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Abstract: In this work, the optimal design of a hybrid energy complex, including wind turbines, an
internal combustion engine, and an adiabatic compressed air energy storage system is investigated.
A novel bi-level optimization strategy is proposed for optimizing the capacity and operational power
of each component of the system based on techno-economic considerations. The article presents
information and discussions about the impacts of the partial-load operation of the energy storage
system components on the optimal rated power and working strategies. The off-design characteristics
are proven to have a huge negative impact on the efficiency and economy of the hybrid system. The
efficiency reduction of the compressed air energy storage system is about 21% in summer and 8.9%
in winter, when the system is operating in partial-load conditions. The operation cost of the system is
reduced significantly when carrying out the proposed bi-level optimization strategy.

Keywords: compressed air energy storage systems; district heating and cooling; differential evolution;
off-design performance

1. Introduction

Energy storage systems are widely used for energy-load leveling today, but they
will be much more broadly implemented and used in the future when renewable driven
systems dominate [1]. Compressed air energy storage (CAES) has been shown to be one of
those promising electricity storage technologies due to its low cost, long lifetime, and the
established operation experience [2,3]. CAES was originally developed in the early 1960s,
along with other gas expander technologies for power plants [4]. The first pilot CAES plant
was a 290 MW unit located in Germany; it is a diabatic CAES that has been successfully
operating for more than 40 years [5]. For diabatic CAES plants, the efficiency is in the
range of 42% to 54%, mainly depending on the degree of recovery of the thermal energy
in the system [6]. To improve the overall round-trip efficiency, adiabatic CAES (A-CAES)
technology is proposed. In A-CAES, the thermal energy of the compression process is
collected and stored to preheat the airflow before the expanders in the discharging hours,
and the efficiency can be boosted up to 70% in this way [4].

For the best utilization of the CAES potential in energy stabilization, a variety of
hybrid energy systems (HESs) integrated with this system are proposed. HESs that include
renewable plants, an energy storage unit, and an auxiliary energy supply unit will be
quite common in the future when the energy systems have to embrace more fluctuating
renewable sources such as wind and solar. An example of such an HES is the wind farm
connected to an A-CAES system and a flywheel energy storage system in [7]. There, the
A-CAES system operates at variable cavern pressures and a constant turbine inlet pressure
mode. The flywheel unit is controlled by a constant power strategy. In another effort,

Energies 2022, 15, 4634. https://doi.org/10.3390/en15134634 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15134634
https://doi.org/10.3390/en15134634
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15134634
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15134634?type=check_update&version=1


Energies 2022, 15, 4634 2 of 21

a wind–diesel hybrid system with CAES is explored to reduce the diesel consumption
of the generators with various penetration rates and give a higher power output of the
diesel engine, resulting in a longer engine lifetime [8]. An energy system is proposed and
investigated with real data to show the performance of a PV plant combined with CAES [9].
The energy and exergy efficiencies of CAES in an HES in this system are very close and
vary from 35% up to 65% during the year. Furthermore, the HES as a city gate station has
been studied in [10].

Various HESs are also proposed to show the potential of CAES for economy or effi-
ciency improvement. The techno-economic analysis of CAES was presented to provide
emergency back-up power to support a microgrid operation [11]. An economic benefit
estimation model was developed to analyze the economic gains of CAES operation with
different microgrid configurations, power supply reliabilities, and diesel prices. Exergoeco-
nomic analysis was studied for a cogeneration system, including CAES, and the effects of
the critical parameters, such as electricity purchase price, diurnal operating period, and the
failure and repair rates on the cost of the products, were analyzed. The economic analysis
revealed that the proposed system had a payback time of 2.9 years [12]. A cogeneration
system composed of a CAES system, an organic Rankine cycle (ORC) cycle and an ejector
system was proposed and investigated, leading to a round-trip efficiency of 72% in [13].
The integration of a CAES system with a gas turbine, an ORC, and an absorption chiller
was built for energy and exergy analyses by Mohammadi et al. [14], showing a round-trip
efficiency of about 54%. The techno-economic analysis of CAES was presented to provide
emergency back-up power to support a microgrid operation. An economic benefit estima-
tion model was developed to analyze the economic gains of CAES operation with different
microgrid configurations, power supply reliabilities, and diesel prices. District energy
systems can also be integrated with CAES systems to perform a ‘peak shaving’ function
and maintain a stable power output. Such a hybrid system was proposed and studied
in [15], with an exergy efficiency of 41.5% and a primary fuel saving ratio of 23%.

The optimization of the design and operation of such HESs is crucial to obtaining the
expected outcomes. The cost and performances of HESs are the two main objectives for
the optimization. Yan et al. [16] presented a multi-objective optimization algorithm for
finding the optimal cost, energy efficiency, and environmental effect of an HES consist-
ing of a trigeneration CAES unit. The HES was compared with a traditional combined
cooling, heating, and power system (CCHP). An evolutionary multi-objective algorithm
was developed in [17] to handle the trade-off between the cost and the exergy efficiency of
another HES composed of a trigenerative CAES through Pareto solutions. A CAES system
combined with an ORC unit and an ejector system was optimized, resulting in a round-trip
efficiency growth of 5.7% compared to the base case [18]. In addition, a data-driven method
was proposed to study one full year’s worth of real operating data, and a new approach
was introduced to design CAES based on specific grid requirements [19].

Naturally, the off-design operation of the components of an HES could have a signifi-
cant effect on the optimal operation point and the size of the system components. This is
of even more importance for the energy storage unit of an HES as it will frequently and
inevitably go to partial-load conditions. A comprehensive analysis of the CAES system
with low-temperature thermal storage under off-design conditions was presented by Guo
et al. [20]. A case study, including wind turbine integrated with a CAES system, was
investigated in [21]. The results showed that the partial-load fluctuations of the HES can
be reduced. Mazloum et al. developed the dynamic modeling of an isobaric A-CAES
(IA-CAES) based on the mechanical inertia of the compressors and the air turbines [22]. It
was proved that the levelized cost of electricity of an A-CAES working in an off-design
condition was significantly higher than that of an A-CAES operating at nominal load [23].
The round-trip efficiency of an A-CAES approaches 68% at a nominal load, while it offers
the lower efficiencies of 52% and 28% if working at 50% and 10% loads, respectively [24].
In the case of the subcooled-CAES, the overall coefficient of performance of the system will



Energies 2022, 15, 4634 3 of 21

decrease to 1.27 and 1.05 if the operational load drops to 50% and 10%, respectively, while
it can reach a value of above 1.6 at nominal-load operation [25].

The fact is that the literature so far has considered the optimization of HESs in rated
conditions. Off-design analyses are seldom applied to obtain the optimal capacity of each
device and operation strategy of HESs. With the fluctuating data and multi-energy streams
in the system, the devices operate with different power outputs. Thus, a novel HES that
includes wind turbines, an A-CAES, and an internal combustion engine (ICE) for district
heating, cooling, and power is investigated in this paper. For CAES especially, coupling
with WTs, ICE, and other devices should operate in an off-design condition. The capacity
of the system components and operational strategy of the ICE and A-CAES is optimized
as the optimal efficiency and economy of the system is the objective. A novel bi-level
optimization strategy is introduced and applied for the optimization. In particular, the
off-design characteristics of A-CAES and ICE are considered so that the optimal results
could approach the actual operation condition. Finally, the performance of the A-CAES
unit and the economy of the HES are investigated.

2. Methodology

The proposed system for supplying the CCHP energy is shown in Figure 1. In the
HES, the wind turbines (WT) are the main source of the electricity load, and the ICE with
heat recovery and an absorption chiller produces the electricity, heating, and cooling load.
Due to the fluctuation of the WT power generation and the user load, there is extra or a
lack of power, and the A-CAES is employed in the system to balance the energy. There are
two processes of the A-CAES: the charging and the discharging processes.
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Figure 1. The structure of the HES with CAES.

In the charging process, when the generation power is higher than the electricity
load, the surplus power can be stored with the compressors by producing compressed
air. The heat of the compressed air is recovered by heat exchangers with the water from
the cold Thermal Energy Storage (TES), and the heated water is charged into hot TES.
The heat exchanger is arranged after each compressor. Through 3-stage compression, the
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compressed air can be charged into the air storage chamber. In the discharging process, the
generation power is less than the electricity load, and the high-pressure air is discharged
from an air storage chamber and heated up in a heat exchanger by the water from the hot
TES. The heat exchanger is arranged before each turbine. Then, the air expands in the
turbine, through 3-stage expansion, to generate electricity. The enthalpy of the air drops a
lot after the expansion so that the temperature of the expanded air is low enough to supply
the cooling load. If the generation power of the WT and A-CAES is still not able to meet the
electricity load, the lack of the power can be supplied by an ICE. The heat of the exhaust
gas and the jacket water of the ICE are recovered, and the heat recovered from the ICE is
also used to supply the cooling load through an absorption chiller. In addition, the power
grid, gas boiler, and electric chiller are used to compensate for the lack of the electricity,
heating, and cooling load.

The novel bi-level strategy of the optimization model of the total daily cost is intro-
duced in this section and is shown in Figure 2.
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The bi-level optimization strategy can be divided into two levels: at Level I, the rated
power and the number of WTs, ICEs, compressors, and turbines of the A-CAES should be
optimized; at Level II, the power of the ICEs, compressors, and turbines of the A-CAES
should be optimized. The optimization result of Level I is the constraint condition of Level
II. Through the Level I results, with the inputting of the data of the wind speed at each
hour, the operational power of the WT can be calculated. Through the Level II results, the
gas quantity and the power of the recovery heat/absorption chiller (AC) of the ICE can be
calculated, and with the inputting of the data of the heating/cooling load, the power of
the boiler and electric chiller (EC) can be obtained. Then, with the inputting of the data
of the electricity load, the grid power can be calculated. Finally, with the inputting of the
data of the cost parameters, the capital cost and the operational cost of the system can be
calculated. The optimization objective of Level I is the minimum capital cost.

At Level II, the power, cooling, and heating quantity at each hour can be calculated
with the energy balance equations. For Level II, the minimum energy cost is the opti-
mization objective. The power of each energy supply device can be calculated using
thermodynamic models. The recovered heat can be calculated by PICE(t); so, the lack of
heat or cooling load should be supplied by the boiler or chiller. Then, the gas cost can be
obtained with the gas price data. In addition, the input power of the compressors and the
output power of the WTs, turbines, and ICE can be carried out to calculate the electricity
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that should be purchased from the grid; so, the electricity cost can be obtained with the
energy price data.

Finally, the total daily cost can be calculated for optimization. In order to carry out
the above calculation, the mathematical model is presented in the next section. Some
assumptions are made to simplify the analysis of the model.

a. Air can be regarded as an ideal gas; it meets the ideal gas state equation.
b. The properties of the fluids are considered to be constant.
c. The heat loss and pressure drop in the pipes are ignored.
d. The throttling process is isenthalpic.

3. Mathematical Models

Thermodynamics is employed to build the mathematical models of each device in the
system, and the operational power of each generator at time t is given in this section.

a. WT Model

The mathematical model of the WT is shown by the following functions [17]:

PWT(t) =


0, v(t) ≤ vin or v(t) ≥ vout
v3(t)−v3

in
v3

r−v3
in

Pr, vin ≤ v(t) ≤ vr

Pr, vr ≤ v(t) ≤ vout

(1)

where PWT(t) and v(t) are the operational power of the WT and wind velocity. Pr is the
rated power; vr is the rated wind speed; vin is the cut-in speed; and vout is the cut-off speed.

b. ICE Model

The gas consumption model of the ICE can be estimated as [16]:

GICE(t) =
PICE(t)

ηpe(t)ηte(t)
(2)

where GICE(t) represents the gas consumption rate when the generating power is PICE(t) at
the time t; ηpe(t) and ηte(t) are the electricity and thermal efficiency. The waste heat can be
expressed as

GICE(t)(1 − ηte(t)) = Qjw(t) + Qex(t) + Qloss(t) (3)

where Qjw(t) is the jacket water heat, Qexh(t) is the exhaust heat, and Qloss(t) is the heat loss
which is caused by the oil cooler and thermal radiation. Thus, we define Qre(t) as the waste
heat recovery of the system, and the waste heat balance can be represented as

Qre(t) = Qjw(t)ηjw(t) + Qexhηexh(t) (4)

where ηjw and ηexh represent the efficiency of the jacket water heat exchanger and the ex-
haust heat exchanger, respectively. Table 1 presents the partial-load ratio (PLR) performance
of the ICE (GE J320GS, 1067 kW). fjw, fex, fic, and floss denote the coefficients corresponding
to jacket water heat, exhaust gas heat, intercooling, and heat loss.

c. CAES Model

For the off-design performance of turbomachines, four important characteristics vari-
ables exist that could affect each other. These are the flow rate through the turbomachine,
its isentropic efficiency, the pressure ratio, and the speed of rotation. Here, the rotational
speed is considered to be constant at any operating load, and thus, the parameters being
affected by the off-design operation are reduced to three (i.e., pressure ratio, isentropic
efficiency, and flow rate). The variation of the flow rate is represented here by the load
of the operation (% of the nominal flow rate). In Figures 3 and 4, the plots made by the
curve fitting on the performance maps of real-life compressors and turbines [26,27] show
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the variation of these three parameters in relation to each other for the compressor and the
turbine used in this study.

Table 1. Performance factors of ICE.

PLR ηpe ηte fjw fex fic floss

50% 0.3824 0.9653 0.3236 0.5245 0.1086 0.0432
60% 0.3915 0.9744 0.3210 0.5154 0.1235 0.0401
75% 0.4019 0.9720 0.2953 0.5191 0.1489 0.0366
85% 0.4067 0.9742 0.2702 0.5039 0.1871 0.0388

100% 0.4113 0.9744 0.2536 0.5125 0.1966 0.0373
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At time t, the model is built to calculate the performance of the A-CAES. The partial-
load ratio αc,pl (t) is proposed to investigate the off-design performance of the compressor:

αc,pl(t) =
Pc(t)
Pc,r

(5)

where Pc(t) and Pc,r are the operational and rated power of the compressor. Through
the performance curve in Figures 3 and 4, the efficiency of the compressor ηc(t) can be
calculated. The pressure ratio of the compressor is set as πc. If the air temperature of the
compressor inlet is Tc,in(t), then the definition of the air temperature of the compressor
outlet Tc,out(t) can be calculated with πc and ηc(t) as:

Tc,out(t) = Tc,in(t)
(

1 +
1

ηc(t)

(
π

γ−1
γ

c − 1
))

(6)
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where γ is the polytropic index as 1.4. As cpa is the average specific thermal capacity of air,
the specific work of the compressor wc(t) is defined as:

wc(t) = cpa(Tc,out(t)− Tc,in(t)) (7)

The air mass flow rate mc,a(t) through the compressor of the A-CAES can be calculated
using the following formula:

mc,a(t) =
Pc(t)
wc(t)

(8)

The compressor is driven by the electricity from the system, and the electricity is
defined as:

Ec =

tc∫
0

Pc(t) · dt (9)

where tc is charging time, as:

tc =
V(pmax − pmin)

mc,a(t)RgT0
(10)

where V, pmax, and pmin are the volume and the maximum and minimum pressure of the
storage chamber; T0 is the air temperature in the air storage chamber at tc = 0; and Rg is the
air gas constant = 287 J/(kg·K).

The heat exchanger is employed to cool the compressed air after each compressor and
heat the air before each turbine with cold and hot water, respectively, as shown in Ref. [28];
the ε is heat exchanger efficiency, defined as follows:

ε =
cpama(Tin,a − Tout,a)(
cpm

)
min(Tin,a − Tin,w)

=
cpwmw(Tin,w − Tout,w)(
cpm

)
min(Tin,a − Tin,w)

(11)

where cpw is the average specific thermal capacity of water, and ma and mw are the mass
flow rate of the air and water in the heat exchanger, respectively. Tin,w and Tout,w are the inlet
and outlet water temperature. Tin,a is the inlet temperature of the air in. Assuming the hot
air has the minimum heat capacity, the outlet air temperature Ta,he,out is defined as follows:

Ta,he,out = (1 − ε)Ta,he,in + εTw,he,in (12)

where Tw,he,in is the inlet water temperature.
In the heat exchanger, the pressure loss can be calculated as the empirical equation [29]:

∆p =

(
0.0083ε

1 − ε

)
pin (13)

where ∆p is pressure loss in the heat exchanger, and pin is the inlet air pressure of the
heat exchanger.

As a gas–fluid heat exchanger, the ε is quite high and can be 0.95 at the nominal load.
Additionally, in order to maintain the outlet temperature of the heat exchanger constantly at
any other operational load, there should be pumps before the outlet of the heat exchangers
to adjust the flow rate of the water. When the load is lower than the nominal load, the work
of the pump will be lower. Here, the pump work is much smaller compared to that of the
compressors and the turbines; so, a linear work drop in accordance with the level of load
decrease is favorable. The rate of electricity consumption of the pump can be calculated
by [25]:

Wpump =
mw∆ppump

36ρwηpump
(14)

where ρw, ∆ppump, and ηpump are the water density, the pressure difference of the two sides
of the pump, and the overall pump efficiency.
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The partial-load ratio αt,pl(t) is proposed to investigate the off-design performance of
the turbine; when the operational and rated power of the turbine are Pt(t) and Pt,r, αt,pl(t)
can be calculated as:

αt,pl(t) =
Pt(t)
Pt,r

(15)

Through the performance curve in Figures 3 and 4, the efficiency of the turbine ηt(t) can
be calculated. The expansion ratio of the turbine is set as πt. To define the air temperature
of the turbine outlet Tt,out(t), it can be calculated with πt and ηt(t) as:

Tt,out(t) = Tt,in(t)
(

1 − ηt,i(t)
(

1 − π
1−γ

γ

t

))
(16)

where Tt,in(t) and wc(t) are the inlet air temperature and the specific work of the turbine,
and wc(t) is defined as:

wt(t) = cpa(Tt,in(t)− Tt,out(t)) (17)

The air mass flow in the turbine mt,a is defined as:

mt,a(t) =
Pt(t)
wt(t)

(18)

Similar to the compressor in the charging process, the electricity generated from the
turbine is defined as:

Et =

tt∫
0

Pt(t) · dt (19)

where tt is the discharging time, defined as:

tt =
V(pmax − pmin)

mt,a(t)RgT0
(20)

In terms of efficiency, the overall CAES system efficiency ηCAES can be defined as
follows:

ηCAES =
Et

Ec
(21)

The state of charge (SOC) can present the feasibility and safety of the dispatch plan for
the A-CAES, and it can be defined as [16]:

SOC =
mch(t)− mmin

mmax − mmin
(22)

mmin/max =
pmin/maxV

RgT0
(23)

mch(t) = mmin +
t

∑
i=0

mc,a(i)−
t

∑
i=0

mt,a(i) (24)

In order to be integrated in the HES, the motor of the compressors and the generator
of the turbines are used in the A-CAES. As the optimization variable in the calculation, the
operational power PCAES(t) of the A-CAES is calculated by Equation (25),

PCAES(t) =

{
Pc(t)/ηm Charging
−Pt(t)ηg Discharging

(25)

where the ηm(t) and ηg(t) are the efficiency of the motor and the generator, set as 0.95,
respectively. In the charging process, the PCAES(t) is set as a positive value, and in the
discharging process, the PCAES(t) is set as a negative value.
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d. Constraints

For the mathematic model, there are constraints for the CAES and the ICE:
(a) Storage constraints of the CAES:

pmin ≤ pch ≤ pmax (26)

0 ≤ SOC ≤ 1 (27)

(b) Power constraints of the compressors, turbines, and the ICEs:
0 ≤ Pcom ≤ Pcom,r
0 ≤ Ptur ≤ Ptur,r
0 ≤ PICE ≤ PICE,r

(28)

where Pcom,r, Ptur,r, and PICE,r are the rated power of the compressors, turbines, and ICEs,
respectively.

e. Energy balance model

The heating and cooling power load is supplied from the WT, A-CAES, and ICE, and
the power energy balance is defined as:

PWT(t) + PCAES(t) + PICE(t) + Pgrid(t) = Le(t)(+Pec(t)) (29)

where PWT(t), PCAES(t), and PICE(t) are the powers of the WT, A-CAES, and ICE, respectively;
Pgrid(t), Le(t), and Pec(t) and Pcom(t) are the powers of the grid, the user load, and the
electric chiller.

The heat energy load Lh(t) is supplied by the recovery heat of the ICE Qre(t) and the
heat of the gas boiler Qb(t); the heat balance is defined as:

Qre(t) + Qb(t) = Lh(t) (30)

The cooling energy load Lc(t) is supplied by the power of the AC Qac(t) and the EC
Qec(t) and is defined as:

Qac(t) + Qec(t) = Lc(t)/COP (31)

where COP is the coefficient of the AC.

f. Economic model

The aim of the model is to obtain the minimum total daily cost Ctd, which is defined as:

Ctd = Cca + Cen + Cop (32)

where Cen and Cop are the energy cost and the operation cost, respectively. Cca is the capital
cost, which is defined as

Cca = CacPf
d(1 + d)L

(1 + d)L − 1
(33)

where Cac, L, and Pf are the acquisition cost factor, the lifespan, and the rated power of the
device, and d is the discount rate with the range of value (0.1).

The energy cost consists of the costs of the natural gas Cgas,i and the electricity Cele,i
and is defined as

Cen =
t

∑
i=1

(
Cgas,i + Cele,i

)
(34)

The operation cost consists of the operation and maintenance (O&M) costs:

Cop = COM,WT + COM,ICE + COM,CAES (35)
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The default values of the parameters for the cost calculation are given in
Tables 2 and 3 [16]. For the lifespan assumption, the replacement of the spare parts is
ignored. The acquisition is considered as a one-time investment. The O&M is considered
to be the same in each year. With the proposed models above, in terms of the validation
and real simulation values, the models of the system are all acceptable and realistic.

Table 2. Parameters of the capital cost.

Parameters WT ICE CAES

Acquisition cost (USD/kW) 770 812 325
O&M cost (USD/h) 1.2 0.3 0.16

Lifespan (year) 20 10 10

Table 3. Parameters of the energy prices.

Parameters Time Price

Electricity (USD/(kW h))
11:00–14:00, 18:00–23:00 0.168
7:00–11:00, 14:00–18:00 0.108

23:00–7:00 0.057
Natural gas (USD/(kW h)) All day 0.035

4. Results and Discussion

In China, the research on storage technology has become more and more important
as renewable energy is currently developing rapidly. CAES is one of the most acceptable
systems and has had many trials for engineering applications. For example, a 6 MW
system has been built by the Institute of Engineering Thermophysics; it is enough for
engineering applications [30], and a 100 MW system is now ready to be built for realistic
applications. Additionally, considering the energy supply of power, heating, and cooling
for on-site needs, CAES with a high level of dynamic performance also has engineering
applications in China [15]. Thus, in this paper, the proposed HES with CAES is feasible
for the engineering applications. A real case, with the energy data of Chongming county
in Shanghai, China, is presented to design the HES with the power, heating, and cooling
load with the method proposed in this article [31]. Figures 5 and 6 show the inputting of
the data of the wind speed, electricity, and cooling loads of a typical summer and winter
day, respectively. In both seasons, the rated power and operational power of each device
should be optimized simultaneously. The comparison of the model with and without the
off-design characteristics can be carried out through the optimal results in different seasons
and is implemented with the program in Fortran.
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In this paper, the differential evolution (DE) algorithm is used as the optimization
method to find the optimal objectives. DE was chosen because this method promises
simple, fast, and robust optimization [32]. The authors have conducted the optimization
and synthesis studies on A-CAES based on DE algorithms [33]. In this optimization, DE
is employed with particular specifications (population size 500, mutation factor 0.5, and
crossover factor 0.1 for optimizing the five key decision variables: the capacities of the
compressors, turbines, and WTs and the operation loads of the compressors and turbines).

The daily cost of the system in different seasons is the objective of the optimization
in level II, and the one-day efficiency of the CAES is another system performance that is
observed with each iteration when the system is optimized. As shown in Figure 7, the
operation cost of the system decreases with the growing number of iterations. The one-day
efficiency of the CAES is also presented along with each iteration, which increases a lot
at first, to about 35% for the off-design case and 51% for the case that does not consider
the off-design operation, and then, it approaches a stable value. When considering the
off-design characteristics with a fixed capacity of the components, the one-day efficiency of
the CAES drops to 30.4%. When employing the bi-level optimization strategy, the efficiency
increases to 35.7% in the off-design operation. The optimal cost is the sum of the daily costs
of the typical winter and summer conditions. When the off-design characteristics are not
considered, the optimal cost of the system is USD 6882, which is lower than the cost of the
system when considering the off-design characteristics; when the capacity is fixed and when
employing the bi-level optimization, the costs are USD 7007 and USD 6989, respectively.
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The default values of the thermodynamic parameters and the optimization results
(rated power and number) of the WT, ICE, and A-CAES are shown in Table 4. In Figure 8,
for level I, the optimization curve of the rated power is presented. For the off-design case,
the rated power of the WTs is 1523 kW, which is higher than that for the case that does not
consider the off-design characteristics, whose power is 1493 kW. Conversely, the turbines
are 130 kW in the off-design case, which is lower than the turbines that do not consider the
off-design characteristic, whose power is 144 kW. When it comes to a partial-load value, the
operation power of the compressors should be higher to obtain higher efficiency, leading to
the higher power of the WTs; so, the optimal rated power of the WTs increases. The value
of the devices varies with the iteration in level I, and the fluctuation of the rated power of
the WT is higher than that of the turbines and compressors.
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In addition, the operation time of the compressors will be less if they should maintain
high efficiency in one day. Thus, less extra energy will be charged into the chamber,
leading to lower turbine power for discharging. From the results, the main effect of the
bi-level strategy is to optimize the rated power and the operational power of the devices
simultaneously. Although the off-design characteristics could affect the performances of
the CAES, a better configuration could avoid the operation of the devices too far away from
the rated condition.

The optimal results obtained for the different cases are shown in Table 5. The total
daily costs of the case that does not consider the off-design characteristics are USD 3032 in
summer and USD 3850 in winter), which are lower than those of the case that considers the
off-design characteristics (USD 3076 in summer and USD 3913 in winter), when the capacity
is fixed. The deviation between the operation cost of the two cases is 4.8% in summer and
2.7% in winter. Obviously, the off-design characteristics have an effect on the system when
obtaining an economic operation. Moreover, when employing the bi-level optimization
strategy, the operation cost decreases to USD 1360, and the capital cost increases to USD
1716, when compared to the fixed capacity. Then, the total daily cost of the case optimized
by the bi-level strategy is lower than the case with the fixed capacity when considering the
off-design condition. So, the strategy can reduce the impact of the off-design characteristics
by increasing the capacity of the devices, and the deviation of the operation cost between
the cases with and without the consideration of the off-design characteristics can decrease
from 4.8% to 1.3%. The decrease between the deviation of the operation cost under the
bi-level strategy and the fixed capacity could be 73%. Thus, if considering the off-design
features, when the devices operate too far away from their rated power (capacity) their
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efficiency drops considerably and leads to more cost. The bi-level strategy succeeds in
optimizing the capacity and the operation of the devices simultaneously.

Table 4. Performance parameters of devices.

Device Parameters Values

WT

vin (m/s) 3
vr (m/s) 12

vout (m/s) 25
Rated power with/without off-design (kW) 1523/1493

Number 3

ICE

Prated (kW) 1067
Texhaust (°C) 460

mexhaust (kg/h) 5688
Forward/return Tjacket water (°C) 93/75

mjacket water (m3/h) 31
Number 1

Compressor
Rated power with/without off-design (kW) 323/323

Pressure ratio 3.7
Stage number 3

Turbine
Rated power with/without off-design (kW) 130/144

Pressure ratio 3.3
Stage number 3

Air storage chamber Volume (m3) 2000
pmax/pmin of storage chamber (bar) 50/35

Cooling/Heating

ε 0.7
COPAC 1.4
COPEC 5
ηgas boiler 0.91

In summer, the one-day efficiency of the CAES, η1-day, when considering the off-design
characteristics, decreases by 40.2% compared to that of the case that does not consider
the off-design characteristics, while the deviation is 39.2% in winter when the capacity
is fixed. It can be seen that the off-design characteristics have less of a side effect on the
efficiency of the CAES in winter, for the reason that extra wind energy can be supplied to
the compressor so that it can operate closer to nominal power and store more energy for
turbine operating. In addition, after employing the bi-level optimization, the deviation of
the η1-day between the cases with and without considering the off-design characteristics
decreases to 42.6% in summer and 11.5% in winter. In order to investigate the off-design
characteristics of the CAES more deeply, the following calculations are all carried out with
the bi-level optimization algorithm.

The off-design characteristics also have an impact on the outlet of the compressors;
lower partial load leads to lower isentropic efficiency. If the air temperature of the compres-
sor outlet is higher, then the temperature of the thermal fluid will be higher. Thus, as shown
in Figure 9, for the off-design case, the mean temperature in the thermal storage chamber
(at least 490 K and 457 K in winter and summer, respectively) is higher than that for the
case that does not consider the off-design characteristics (475 K and 443 K in winter and
summer, respectively). In particular, the mean temperature in the time period from 07:00 to
19:00 is relatively higher than the mean temperature at other times in the winter conditions,
and the mean temperature increases after the time of 05:00 in the summer conditions. The
reason for that is that the partial load of the compressor is much lower than the rated power;
so, the isentropic efficiency of the compressor drops a lot, leading to the higher outlet air
temperature.
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Table 5. Optimal results.

Cost and Efficiency Without
Off-Design

Fixed Capacity Bi-Level

Off-Design Deviation Off-Design Deviation

Capital cost (USD) 1699 1699 0.0% 1716 1.0%

Summer
Operation cost (USD) 1332 1399 4.8% 1360 1.3%
Total daily cost (USD) 3032 3098 2.1% 3076 1.5%

η1-day of CAES 57.6% 34.4% 40.2% 36.6% 36.5%

Winter
Operation cost (USD) 2151 2210 2.7% 2197 2.1%
Total daily cost (USD) 3850 3909 1.5% 3913 1.6%

η1-day of CAES 43.6% 26.5% 39.2% 34.7% 20.4%
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Figure 10 presents the SOCs of the cases with and without consideration of the off-
design characteristics in summer or winter conditions. The maximum SOC of the chamber
considering the off-design characteristics (43.6% in summer and 86.0% in winter) is 10.9%
and 9.2% lower than that of the case that does not consider the off-design characteristics
(54.5% in summer and 95.2% in winter), respectively. For one thing, more energy is charged
and discharged by CAES in winter. This is mainly because the wind speed during winter is
obviously higher than that in summer. Another thing worth noting is that the efficiency of
the compressors and turbines will drop a lot if the power is lower than the rated power
when they operate in a partial-load condition. In order to gain higher efficiency, the optimal
operation load of the compressors and turbines will be closer to the rated power. The
dispatching load of the other power generation utilities may not be enough to balance the
energy, such as when there is not enough extra wind energy to supply the electricity for the
compressors. Thus, the maximum storage ability of the CAES will drop when considering
the off-design characteristics. However, when it comes to the case that does not consider
the off-design characteristics, the range of the charging and discharging load can be wider.
More energy can be stored, and the maximum SOC is higher when the case is ignoring the
off-design characteristics.
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The operational power of each device in summer is shown in Figures 11 and 12. In
Figure 11, the negative values of the green columns come from the compressors in the
charging process of the CAES, which mainly occurs at night. In contrast, the operational
power of the turbines in the discharging process is shown by the yellow columns; this
process mainly occurs when the load is higher (13:00–16:00, 19:00, 22:00). The CAES mainly
absorbs the electricity generated by the WT in the charging process. The grid power is
also stored, as can be seen in the dark green column in Figure 11a, at 02:00 and 06:00,
when considering the variety of the electricity price. As shown in Table 4, the maximum
powers of all the compressors for the cases without and with consideration of the off-
design characteristics are both 929 kW, and the powers of the turbines without and with
consideration of the off-design characteristics are 432 kW and 390 kW, respectively. There
are 8 charging hours and 6 discharging hours in Figure 11a, while there are 4 charging times
and 3 discharging times in Figure 11b. Obviously, less energy is charged and discharged in
the case considering the off-design characteristics. However, the partial-load ratio of the
compressors and the turbines is higher in Figure 11b than that without the consideration
of the off-design characteristics. The minimum partial-load ratios of the compressor and
the turbine of the CAES considering the off-design characteristics are 27.9% and 61.3%,
respectively, while those of the case without consideration are 4.9% and 39.6%. Thus, when
the optimization considers the off-design characteristics, the operation power of the device
is closer to its nominal power.
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Figure 12 presents the operational power of the EC and the ICE-AC on a summer day.
The cooling load is mainly supplied by the electric chiller. In the time period (10:00–22:00),
half of cooling load can be supplied by the absorption chiller with the recovered heat from
the ICE. The off-design characteristics of the A-CAES have no effect on this part.
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(b) considering off-design characteristics.

In winter conditions, the optimal operational powers of each device in the system
are presented in Figures 13 and 14. In Figure 13, there is no other electricity cost except
the electricity of the user demand. There are 10 charging times and 10 discharging times
in Figure 13a, while there are 9 charging times and 8 discharging times in Figure 13b.
Similarly, less energy is charged and discharged in the case considering the off-design
characteristics in winter, but the difference is smaller than that in the summer case. The
minimum partial-load ratios of the compressor and turbine of the CAES considering the off-
design characteristics are 61.2% and 49.0%, while those of the case without consideration
are 56.6% and 36.4%, respectively. It can be seen that more compressors and turbines
operate at the nominal load. Thus, in the winter, the difference between the cases with and
without considering the off-design characteristics is smaller than in the summer. This is
mainly due to the fact that more excess wind energy can be stored in the winter. Thus, it
can be concluded that the off-design characteristics have much more of a side effect for the
storage system when there is not enough renewable energy to be stored.
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Figure 14 presents the operational power of the gas boiler and the exhaust heat of ICE.
It can be seen that in Figure 14b the power of the ICE heat is higher than that of Figure 14a.
As the operation power of the turbines is lower in the case considering the off-design
characteristics, the operational power of ICE is higher than that of the case that does not
consider the off-design characteristics.
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(b) considering off-design characteristics.

For a further investigation, the partial-load ratio of ICE in each hour is presented
in Figure 15. It can be seen that in the cases considering the off-design characteristics,
the partial-load ratios of ICE are higher than those of the cases that do not consider the
off-design at most of the times. As the result of there being more heat load in winter than
cooling load in summer supplied by the ICE, the difference is more obvious in the winter
conditions. Additionally, one can also draw the conclusion that the optimization method
considering the off-design characteristics brings the devices (both CAES and ICE) closer to
operation at the nominal load.
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As the possibilities to carry out the experiments on a real full-scale system are limited,
the model validation of CAES was carried out in comparison to the model in Ref. [34]. The
results show that the model of the A-CAES system in this paper is correct and acceptable
for off-design analysis and parameter-sensitive analysis. The effect of ambient temperature
on the system performance is implemented with the same condition. Table 6 shows the
model validation of the CAES system. It can be seen that the error between the two models
is very small; so, the model of this paper can be regarded as acceptable.
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Table 6. The comparison of the A-CAES model results from the present model and Ref. [34].

Parameters Ref. [34] The Present Model Difference (%)

Power of compression train 25.2 MW 25.5 MW 1.2%
Power of expansion train 25.2 MW 25.3 MW 0.4%

Discharge time 16.75 h 16.75 h 0.0%
Charge time 12 h 12.02 h 0.2%

Efficiency 71.64% 71.16% 0.7%

5. Conclusions

In most studies on the optimization of HESs, the effects of the off-design operation
of the components are neglected. This is problematic for the accuracy of the results,
particularly when an energy storage system is part of a system to stabilize the energy output
of a variety of renewable sources. This work investigated the impacts of the off-design
operation of an A-CAES unit that was connected to a number of other energy-producing
units in an HES, e.g., wind turbines and an ICE. A novel HES was proposed, and a bi-level
optimization strategy was carried out for the study. The main objective was to optimize the
economy of the HES by optimizing the capacity and operation strategy of each component.
Then, a partial-load operation analysis showed how the performance of the system could be
affected by deviating from the nominal-load conditions. The effects of different partial-load
ratios of the system in winter and summer conditions were investigated. Then, the overall
economy of the HES and the efficiency of the A-CAES were quantified. The study concludes
with the following:

(1) The economy of the HES is highly affected by the off-design characteristics of A-
CAES. The daily efficiency of the CAES unit is found to be 35% when considering
its off-design characteristics, while it is as high as 51% otherwise. The off-design
characteristics have a side effect on the system when obtaining an economic operation.

(2) When employing the bi-level optimization strategy, the strategy can reduce the impact
of the off-design characteristics by increasing the capacity of the devices. The deviation
of the operation costs between the cases with and without considering the off-design
characteristics can decrease from 4.8% to 1.3%.

(3) The off-design characteristics of the compressor lead to the isentropic efficiency of
the compressor falling dramatically, increasing the outlet air temperature. As a result
of this, the off-design operation of the system also affects the temperature of the
thermal storage chamber. The mean temperatures in the thermal storage chamber
when considering and not-considering the off-design effects are at least 490 K and 475
K in winter and 457 K and 433 K in summer, respectively.

(4) For the optimization of the operation strategy, the SOC of the CAES is affected a lot by
its off-design operation. The maximum SOCs of the chamber when considering the
off-design characteristics are 10.9% in summer and 9.2% in winter, which are lower
than those of the case when not considering the off-design characteristics, respectively.
The efficiency differences of the A-CAES unit between the cases with and without
considering the off-design features are 21% in summer and 8.9% in winter. The off-
design characteristics also have impacts on the capacity of the components of the HES.
When considering the off-design features, the rated power of the WTs becomes higher,
while the rated power of the turbines becomes lower.
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Nomenclature

Symbols
V volume, m3

Rg gas constant, J/(mol·K)
T temperature, K
Q thermal power, kW
P electricity power, kW
L load, kW
M mass of air contained in the volume, kg
W work, J
C cost, USD
P pressure, Pa
M mass flow rate, kg/s
W specific work, kJ/kg
C specific heats, kJ/(kg·K)
T time, h
Subscripts
C Compressor
Ch Chamber
T Turbine
B Boiler
A Air
W Water
V Velocity
R Ratio
Td Total daily
Pl Partial load
Ca Capital
En Environment
M Motor
F Rated power
Ele Electricity cos
G Generator
Op Operation
Te Thermal efficiency
Pe Electrical efficiency
Jw Jacket water
Ic Intercool
Loss Heat loss
Exh Exhaust gas heat
Tur Turbine
Com Compressor
E Electricity
He Heat exchanger
Re Recovery
Ac Absorbed chiller
Ec Electricity chiller
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Greek letters
Π Pressure ratio
H Efficiency
E Heat exchanger effectiveness
A Partial-load ratio
Acronyms
CAES compressed air energy storage
A-CAES adiabatic-CAES
TES thermal energy storage
SOC state of charge
ICE internal combustion engine
WT wind turbine
DE differential evaluation
O&M operation and maintenance
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