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Abstract: Mapping the subsurface temperatures can efficiently lead to identifying the geothermal
distribution heat flow and potential hot spots at different depths. In this paper, an advanced adaptive
multitask deep learning procedure for 3D spatial mapping of the subsurface temperature was pro-
posed. As a result, predictive 3D spatial subsurface temperatures at different depths were successfully
generated using geolocation of 494 exploratory boreholes data in Catalonia (Spain). To increase the
accuracy of the achieved results, hybridization with a new modified firefly algorithm was carried out.
Subsequently, uncertainty analysis using a novel automated ensemble deep learning approach for
the predicted temperatures and generated spatial 3D maps were executed. Comparing the accuracy
performances in terms of correct classification rate (CCR) and the area under the precision–recall
curves for validation and whole datasets with at least 4.93% and 2.76% improvement indicated
for superiority of the hybridized model. According to the results, the efficiency of the proposed
hybrid multitask deep learning in 3D geothermal characterization to enhance the understanding
and predictability of subsurface spatial distribution of temperatures is inferred. This implies that the
applicability and cost effectiveness of the adaptive procedure in producing 3D high resolution depth
dependent temperatures can lead to locate prospective geothermally hotspot active regions.

Keywords: 3D spatial subsurface temperature; geothermal energy; Catalonia; hybrid adaptive
multitask deep learning; predictive model

1. Introduction

Access to energy resources is a critical worldwide issue. From this point of view,
renewable power is emerging as an innovative cost-effective and clean source of energy
for the future. Accordingly, the renewable resources are increasingly displacing fossil
fuels in the power sector because of their capability to reduce carbon emissions and other
types of pollution. However, several marketed renewable resources (e.g., biomass and
large hydroelectric dams) due to some problematic tradeoffs may not be suitable to the
geoenvironmental concerns [1]. In the field of renewables, geothermal is always available
to be tapped and thus in comparison with other resources provides a reliable source of
power [2]. Moreover, the low carbon intensity than the solar photovoltaic makes it a useful
tool against the advance of climate change. Furthermore, versatility of geothermal resources
dedicates particularly useful for promoting economic diversification [3,4].

The view of the increasing trend of the consumed energy in Europe and subsequently
worldwide dependency on the external sources attractively moves toward developing
the use of renewable energies and, in particular, geothermal resources as an appropriate
solution [5,6]. Referring to Chamorro et al., (2014) [7], Spain can significantly be benefited
from the high capacity of the natural geothermal resources. This is because in the Iberian
Peninsula, the temperature can reach high values at shallow depths. Accordingly, in recent
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years using shallow geothermal resources have depicted steady growth and popularity in
the construction subsector, whereas in power generation due to associated problem with
electricity, unequal progress was reported [8,9].

The temperature of geothermal resources originating from the continuously produced
heat within the earth can be classified into high (T > 225 ◦C), intermediated (125–225 ◦C),
and low (T < 125 ◦C) systems [10]. To achieve this source of energy, the knowledge on
subsurface geological hot spots for more precise drilling to access the target temperature is
of great importance [11]. Therefore, to assess the well productivity, several parameters such
as morphology and temperature of the ground, geothermal gradient, porosity, permeability,
fluid salinity, thermal conductivity, and specific heat capacity at various depths play a
critical role [12]. However, all this information often is not accessible [13] and also continu-
ous or periodically monitoring the equipped test boreholes with temperature sensors is
a time-consuming and costly procedure [4]. This is the reason why the geoengineering
characteristics depend on the scale of the project are often approximated with different
techniques and computer modelling approaches [14–17]. Producing 3D conceptual shallow
geothermal potentials [18,19], utilizing GIS [20–22], spatial data analysis [23–25], applying
numerical technique [26–29], integrated of different geophysical prospecting techniques
such as magnetotelluric [30–34], gravity [33,35], seismic [31,33], and electrical resistiv-
ity [31,36,37], as well as evident geological characteristics [38,39] are some of the carried
efforts in Spain, Chile, Pakistan, Iran, India, Nigeria, Indonesia, Denmark, China, Thailand,
Italy, Taiwan, Finland and Japan. However, simulating the geothermal resources using
numerical techniques due to complexity of the model preparation (natural state properties
of the rocks and geothermal system), description of the realistic problem and evaluation
of the results as well as inability in providing any insight into generalizations is a very
time-consuming task that demands extensive experience. In case of GIS, learning curve
can be long where the spatial relationships do not lead to absolute solutions and also
the integration with traditional map is difficult [40–42]. Such drawbacks in generating
high resolution 3D maps due to dedicating more flexibility but higher computational
and analytical capabilities can be handled by artificial intelligence (AI) approaches. The
skilled AI-based models in geoengineering problems were used to tackle the difficulties
in handling the big data [43] and provide physically meaningful relationships within
geo-data [44–46]. Accordingly, applicability of the AI techniques in the form of artificial
neural network, machine/deep learning, evolutionary algorithms, and hybrid structures
in producing the predictive 3D subsurface models have been highlighted [46–51]. Due to
characterized features in creating transferable solutions and learnability from high-level
data attributes [52] the feasibility of AI techniques in geothermal modeling [53,54] and
compared performance by field prospecting methods [55,56] have been notified in several
studies dealing with predicting the location of hot spot structures [57–60], estimating the
temperature distribution [61,62], and potential of geothermal production associated with
geological data [63,64].

Referring to literature reviews, the AI models can be optimized through metaheuristic
algorithms to find the most proper solutions relative to a set of prioritized criteria or con-
straints [65–68]. However, the optimizing performance of these algorithms due to analytical
shortcomings cannot be guaranteed [65,69]. This limitation of metaheuristic algorithms
with growing interested in optimization methods can be covered using modification process
to improve the performance and prevent from computational costs of a rework [69–71].

The firefly algorithm (FA) [72] is a developed swarm optimization method based on
the attractiveness of fireflies, but suffers from slow convergence and getting trapped in
local optimum for multimodal problems [73]. In this paper a new developed version of
modified FA by Abbaszadeh Shahri et al., 2022a [69] is used.
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In this point of view, Spain, despite the access to high potential of different types
of geothermal resources is still far from achieving a generalized utilizing of these renew-
able systems [74]. However, following the European initiatives, based on the 2011–2020
renewable energy plan, Spain is also working on promising geothermal areas for both
power production and direct applications [75]. Due to the lack of worldwide characterized
information of subsurface geothermal hotspots [8], developing the modelling techniques for
evaluation, and utilizing these resources critically should be considered as one of the most
prolific tasks for contributing to the global sustainability [18,76–78]. Moreover, the infor-
mation of subsurface soils often is acquired from the vertical sparse exploratory boreholes
in which laterally spatial distribution of predicted parameter is a difficult task [46,47,49].
This implies that evaluating the models aiming to identify the possible hotspots can lead
to utilize and decrease the available gaps of this resource with respect to other European
nations and would allow Spain to reduce its foreign energy dependency. Such demands
crucially motive for developing new computational modelling techniques leading to new
frameworks for the future expansion of this energy.

Despite the demonstrated more precise results in hybridized AI techniques with
the high-level metaheuristic optimization algorithms [69], no distinguished work dealing
on developing multi-task predictive models through platform of intelligence systems in
geothermal application is available. Multi-task learning is inherently a multi-objective
problem because different tasks may conflict, necessitating a trade-off [79] and thus has
received considerable attention in real-world problems. In such learning schemes multiple
tasks are solved jointly and sharing inductive bias between tasks. Therefore, referring
to the above-mentioned concerns and the progressively emerged interest in developing
3D digital models, an adaptive hybridized multi-task deep learning AI procedure for
generating spatial subsurface temperature at different depths in Catalonia, Spain, was
developed. Hybridizing process was carried out through a new version of modified firefly
algorithm (MFA). The modelling procedure was executed through 496 numbers of sparse
data comprising latitude, longitude, elevation, and surface temperature. Accordingly,
the temperatures at depths 50 and 150 m were predicted, and the model then was setup
to provide estimation for 120 and 180 m, respectively. The evaluated receiver operating
characteristic (ROC) supplemented by error analysis showed the applicability and cost
effectiveness of the adopted multitask procedure in producing high resolution depth
dependent subsurface temperature maps for the study area. Subsequently, an uncertainty
analysis using an introduced state-of-the-art approach for the predicted temperature and
generated spatial maps were conducted.

2. Materials and Methods
2.1. Study Area and Acquired Datasets

Catalonia is a province of Spain located at the north-east of the Iberian Peninsula, in
the western Mediterranean area with a diverse range of geomorphological features from
mountainous to coastal landscapes [80,81]. This study is focused in an area of 7942 km2

in the northeastern part of Catalonia, as presented in Figure 1. The northern domain is a
mountainous territory corresponding to the eastern part of the Pyrenees and the southern
limb tie in with the Catalan Coastal Ranges that are parallel to the Mediterranean shoreline.
The area is made up by a Paleozoic continental crust affected by extensive sedimentary
basins during Mesozoic and Neogene and a compressive basin of Paleogene age coeval
with the development of the Pyrenees and the Catalan Coastal Ranges [82,83].
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Figure 1. The location of study area in Spain (A) and the corresponding geological settings (B).

Previous carried out research implied on ideal geothermal inquiry in several regions of
this area such as Vallès, Empordà, La Selva, Penedès, Fossa d’Olot, Plana de Vic, Depressió
Central (Lleida), and Maresme. Accordingly, in this study, a number of 496 stochastic
datasets including longitude (X), latitude (Y), elevation (Z) and surface temperature (Ts)
were derived from the database of the Catalonia Cartographic and Geological Institute
(ICGC) [84,85]. The used database in the current paper was constructed from the com-
piled annually time-dependent information provided by ICGC for the year of 2021 at each
measuring station or control point. The acquired datasets for further procedure were ran-
domized and split into 65%, 20% and 15% to establish the training, testing, and validation
sets and after compiling were normalized within [0, 1] interval to increase the learning
speed and model stability.

2.2. Deep Neural Learning Structure

Multitask learning can increase the generalization of deep neural learning structures
(DNLS) by employing domain information contained in the training inputs of related
tasks as an inductive bias. In comparison to training the models independently, this
learning procedure aims to tackle multiple tasks at the same time to enhance efficiency and
prediction accuracy [79,86]. This implies on performing parallel learning with a shared
representation, in which each task can help other tasks be learned better [87–89].

As shown in Figure 2, DNLS is a subcategory of AI techniques with multiple layers in
which without being explicitly can scan the data to search combinable features for faster
learning. This ability indicates for ameliorate feature extraction over machine learning and
thus supreme performance of DNLS with unstructured data (e.g., texts, pictures, pdf, etc.)
as well as exploring new complex attributes that humans might miss [90].
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In this structure, the received input signals (x1, x2, . . . , xn) are passed to the hidden
layers and then to the next senior level using adopted weights (wij, wjk):

x1, ...xn︷ ︸︸ ︷
Input

wij→

oz
j︷ ︸︸ ︷

Hidden layers
wjk→

Y︷ ︸︸ ︷
Output (1)

Referring to Figure 2, the output of the jth neuron in the zth hidden layer at the tth
iteration, oz

j (t), subjected to activation function, f z
j , is defined as:

oz
j (t) = f z

j

(
∑nz−1

i=1 wz
ijx

z−1
i (t) + bz

j

)
(j ≤ nz) (2)

where nz shows the number of neurons in the zth layer, and bz
j denotes the bias which shifts

the summed signals received from the neuron.
The outcome of the lth neuron in the mth output layer after t iteration (Yl(t)), is then

calculated using the updated weight by:

Yl(t) = ∑nm−1
i=1 wm

ij xm−1
i (t) (l ≤ no) (3)

where no represents the number of neurons in the output layer.
Accordingly, the error of model for entire network (E (t)) and predicted values (e (t))

are expressed as:

E(t) =
1
2 ∑n

j=1

(
dj(t)− ok

j (t)
)2

(4)

e(t) = y−Y(t) (5)

where dj (t) denotes the desired output of neuron j at the tth iteration and y shows the
actual output.

In each iteration, then the weights are updated through the learning rate to minimize
the prediction error of using:

∆w(t) = −ηw(
∂E(t)
∂wold

) (6)

where ηw represent the learning rate.

2.3. The Used Modified FA (MFA)

The original FA [72] has been formulated using the attractiveness of fireflies, their
brightness and adjacent distance. Table 1 shows the involved parameters in FA that
depending on the problem should properly be tuned through trial-error procedure.

Table 1. Required parameters to tune the FA.
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Description Parameter Advised Ranges Notation

brightness I - objective function
attractiveness β - -

distance between two fireflies i, j rij - -
absorption coefficient γ [0.1–10] -

trade off constant in randomized
movement α [0, 1] randomization

parameter
attractiveness at distance 0 (rij = 0) β0 normally 1 -

number of generations Gen - iteration
problem dimension D - dimension
number of fireflies n - population size

β, β0, α and γ also can be organized based on parametric investigations.



Energies 2022, 15, 4602 6 of 16

The concept of this algorithm is based on the I as the objective function in such way
that a firefly is attracted by the brighter one (new solution). As a result of moving toward
each other, the distance between the fireflies is updated. Accordingly, the position of the
moved firefly after t iteration and implemented update step size of (xj − xi) reflects a
new solution (xnew

i ) that further should be evaluated by the fitness function (FT) in the
population by:

xnew
i = xt

i + β0e−γr2
ij
(
xj − xi

)
+ α(rand− 0.5) (7)

where i, j denotes the index of fireflies and the rand function corresponds a random number
of solutions. Using this iterative process only one solution with the lowest FT will be
kept [91]. Therefore, each new generated solution, xnew

i showing the updated location of
firefly is governed by α and γ. Accordingly, the smaller γ, the faster convergence history
but the greater β between fireflies. On the other hand, the larger α connote to increasing the
range of random motion of fireflies and thereby the slower convergence. In the modified
version presented by [69], Equation (7) was updated through the brightness expectation
value, using:

xmodi f ied
i = xi + β0e−γtr2

ij
(

xj − xi
)
+ αtrij(rand− 0.5) (8)

Accordingly, α and γ then adaptively are tuned and updated using the variance of the
population of brightness (Var (I)) by:

γt = γ0 + e−k.Var(I)(γu − γ0)

αt = α0 − e−k.Var(I)|(αu − α0)|
α0 > αu, γu > γ0, k > 0

(9)

where, subscripts 0 and u denotes the initial and ultimate values. Using this modification,
the convergence speed and the computational time are boosted and strengthened [69].

3. Developing Hybrid Adaptive Procedure

The hybridizing procedure benefits from integration of different predictive AI model
with optimization methods to capture more accurate output and thus higher performance.
Therefore, adopting appropriate procedure to apprehend an optimum multitask topology
for predictive unit is critical to avoid from over-fitting problem, early convergence and not
getting stuck in local minima. Figure 3 depicts the block-based hybrid adaptive DNLS-MFA
procedure subjected to iterative constructive technique that using several inner nested loops
was programmed in C++. In this approach, 80% of randomized data is used for training.
Through the adopted k-fold checking (here set for 10 times), the data then internally are
re-randomized into 60% and 20% for training and testing. The remained 20% of unseen
data was used for model validation. This iterate-based adaptive procedure was configured
for leading to an optimum multitask DNSL with a proper adjustment of the internal
characteristics and corresponding hyper parameters. To reduce the computational time, the
number of maximum hidden layers and used neurons were limited to 3 and 30, respectively.
The learning rate also was managed within [0.001, 1.000] interval with a step size of 0.05.
The first priority to terminate the training process is to achieve the minimum network root
mean square error (RMSE) and if not satisfied then the number of iterations (t) will active
as set for 500 in this study.

Figure 4a shows the results of series dynamically monitored and analyzed architec-
tures depend upon the implemented training algorithm (TA), learning rate and activation
function (AF). According to Figure 4b, the DNLS topology with structure of 4-15-5-2 trained
by limited memory quasi-Newton (LMQN) subjected to hyperbolic tangent (Hyt) activation
function can be selected as optimal. In the given topology, 4 denotes the number of used
inputs (X, Y, Z, Ts), 15 and 5 express the number of managed neurons in first and second
hidden layers and 2 is assigned to the multiple outputs comprising the temperature at
depths 50, 150 m (T50, T150), respectively.
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Figure 4. Performance of series monitored topologies as a function of RMSE subjected to different
TA and AF (a), and examined topologies to find the optimum model corresponding to 20 neurons
(b) (TA→LMQN: limited memory quasi-Newton, CGD: conjugate gradient descent, QN: quasi-Newton,
QP: quick propagation; AF→Log: logistic, Hyt: hyperbolic tangent, Relu: rectified linear unit).

As presented in Figure 3, the selected optimum topology (Figure 4b) is hybridized with
the MFA. Referring to Table 1 and Equations (7)–(9), the updated location of firefly should
be tuned using α, β and γ. However, appropriate setting of these parameters is not easy
task. The most representative values of α, β and γ then were captured through parametric
regularizing procedure. Figure 5a shows the result of a series of analyses subjected to
RMSE with two fixed parameters and one variable. The results showed that the values
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of 1, 0.5, 0.2, 0.5 corresponding to γ, β, α, β0 (Figure 5a) and 30 for population of fireflies
(Figure 5b) can be the optimal. Accordingly, the predictability of the model using adaptive
DNLS (Figure 5c,d) and the hybrid DNLS-MFA (Figure 5e,f) were presented and compared.
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Figure 5. Adjusting the optimal values of MAF parameters (a), selected population of fireflies using
convergence histories (b), and compared predictability of the optimum and hybrid DNLS model (c–f).

Traditional 3D modelling techniques are subjective and limited to the knowledge and
experiences of experts in the selection of assumptions and parameters. For subsurface
geothermal purposes, therefore, creating 3D depth-dependent digitized spatial predictive
maps using identified hybrid optimum DNLS model play an important priority. As a result,
for the study area, the created 3D maps using the hybrid DNLS-MFA at the surface and
depth of 50 and 150 m are presented (Figure 6a–c). The applicability of the DNLS-MFA
then was examined using unlabelled data for two other depths. Accordingly, the elevation
was replaced by converted depths for 120 and 180 m with respect to the ground surface
elevation with the same used input data. The model then was trained for the whole datasets
through the saved weight database and the visualized results were reflected in Figure 6d,e.
According to the documented results by Colmenar-Santos et al. (2016) [92] from the report
of Institute for the Diversification and Saving of Energy (IDEA), the range of predicted
subsurface temperatures show appropriate compatibilities. The predicted subsurface
using the applied model at depth of 150 m dedicated about 33 ◦C, where considering the
nonlinearity and heterogeneity it is expected to fall around 70 at 300 m depth. Therefore,
referring to [92], the subsurface temperature in the study area corresponding to the depths
between 300–2500 m will fall within the interval of [70 ◦C, 140 ◦C].
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180 m (e).

4. Discussion and Validation

Generally, the statistical error metrics are used to evaluate the performance of the com-
plex models through pair-wise-matched of observations and predictions [93]. In this study,
as presented in Table 2 the models were assessed by means of the mean absolute percentage
error (MAPE), RMSE, index of agreement (IA) [94] and R2. The better performance was
selected by higher IA, R2 accompanying with lower MAPE and RMSE. Table 2 reflects the
comparison of the applied metrics for the 15% of unseen randomized validation datasets
through the weight database.

Table 2. Evaluated error metrics of the predicted temperatures using validation datasets.

Optimum DNLS Hybrid DNLS-MFA
T50 T150 T50 T150

R2 0.87 0.86 0.92 0.91
RMSE 0.49 1.00 0.37 0.79
MAPE 2.40 4.00 1.80 3.2

IA 0.96 0.96 0.98 0.97

Using confusion matrix [95], the predictability performance of developed models
is analyzed, where each diagonal entry of [aij] as the number of records for ith and jth
category of target and corresponding network output would be non-zero. In this study, the
multiclass confusion matrixes for optimum and hybridized DNLS models using validation
datasets were established (Table 3). The cells with value of 0 shows there is no predicted
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result correspond to target output. This can be an indicator of appropriate predictability of
developed models. Accordingly, the compared qualitative characteristics in classification
tasks using correct classification rate (CCR) (Table 4) showed at least 4.2% improvement in
the predictability level of hybrid DNLS than the optimum topology.

Table 3. Confusion matrix of optimum models using validation datasets.

Target
Output

Output of Optimum DNLS: 50 m Depth Results

<1
2.

01

12
.0

1–
12

.6
9

12
.6

9–
13

.3
8

13
.3

8–
14

.0
6

14
.0

6–
14

.7
5

14
.7

5–
15

.4
3

15
.4

3–
16

.1
1

16
.1

1–
16

.8
0

16
.8

0–
17

.4
8

17
.4

8–
18

.1
7

18
.1

7–
18

.8
5

>1
8.

85

To
ta

l

Tr
ue

Fa
ls

e

12.01–12.69 2 1 3 2 1
12.69–13.38 0 0 0 0
13.38–14.06 1 1 1 0
14.06–14.75 1 1 1 0
14.75–15.43 2 1 3 2 1
15.43–16.11 1 7 1 10 7 3
16.11–16.80 16 1 1 18 16 2
16.80–17.48 1 18 2 21 18 3
17.48–18.17 1 8 1 10 8 2
18.17–18.85 1 5 1 7 5 2

Note 0 2 0 2 1 3 8 18 20 12 6 1 74 60 14

Output of Hybrid DNLS: 50 m Depth Results

12.01–12.69 2 1 3 2 1
12.69–13.38 0 0 0 0
13.38–14.06 1 1 1 0
14.06–14.75 0 1 1 0 1
14.75–15.43 3 3 3 0
15.43–16.11 1 8 1 10 8 2
16.11–16.80 17 1 18 17 1
16.80–17.48 20 1 21 20 1
17.48–18.17 1 8 1 10 8 2
18.17–18.85 6 1 7 6 1

Note 0 2 1 1 0 5 9 17 22 9 7 1 74 65 9

Target
Output

Output of Optimum DNLS: 150 m Depth Results

<1
3.

66

13
.6

6–
14

.7
3

14
.7

3–
15

.8

15
.8

–1
6.

87

16
.8

7–
17

.9
4

17
.9

4–
19

.0
1

19
.0

1–
20

.0
8

20
.0

8–
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.1
5
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.1

5–
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.2
2
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.2

2–
23

.2
9

23
.2

9–
24

.3
6

>2
4.

36

To
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l
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ue

Fa
ls

e
13.66–14.73 1 1 1 3 1 2
14.73–15.8 3 1 4 3 1
15.8–16.87 1 4 1 6 4 2
16.87–17.94 4 1 5 4 1
17.94–19.01 1 8 1 10 8 2
19.01–20.08 1 1 10 1 13 10 3
20.08–21.15 1 10 1 12 10 2
21.15–22.22 1 8 9 8 1
22.22–23.29 1 5 1 7 5 2
23.29–24.36 4 1 5 4 1

Note 1 1 5 5 6 10 13 13 7 7 5 1 74 57 17

Output of Hybrid DNLS: 150 m depth Results
13.66–14.73 1 2 3 2 1
14.73–15.8 3 1 4 3 1
15.8–16.87 1 4 1 6 4 2
16.87–17.94 4 1 5 4 1
17.94–19.01 9 1 10 9 1
19.01–20.08 1 11 1 13 11 2
20.08–21.15 11 1 12 11 1
21.15–22.22 1 8 9 8 1
22.22–23.29 1 5 1 7 5 2
23.29–24.36 3 1 5 3 2

Note 1 2 4 5 6 10 12 13 9 6 4 2 74 60 14
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Table 4. Comparing the CCR and model improvement using validation data.

Model CCR (%) Improved Progress
Optimum DNLS-T50 81.1

6.24%Hybrid DNLS-T50 86.5
Optimum DNLS-T150 77.1

4.93%Hybrid DNLS-T150 81.1

The presented confusion matrix (Table 3) then was used to plot the area under the
curve of receiver operating characteristics (AUCROC). The ROC is a 2D graphical probability
approach to assess the overall performance of a model, where the greater AUC the higher
capability in diagnosed classes [96,97]. Precision shows the true predictions in each class
and recall reflects the ability of model in identifying the actual positives. Therefore, the
predictability of a model in a full picture at different thresholds can be quantified using the
precision–recall ROC curves. Referring to Figure 7, the achieved accuracies of 90.7% and
86.3% using hybrid DNLS-MFA for T50 and T150 demonstrated more reliable outputs than
optimum DNLS.
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Figure 7. Comparing the predictability level of optimum multitask and hybrid DNLS models using
the AUCROC of conducted precision–recall curves.

In computational systems the uncertainty analysis for the new individual upcoming
observations can be estimated using prediction interval (PI) [98]. One of the key benefits
of PI is referred to dedicating a range of weights allowing for insight into how accurate
the predicted weight is likely to be [99]. The PI is always wider than a confidence interval
because it considers the uncertainty in both predicting the population mean and the random
variation of the individual values [100]. In this study, the PI of the hybrid DNLS-MFA at
the level of 95% was estimated using a state-of-the-art automated random deactivating
weight approach [101], as shown in Figure 8. The applied approach [101] subjected to
hybrid DNLS-MFA for T50 and T150 showed narrower distribution of PI, leading to the
identification of the potential hot spot sub-areas with lower uncertainty.
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Figure 8. Analyzed uncertainty of hybrid DNSL-MFA for T50 (a) and T150 (b) using automated
random deactivating weight approach according to Ref. [101].

5. Conclusions

Mapping the subsurface temperature in complex structural settings using advanced
DNLS can dedicate a viable tool for exploration analyses and thus drilling phases. Refer
to this motivation, an adaptive hybrid multitask DNSL-MFA procedure for producing the
3D predictive spatial maps of the temperature-at-depths was developed and applied on
494 geo-location and surface temperature datasets in a part of Catalonia, Spain. Compared
with DNLS, the predicted maps at depths of 50 and 150 m using the introduced hybrid
DNSL-MFA scheme showed 90.7% and 86.3% accuracy performances leading to 6.24%
and 4.93% improvements, respectively. The evaluations then were supplemented by
error criteria and uncertainty analysis, where the narrower distribution of PI in hybrid
DNLS-MFA showed higher reliability in identifying the most compatible potentials in the
study area. Accordingly, the predictability of the hybrid model was then examined with
unlabelled data at depths 120 and 180 m, in which the created 3D maps showed appropriate
responses to categorized subsurface temperatures. Using the generated 3D visualized maps
not only the spatial extension of the interested areas at investigated depth are recognized
but also facilitate the interpretability of subsurface heating conditions and, consequently,
reducing the geothermal exploration costs. This implies on applicability of produced maps
in reflecting the most favorable hotspot locations for further geothermal analyses and
thus better site characterizing for field and real-world applications. The presented hybrid
DNLS-MFA is preferred because the produced digitized 3D spatial maps can be updated
using new geoscientific data to improve serving for deeper insights into the geothermal
resource systems. However, more knowledge on potential subsurface hot spots is needed
to enhance geothermal energy use and public awareness.
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