponding to the order of the phonon
mean relaxation time (10–100 ps).
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Figure 3. (Left): Real part of the dynamical thermal conductivity vs. frequency f . (Right): Imaginary
part of the dynamical thermal conductivity vs. f . T = 300 K.

Figure 4. (Left): Amplitude of the dynamical thermal conductivity vs. frequency. (Right): Phase of
the dynamical thermal conductivity vs. frequency. T = 300 K.

Relatively to the phase, which can be seen in Figure 4 (right), it starts increasing at
higher frequencies and grows to saturation at the value of π

2 , faster at lower temperatures.
This phase behavior describes the typical delay between the cause, which is the thermal
disturbance, and the effect, which is represented by the heat flux. In Figure 5, the behavior
of the amplitude (left) and the phase (right) of the silicon thermal conductivity are reported
versus the frequency, at the temperatures T = 10, 100, 300, 600 and 1000 K. It can be seen
that at very high frequencies, above 1011 Hz, the amplitude grows with T, but the rise
slows down. Further, the amplitude goes as 1/ f in relation to frequency [8], for values
greater than the cut-off frequency fC, which is the point at which the amplitude reaches
1/
√

2 times its maximum value. At T = 300 K, fc ≈ 3.3 × 109 Hz and it rises with T,
however, at a temperature as high as T = 600 K, the cut–off frequency is still less than
90 GHz, a value which will be soon reached by high–frequency microelectronic devices
according to the International Technology Roadmap for Semiconductors. On the basis
of these results, it is clear that understanding the dynamical behavior of the thermal
conductivity is fundamental in controlling heat transport in microelectronic devices. In
Figure 6, we report analogous results for Ge. The qualitative agreement with the results
in [2] is good.

A comparison can be made also with the results in [8], which are obtained by using the
molecular dynamics (MD) technique. In Figure 7 the trend of the amplitude of Si dynamical
thermal conductivity is reported for frequencies from 10 GHz to 1 THz at the two values
T = 200, 500 K. There is a good agreement with Figure 1 in [8]: both figures show that the
amplitude decreases of two orders of magnitude with respect to the reference bulk value
of 150 W/mK. The asymptotic behavior of the amplitude, for Ω >> 2π fC, can also be
retrieved from (12):

|κ(Ω)| ≈∑
p

Ω−1K̃p
1 (T), Ω >> 2π fC. (13)
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Figure 5. Amplitude (left) and phase (right) of the Si dynamical thermal conductivity vs. temperature.
The black line behaves like 1/ f .

Figure 6. Amplitude (left) and phase (right) of the Ge dynamical thermal conductivity vs. tempera-
ture. The black line behaves like 1/ f .

Figure 7. Amplitude of Si thermal conductivity for f going from 10 GHz to 1 THz at T = 200 K and
T = 500 K.

It is worth noticing that the previous formula is independent of the choice of number
of vector moments and predicts that the asymptotic amplitude drops as 1/Ω, which
agrees both with Formula (6) of [8] and with the fitting of the molecular dynamics data in
Figure 1 of [8]. We conclude this section by underlining that the right-hand side of (13) is
independent of the phonon relaxation time, in agreement with the fact that ballistic transfer
of phonons is predominant when Ω >> 2π fC [8].
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5.2. Application to Si0.7Ge0.3

In this subsection, we show how Formula (12) can also be applied to the embedding
of spherical Ge nanoparticles of density ρGe = 5323 Kg/m3 in a Si0.7Ge0.3 matrix. Inserting
nanoparticles in a matrix is a challenging task, see e.g., [39,40] and references therein. To
accomplish this, the particles have to be grown into the matrix without causing dislocations
or defects, in addition the electron mean free path, unlike the phonon one, must not be
shortened considerably. Recently, a wide range of materials have become available for incor-
poration in SiGe [40]. This is particularly important, since SiGe is excellent for integrating
thermoelectrics into silicon technology, without increasing the cost of module production
substantially. Suitable materials include silicides, germanides as well as Si and Ge them-
selves [2,39,40]. The type of nanoparticles is only one element of the problem, another is to
determine the sizes and concentrations of the nanoparticles to achieve optimum efficiency,
which is ZT above 0.5 at room temperature and ZT over 1 at higher temperatures.

In the linear regime, for the scattering with nanoparticles, if their shape is assumed
to be spherical and a Matthiessen type interpolation between the long and the short
wavelength scattering regimes is used, the inverse relaxation time is given by [2,40]:

1
τ

np
p

=
vp
(
σ−1

pS + σ−1
pL
)−1

Vnp
fnp, (14)

where Vnp = 4
3 πR3 is the volume of a nanoparticle of radius R, and σpS and σpL are the

short and long wavelength cross sections, which respectively read:

σpS = 2πR2, σpL =
4π

9

(ρ− ρnp

ρ

)2
R6
( εp

h̄vp

)4
,

ρ being the density of the host matrix material, ρnp that of the embedded nanoparticles,
and fnp the nanoparticle volume fraction. The contribution stemming from the difference
in elastic constants is disregarded.

When the volume fraction of nanoparticles is up to 10% and their radius is in the
range of 1 to 100 nm, nanoparticle influence on the electron mobility is small, which is
crucial to achieving high figures of merit. The reason is that the electron mean free path
(MFP) related to the interaction with nanoparticles is much longer than the intrinsic MFP
due to the pure inelastic alloy scattering [3,40]. Moreover, nanoparticles, with the above–
specified characteristics, do not have an effect on the intrinsic physical parameters of the
semiconductor host alloy, which can be found in Table 3.

Table 3. Physical parameters for Si0.7Ge0.3.

vL 6812 m/s θD
L 510 K

vT 4769 m/s θD
T 213 K

γL 1 M 6.9 × 10−26 Kg
γT 0.7 V 2.07 × 10−29 m3

d 5 × 10−3 m Γ 0.2403
ρ 3332 kg/m3

In Figure 8 it is represented the temperature behavior of the steady-state thermal
conductivity κ(0), for a nanoparticle fraction fnp = 2%, and for some values of the nanopar-
ticle radius. It is compared with the case when no nanoparticles are embedded. It can
be seen that with increasing values of R, the thermal conductivity decreases and its peak
shifts in the right direction, from T = 15 K to T = 150 K as the radius goes to 10 nm. The
decrease is more pronounced at low temperatures [3], where the conductivity declines up
to more than one order of magnitude as R reaches 10 nm, while it tends to saturation at high
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temperatures of around 600 K. Moreover, differently from the case without nanoparticles,
at low temperatures, κ(0) does not obey the T3 power law followed by the specific heat.

Figure 8. Steady-state thermal conductivity versus temperature, for fnp = 2% and various values of
the nanoparticle radius, no np labels the case in which there are no nanoparticles.

Figure 9 shows the steady-state thermal conductivity dependence on the nanoparticle
radius for T = 5, 30, 300, 600, 1000 K. There exists at every T a value Rmin of R where the
thermal conductivity reaches its minimum, and Rmin becomes smaller as T increases, going
from 15 nm at T = 5 K to 1.3 nm at T = 600 K (for T = 1000 K it is below the range of
values of R taken into account). This is a feature that has been already described in [3,40],
and is ascribable to the interplay between the long and short wavelength scattering regimes,
shown in Equation (14). From Figure 9, it can also be seen that, at higher temperatures,
the presence of nanoparticles is less effective on conductivity, and, additionally, that the
minimum is very broad, which is very advantageous from a manufacturing perspective,
since it is not essential to have an extremely accurate control of the nanoparticle size.

Figure 9. Steady-state thermal conductivity versus R, for fnp = 2% and T = 5, 30, 300, 600, 1000 K.

In Figure 10 it is shown that the effect of embedding nanoparticles into a pure Si matrix
(the same is true for Ge) is much less marked. A minimum is still reached in correspondence
with an optimal size, but it has a higher value and is much narrower too. Nanoparticles are
much more effective in alloys as in this case most of the heat is carried by the low frequency
phonons [40], having a MFP longer than nanoparticle spacing, which makes these phonons
most powerfully scattered by the nanoparticles embedded in the matrix.
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Figure 10. Steady-state thermal conductivity versus R for nanocomposites with 0.2% volume fraction
of Ge in Si, in Ge and in Si0.7Ge0.3, respectively, at T = 300 K.

From Figure 11 (left), it is evident that the thermal conductivity diminishes as the
fraction of nanoparticles increases, for example the maximum conductivity diminishes
from 4.6 W/mK for fnp = 1% to 1.78 W/mK for fnp = 10%. This effect is confirmed
also in the right side of the Figure, where it is shown the minimum conductivity as a
function of temperature for various values of the nanoparticle volume fraction. The optimal
conductivity is significantly lower than the alloy conductivity without nanoparticles, e.g.,
of around 67% at room temperature for fnp = 10%.

Figure 11. (Left): Steady-state thermal conductivity versus T for various values of the fraction of
nanoparticles with radius R = 3 nm in Si0.7Ge0.3. (Right): Minimum steady-state thermal conductiv-
ity versus T for various volume fractions of nanoparticles.

Eventually one finds that, even though the optimal value corresponds to different
values of R, the value of Rmin has a small variation when the temperatures goes from 200 K
to 300 K, see Figure 12.

Regarding the dynamical thermal conductivity, the values T = 5 K and T = 300 K of
the temperature are taken into account. For each case, see Figure 13, we examine how the
amplitude of the dynamical conductivity changes with frequency f , for R = 1, 4, 8 nm.

Compared to the case without nanoparticles, the main difference is that the alloy
behavior is more similar to that of a second order low-pass thermal filter than a first order
one [3]. The change of R has effects only up to medium frequencies and the asymptotic
behavior goes as 1/ f , with the curves relative to different values of R which tend to
superimpose at a frequency regime which becomes higher at higher temperatures. It can
be noted that once again the dependence on R is smaller at room temperature.
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Figure 12. Optimal radius versus T for various volume fractions of nanoparticles in Si0.7Ge0.3.

Figure 13. Amplitude of the dynamical thermal conductivity versus f , for fnp = 4%. (Left): T = 5 K.
(Right): T = 300 K. The black continuous–dotted lines behave like 1/ f .

In addition, the cut-off frequency fC is greater in the case of inserted nanoparticles,
as can be seen in Figure 14, where its behavior with respect to R is reported, for T =
20, 50, 100, 300, 500 K. At low temperatures (T < 300 K), initially fC increases slowly with
R, then there is a range of R with a steep slope, and finally fC starts declining gradually.
This kind of behavior, which is more evident at lower values of T, can also be attributed to
the interplay between the long and short wavelength scattering regimes [3]. It can be seen
that up to temperatures of 100 K in the steep slope range a change of a few nanometers in
R leads to a variation in fC of up to three orders of magnitude. However, for greater values
of T, fC becomes less sensitive to R, due to the fact that in the high temperature regime the
anharmonic process is the dominant phonon interaction.

Figure 14. Cutoff frequency versus R, fnp = 2%.
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6. Application to 2–D Materials: Graphene

In this section, the formula for the thermal conductivity is applied to suspended
graphene nanoribbons. Graphene [9,18,41–52] is one of the most promising materials for
future applications in nano-electronic devices, since its mechanical properties are very
good and has an excellent electricity and heat conductivity. Particularly, this latter is very
high [19,53] because of its peculiar lattice structure, which makes it an adequate prospect
as a thermal management material in future nanoelectronic circuits [14].

Graphene is a two-dimensional hexagonally arranged lattice of carbon atoms, and it is
a semimetal with no energy gap. Graphene nanoribbons (GNRs) are thin strips of graphene
with variable width (y-direction) and length (x-direction), and with different roughness at
their edges, see Figure 15.

Figure 15. Armchair and zigzag graphene nanoribbons.

Phonon transport in GNRs can be modified by changing their dimensions, since width
impacts the line-edge-roughness scattering, while an increase in length induces a crossover
from ballistic to diffusive heat transport. In GNRs thermal flow can also be adjusted by
modifying the isotope concentration, substrate [54], and ribbon crystal orientation. For the
energy dispersion relations, we make use of the full ones, which can be obtained by means
of the empirical dynamical matrix method consisting of the solution of the below–written
eigenvalue problem

D(q)u(q) = 0,

where u(q) = (u1(q), u2(q))T , with T=transposed, u1(q), u2(q) are the Fourier transforms
of the displacement vectors of the two carbon atoms (A and B in Figure 16) contained in
the unit cell, and

D =

(
D(11) D(12)

D(21) D(22)

)
,

is the dynamical matrix given by:

D(ij) =

(
∑
j′′

Kij′′ −Miω
2(q)

)
δij −∑

j′
Kij′ eiq·∆Rij′ ,

δij being the Kronecker delta, i, j = 1, 2 labelling A and B. The index j′′ is summed
over the nearest neighbours of the i-th atom, while j′ is summed over the sites equivalent to
the j-th atom, that is those differing from it by a lattice vector. ∆Rij represents the relative
position of the i-th atom with respect to the j-th atom, and the K’s are the three by three
force constant tensors taking into account the binding forces between carbon atoms, whose
construction is shown in [55]. One has:

Ki,in =

 Φn
r 0 0

0 Φn
ti 0

0
... Φn

to,
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where in indicates the nth nearest neighbour of atom i, and r, ti and to respectively label the
radial, transverse in–plane and transverse out-of-plane components of the force constants
Φ, which can be found in Table 4 [4] .

Table 4. Force constants for graphene in units of 10 N/m.

Radial In–Plane Out–of–Plane

Φ1
r = 41.800 Φ1

ti = 15.200 Φ1
to =10.200

Φ2
r = 7.600 Φ2

ti = −4.350 Φ2
to = −1.080

Φ3
r = −0.150 Φ3

ti = 3.390 Φ3
to = 0.995

Φ4
r = 0.690 Φ4

ti = −0.190 Φ4
to = −0.550

Here, we consider an approximation including fourth nearest neighbours, follow-
ing [55].

Figure 16. Graphene lattice and reciprocal lattice, {~a1,~a2} and {~b1,~b2} basis and reciprocal basis
vectors, respectively.

As regards phonon interactions, we consider the isotope scattering (is), the edge
roughness scattering (rs), the umklapp and normal phonon–phonon scattering (us and
ns, respectively), and the scattering related to the under-coordinated atoms present at the
longitudinal edges of GNRs (bs).

The edge roughness relaxation time has the form [56]:

(
τ
(rs)
p

)−1
(q) =

[
1− p(q)
1 + p(q)

]
|vp,⊥|
2 Ly

, (15)

where Ly is the nanoribbon width, vp,⊥ represents the phonon velocity component perpen-
dicular to its idealized smooth edge and p(q) is the specularity parameter:

p(q) = exp(−4|q|2∆2cos2θE),

with ∆ the rms height of edge variations and θE the angle between the normal to the ideal
nanoribbon edge and q. The specularity parameter, in the form given by (15), manages
to capture the details of the interaction between each phonon mode and the edge rough-
ness [56]. In particular, it can discern the different thermal conductivity of armchair- and
zigzag-GNRs (AGNR and ZGNR), due to their different rms heights, as can be seen below.

The isotope scattering is due, as said, to the presence of a percentage of different
isotopes, and its reciprocal relaxation time, in the 2–D case, reads(

τ
(is)
p

)−1
(q) =

π

2h̄2 ΓA0ε2
p Dp(εp),

where A0 is the average area occupied by a carbon atom, and Dp(εp) is the phonon density
of states, which is expressed by
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Dp(ε) =
1

(2π)2

∫ dLp(ε)

|vp|
,

where integration is in the wave vector plane, along the isoenergy curve with energy
ε, dLp(ε) being its infinitesimal length–element, p = LA, TA, ZA. We remind that the
transversal out of plane vibrations, whose displacement vector is along the z–axis, are
called flexural modes (ZA).

The scattering related to the under–coordinated atoms at the y–edges of the nanorib-
bons has been taken into account only recently [57–59]. Due to the shorter and stronger
bonds of these atoms, a perturbing potential is generated whose effect can be taken into
account as a further phonon scattering mechanism. Its reciprocal relaxation time is:

(τbd
p )−1 =

4π

h̄2
NU

N
Ω0

(
δk
k

)2

ε2
pDp(εp),

k being the bond force constant, NU
N the ratio between the number of under-coordinated

atoms and the total number of atoms, Ω0 the area of the primitive cell, and δk the change of
the force constant for the under-coordinated atoms. A dimensionality analysis gives:

k = k(z) ∝
E(z)
d2(z)

; (16)

here, z is the effective atomic coordination number, equal to 3 for graphene carbon atoms,
and

E(z) =

(
d0

d(z)

)m

Eb, d(z) =
2d0

1 + e
12−z

8z
. (17)

E(z), Eb, d(z) and d0 are the bond energy, its single bond bulk value, the bond length
and its bulk value, respectively. The parameter m characterizes the bond nature, for
carbonium m = 2.56. From (16) and (17), one gets:

(τbd
p )−1 =

4π

h̄2
NU

N
Ω0

[(
1 + e

13−z
8z−8

12−z
8z

)m+2

− 1

]2

ε2
pDp(εp).

The ratio NU
N as a function of the GNR width is given by:

NU

N
=


6a0

2
√

3Ly+3a0
, AGNR

3a0
2Ly+3a0

, ZGNR,

with a0 = 0.246 nm the graphene lattice constant.
Eventually, the reciprocal umklapp relaxation time is the same as that in the 3D

case and, for all branches of phonons, the normal one has the same form as that for the
transversal acoustical phonons of 3D materials. We also underline that the approximation
for the normal scattering collision operator, which was first introduced by Callaway, is really
crucial since, in 2D materials, the normal scattering is dominant over the umklapp one ,
and it is necessary to ensure the momentum conservation in order not to underestimate the
thermal conductivity [1,60,61]. The values of the parameters appearing in the relaxation
times are reported in Table 5.

In the computation of the integrals present in the closure relations, we need the
next Properties.
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Table 5. Physical parameters for Graphene.

Parameter Value Parameter Value

vLA 21.9 nm/ps θLA 1826.39 K
vTA 11.7 nm/ps θTA 1126.18 K
vZA 2.28 nm/ps θZA 623.62 K
γLA 2 MC12 1.99 × 10−27 Kg
γTA 2/3 MC13 2.16 × 10−26 Kg
γZA −3/2 A0 2.62 × 10−20 m2

Property 1. Let F(ε) be an integrable function of the phonon energy ε, one has:∫
B

F(ε)dq = 12
∫
B1

F(ε)dq,

where B1 is the irreducible wedge of the first Brillouin zone consisting of the triangle of vertices Γ,
M and K , see Figure 16.

Property 2. Let v be the phonon group velocity, one has:

∫
B

v2
1 F(ε)dq =

∫
B

v2
2 F(ε)dq = Φvv

1 (F) := 4

{[
2R2

11 + 1
] ∫

B1

v2
1F(ε)dq

+ 2R2
12

∫
B1

v2
2F(ε)dq

}
= 6

∫
B1

(v2
1 + v2

2)F(ε)dq,

∫
B

v1v2 F(ε)dq = 0,∫
B

q2
1 F(ε)dq =

∫
B

q2
2 F(ε)dq = Φqq

1 (F) := 6
∫
B1

(q2
1 + q2

2)F(ε)dq,∫
B

q1q2 F(ε)dq = 0,∫
B

q1v1 F(ε)dq =
∫
B

q2v2 F(ε)dq = Φqv
1 (F) := 6

∫
B1

(q1v1 + q2v2)F(ε)dq,∫
B

q1v2 F(ε)dq =
∫
B

q1v2 F(ε)dq = 0,

where the matrix

R =

(
cos (π/3) − sin (π/3)
sin (π/3) cos (π/3)

)
,

rotates the plane by an angle of π/3.

Property 3. Let Ge(v) be an even function both of v1 and v2, one has:

∫
B

v2
i Ge(v)dq = Φ2,i(Ge) := 4

2

∑
r=1

2

∑
s=1

{ ∫
B1

v2
i Ge(v)dq

+ RirRis

∫
B1

(
v′rv′sGe(Rv′) + vrvsGe(Rv)

)
dq

}
,

∫
B

vivj Ge(v)dq = 0, i 6= j,

with v′ =
(

v1
−v2

)
.
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Property 4. The relaxation times are either even functions (τ(is)
p , τ

(pps)
α , τ

(bs)
p ) of the energy or

even functions (τ(rs)
p ) of both the components of v.

The above-written Φ1, Φ2,i, i = 1, 2 are functionals over a suitable space of functions
defined on B.

The previous properties are a consequence of the hexagon’s symmetries, which make
ε even with respect both to q1 and q2, and invariant under rotations in the wave-vector
plane of angles multiples of π/3. It also descends that v is odd with respect both to q1 and
q2, and

v(Rmq) = Rmv(q), ∀q ∈ B1, m ∈ Z.

Exploiting the previous properties, it is possible to find:

K̃p
M = ypΦvv

1

(
ε

M̃(M)
p

exp (εp/KBT)− 1

)
,

ap
MN = −ypΦvv

1

(
ε

M̃(M)+M̃(N)
p

exp (εp/KBT)
(exp (εp/KBT)− 1)2

)
,

qp
MN = yp

[
us,ns

∑
ι=is,bs

Φvv
1

(
ε

M̃(M)+M̃(N)
p

exp (εp/KBT)
τι

p(exp (εp/KBT)− 1)2

)

+ Φ2

(
ε

M̃(M)+M̃(N)
p

exp (εp/KBT)
τrs

p (exp (εp/KBT)− 1)2

)

−
Φvq

1

(
ε

M̃(N)
p

exp (εp/KBT)
τns

p (exp (εp/KBT)−1)2

)
Φvq

1

(
ε

M̃(M)
p

exp (εp/KBT)
τns

p (exp (εp/KBT)−1)2

)

Φqq
1

(
exp (εp/KBT)

τns
p (exp (εp/KBT)−1)2

) ]
.

We underline that, in the 2–D case, the formula based on the hierarchy of macroscopic
models presents a significant advantage with respect to the commonly used Formulas (5)
and (6). In fact, the integrand functions in (12) are integrable also in the two-dimensional
case, which means that no truncation procedures [53] are required for computing of the
closure integrals even in the case when one considers only the isotope and phonon-phonon
scatterings. All the results are obtained by using nine vector moments, with integer powers
of the microscopic energy, since, as is shown in Figure 17 (left), the convergence can
be considered attained with this number of moments. Figures 17–20 show the steady-
state thermal conductivity. Figure 17 represents the bulk conductivity, around the room
temperature it reaches very high values, in the order of thousands of W/Km, corresponding
to the ballistic limit for suspended graphene, which is estimated in Figure 3d of [53],
see also [1,6,60]. As can be seen in the right part of the figure, the normal scattering
plays a significant role in all temperature ranges, except for low temperatures, in fact, it
reduces the thermal conductivity by a half at the room temperature and by even more at
higher temperatures.

In Figure 18, the thermal conductivity of 80 nm wide GNRs is depicted, on the left it
is derived by ignoring the phonon interaction with the potential generated by the under-
coordinated atoms. The rms heights of edge variations of A- and ZGNRs have been
considered equal to 0.06 nm and 0.02 nm, respectively. It is possible to see that the ZGNR’s
thermal conductivity is significantly higher, of up to one order of magnitude, and that for
both types of NRs the edge scattering plays a relevant role up to temperatures of around
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700 K, which is consistent with molecular dynamics simulations. In particular, the thermal
conductivity is lower along the width direction, for example, at T = 300 K the ZGNR’s
conductivity is reduced of 10% along the x–direction and of 27% along the y-direction,
while for AGNRs the reductions respectively are 54% and 75%. The same holds true also
for thinner nanoribbons except that the temperature up to which es scattering is relevant
increases, as is shown in Figure 19, on the left.

Figure 17. (Left): The steady-state conductivity for bulk graphene (without es scattering), obtained
by using different numbers of vector moments (vm). (Right): with and without normal scattering.
The fractions of C12 and C13 are fC12 = 0.989%, fC13 = 0.011%.

Figure 18. The steady-state thermal conductivity for A- and ZGNRs in the x- and y-direction. (Left):
only with edge scattering. (Right): with and without bs-scattering. Ly = 80 nm.

Figure 19. The steady-state thermal conductivity for A- and ZGNRs in the x- and y-direction. (Left):
only with edge scattering. (Right): with and without bs-scattering. Ly = 15 nm.

The thermal conductivity is drastically reduced, of around two order of magnitudes,
when one includes also the scattering by under-coordinated atoms, as reported in the
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right sides of Figures 18 and 19, and this happens almost independently of the type of
nanoribbon and of the direction, and at all temperatures.

The significance of the bs-scattering is also supported by the trend of the thermal
conductivity, at T = 300 K, as a function of the width, which is depicted in Figure 20, on
the left with only the es scattering, and on the right with the es and bs scatterings. It is
possible to see that the thermal conductivity goes to saturation at Ly ≈ 100 µm, and that
the effect of the bs–scattering is more pronounced than that of the es one at all widths.

Figure 20. The steady-state thermal conductivity for A and ZGNRs in the x- and y-direction vs
the nanoribbon width. (Left): with only the es-scattering. (Right): with the es– and bs–scatterings.
T = 300 K.

Concerning the dynamical conductivity, in Figure 21 it is shown its amplitude and
phase in the x- and y-direction for nanoribbons with widths of 40 nm and 15 nm respectively,
at a temperature T = 300 K. For both widths the conductivity holds constant at low
frequencies and begins to fall rapidly at higher frequencies. The phase starts increasing
at higher frequencies up to the saturation value of π

2 . The cut-off frequency for armchair
and zig–zag nanoribbons of width equal to 40 nm, for various values of the temperature, is
reported in Table 6.

Figure 21. The amplitude and the phase of the dynamical thermal conductivity for GNRs, in the x-
and y-direction. (Left): Ly = 40 nm. (Right): Ly = 15 nm.

It increases with increasing T as can also be seen in Figure 22, which represents the
trend of the amplitude of the thermal conductivity at some values of the temperature.
For values higher than the cut-off frequency, one still has |κ| ∼ 1

f . Like in silicon and
germanium, the phonon modes whose scattering rates are smaller than the frequency of
temperature disturbances contribute to thermal conductivity less than in the steady state,
and for this reason the dynamical thermal conductivity exhibits a low-pass thermal filter
behavior [62].



Energies 2022, 15, 4718 26 of 28

Table 6. Cut-off frequency vs temperature in the y-direction.

Temperature (K) AGNR fc (1010Hz) ZGNR fc (1010Hz)

15 0.0017 0.0012
90 0.1475 0.1155

300 0.4051 0.3275
600 0.5509 0.4627
900 0.9389 0.8512

Figure 22. Amplitude of the dynamical conductivity in the x- and y-directions for an armchair (left)
and zig–zag (right) GNR with width equal to 40 nm.

7. Conclusions

In this paper, we have reviewed some results on thermal conductivity of silicon,
germanium and graphene recently obtained by using a formula derived from a hierarchy of
macroscopic models for heat transport in semiconductors [20–22]. The macroscopic models
are retrieved from the Boltzmann–Peierls equation by using the moments method. The
moments chosen as state variables are the phonon energies and a suitable number of vector
moments, which include the heat fluxes. The equations have been closed by exploiting the
maximum entropy principle. The results are recast in a form which is suitable for both 3D
and 2D materials and we examine the main characteristics of the thermal conductivity in
semiconductors. The influence of all the main scattering mechanisms is taken into account
and also, in the case of silicon–germanium alloys, the possibility of reducing the thermal
conductivity by embedding nanoparticles in the matrix. In the case of graphene, the
recently introduced scattering by underco-ordinated atoms is analysed. For the dynamical
conductivity, it is confirmed that, at high frequencies, materials exhibit a low-pass thermal
filter behavior. This review paper can be considered a natural continuation of a previous
review paper [23] and together they confirm that MEP is a physically sound method for
devising macroscopic models for charge and energy transport in semiconductor materials.
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