
Citation: Yang, Y.; Wang, Y.; Gao, Y.;

Gao, C. Peak Shaving Analysis of

Power Demand Response with Dual

Uncertainty of Unit and

Demand-Side Resources under

Carbon Neutral Target. Energies 2022,

15, 4588. https://doi.org/

10.3390/en15134588

Academic Editor: Mariano

Giuseppe Ippolito

Received: 10 May 2022

Accepted: 22 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Peak Shaving Analysis of Power Demand Response with Dual
Uncertainty of Unit and Demand-Side Resources under Carbon
Neutral Target
Yongchun Yang 1, Yixuan Wang 1,* , Yajing Gao 2 and Changzheng Gao 3

1 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,
North China Electric Power University, Baoding 071003, China; yongchunyang@ncepu.edu.cn

2 Carbon Neutrality Research Institute of China Huaneng Group Co., Ltd., Beijing 100031, China;
wwwwyixuan@163.com

3 China Electric Power Enterprise Federation Power Construction Technology and Economic Advisory Center,
Beijing 100053, China; jianshe2022@126.com

* Correspondence: wangyixuananran@163.com

Abstract: With the depletion of fossil energy and increasingly serious environmental problems,
demand-side resources play an increasingly prominent role in peak shaving and valley filling, energy
conservation, and emission reduction. Under the background of further promotion of the “double
carbon” goal in China, considering the possible double uncertainty factors in the process of unit
and demand response resources participating in the scheduling and the goal of minimum carbon
emission, the uncertainty models of unit output and demand-side resource response are respectively
constructed based on the sequential stochastic production simulation algorithm and the method of
additional random variables. In the model, the influence of random forced outage on unit output
and the uncertain influence of response deviation caused by the limitation of demand response
resource information processing and response aging characteristics are considered, respectively. By
analyzing the power supply and demand, considering demand response on two typical peak shaving
days, the peak shaving cost, carbon emission reduction, and power limitation are obtained. An IEEE
30 bus 6-machine system example is used to verify the effectiveness of the dual uncertainty demand
response model, which provides guidance for power dispatching decision-making.

Keywords: uncertainty; stochastic production simulation; demand response; optimal peak shaving;
carbon emissions

1. Introduction

The growing energy depletion and environmental problems caused by large-scale
fossil energy extraction and utilization are forcing a rapid transition to a completely new
energy system and industrial model. In order to accelerate the promotion of green, low-
carbon development, China proposed that “carbon dioxide emissions strive to peak in
2030, and strive to achieve carbon neutrality by 2060”. In the context of the dual carbon
goals, China’s power industry is focusing on promoting the upgrade of power grids to
the energy internet, creating a platform for optimal allocation of clean energy, promoting
energy-saving and efficiency for the whole society, reducing its own carbon emission level,
promoting energy and power technology innovation, and focusing on improving safety and
efficiency levels. While promoting the goal of carbon neutrality, the security of the energy
supply is ensured [1]. However, in recent years, China’s rapid economic growth, rising
share of electricity consumption in the tertiary industry and residential life, and increased
extreme weather have led to the time-sensitive and spiky characteristics of demand-side
electricity loads, with record-high electricity loads in local areas [2]. Therefore, power
shortages and power restrictions caused by local supply–demand imbalances in China
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have become a major problem for the development of a power system under the “double
carbon” target. Since the second half of 2020, many provinces and cities in China have
introduced policies of orderly power consumption and peak power consumption to cope
with the power supply gap during the peak periods [3].

With the continuous development and reform of the electricity market, China’s elec-
tricity consumption during peak load periods is gradually developing toward more market-
specific demand-side management. During the peak hours, we can fully develop the
demand-side regulation potential, build interruptible and adjustable multiple load re-
sources, improve relevant policies and price mechanisms, guide and stimulate power users
to optimize power consumption, adopt responsive power equipment and facilities, and
use huge demand-side resources to participate in power system dispatch to alleviate the
current power industry supply and demand “tight balance” in the power industry.

Demand Response (DR) can induce electricity users to respond to market price signals
or incentives, participate in the regulation of the power system, and change the traditional
power consumption pattern. Demand response has the advantages of fast response speed,
small cost, and environmental friendliness, and the practical applications in recent years
have shown that DR plays an important role in promoting the consumption of renewable
energy, enhancing the flexible regulation of the power system, and helping to maintain the
stability of the power system [4–6].

More literature has studied the impact of generation-side uncertainty and demand
response characteristics on system dispatch. For example, [7] proposed a stochastic pro-
duction simulation-based method to assess the new energy consumption capacity and
obtained the new energy consumption power and power limitation in the assessment cycle.
In [8], an improved stochastic production simulation method is used to study the reliability
assessment of a multi-energy system containing wind-photovoltaic-photovoltaic-gradient
hydropower-thermal power-battery storage. In [9], a refined model that takes into ac-
count the curtailable, shiftable, transferable, and substitutable loads is developed, and a
day-ahead optimal scheduling model for energy systems considering integrated demand
response is proposed. In [10], a two-layer optimization method for power systems that
takes into account demand response and deep peaking pricing strategy of fire storage is
proposed. In [11], a method for optimal scheduling of a microgrid system consisting of
generating units and demand response resources is proposed. The literature [12] proposes a
strategy for demand response to maintain the supply–demand balance in renewable energy
systems in response to the uncertainty of renewable energy generation in terms of supply.
The literature [13] proposes a demand response uncertainty model based on price incen-
tives to construct an energy coupling matrix for integrated community systems considering
demand response. The literature [14] coordinates flexible demand response and multiple
renewable energy uncertainties to balance the benefits between the integrated community
energy system and electric vehicle charging stations. The model proposed in the above
literature only considers the uncertainty of demand response resources unilaterally or the
day-ahead dispatching problem of demand response participation in new energy systems,
while both the output of traditional thermal power units and demand response resources
may fluctuate in actual engineering due to various factors.

In this paper, a stochastic production simulation algorithm and additional random
variables are used to construct uncertainty models for generating unit output and de-
mand response resources, respectively. Two typical peak-shaving scenarios of the IEEE
30-node 6-unit system are used to verify the validity of the dual uncertainty demand
response model.

2. Materials and Methods
2.1. Power Production Simulation with Unit Uncertainty

Power production simulation includes deterministic production simulation and stochas-
tic production simulation. Among them, the deterministic production simulation does not
consider the random outage failure of conventional units, which cannot accurately describe
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the production process of the power system and has certain problems in estimating the pro-
duction cost in the application process. Based on the deterministic production simulation,
stochastic production simulation takes into account the fluctuation of load and random unit
failures and calculates the generation capacity, generation cost, and system reliability index
of each unit under the optimal operation mode by optimizing the production of generating
units. Currently, stochastic production simulation has a wide range of applications in cost
analysis, development and operation planning, reliability, and new energy acceptance
capacity assessment of power systems [15,16].

From the emergence of stochastic production simulation methods to the present,
scholars from various countries have proposed a series of improved algorithms in terms of
improving the calculation accuracy and speed of the algorithms, including the segmented
linear approximation method, semi-invariant method, and equivalent power function
method. Several of the above algorithms use the equivalent continuous load curve to
combine the random outage of the generating units with the stochastic load model, which
ignores the time-series information and constraints of the load in the calculation process,
and only the reliability index of the power system as a whole can be reflected in the
calculation results, making it difficult to analyze the reliability of the power generation
system in terms of time series [17].

2.1.1. Multi-State Output Model for Generating Units

Before performing a stochastic production simulation of generator set output, the
output model of the generator set needs to be determined. The simplest model of conven-
tional generating unit output is a two-state model, i.e., the generating unit operates in only
two states: rated operation and fault-forced shutdown (without considering standby and
maintenance shutdown). However, in actual operation, due to various reasons (such as
the defects of boilers, turbines, and auxiliary equipment or the requirements of system eco-
nomic dispatch, etc.), the generating units may be partially shut down, and the generating
capacity cannot reach the nameplate output, so the units are operated in a reduced output
state. In the process of power production simulation, a multi-state model considering the
derated operation of the generating units is used to make the optimization results more
reasonable and accurate [18].

After considering the derating operation of the generator set in actual operation, there
are three operating states: rated, derated, and out of service, among which the derated
operation may show a variety of output conditions with different causes. In this paper,
for the convenience of analysis, the ratio of available generating capacity to rated capacity
when the generator set is in derated operation is considered a fixed value, i.e., the three-
state generator set model is used. Before the stochastic production simulation, each unit
should be expressed as an unfolded type, and then the loading order of the units should
be determined based on the average coal consumption rate of each generating unit and
loaded one by one. The unfolded type representation of the first two units when loaded is
shown in Figure 1.
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In the three-state diagram of the unit, 0, Pde
i , and Pi indicate the output of the ith unit

when it operates in three states: rated, derating, and shutdown, respectively; qi, si, and pi
indicate the probability of the unit operating in each of the three states, respectively; 1 and
2 represent the loading sequence of the unit.

2.1.2. Time-Series Stochastic Production Simulation

In order to describe the production process of the power system more profoundly and
obtain the time-series reliability index of the power system at the same time, this paper
adopts the time-series production simulation algorithm in the optimization planning of
the power generation system. This method retains the time sequence characteristics of the
original load curve and reflects the random shutdown and output fluctuation of the unit as
the change in the system’s power supply capacity. Through the calculation of the hourly
reliability index in the research cycle, a more accurate and practical production simulation
scheme of the power generation system considering the output uncertainty of the unit is
obtained [19,20].

The time-series stochastic production simulation algorithm generally uses the prob-
ability density of the available capacity of the system to reflect the capacity of the units.
Suppose there are a total of N available generating units in a power system, and the sum
of their capacities is Pz, the ratio of available capacity to the rated capacity of each unit
in derating operation is β, and the maximum common factor between rated capacity and
derating capacity of all units is α. Then, the process of generating the available capacity
probability density function is shown in Equation (1).

Fi(M) = qiFi−1(M) + siFi−1(M− βMi) + piFi−1(M−Mi)

Mi = Pi/α

qi + si + pi = 1

(1)

where M = 0, 1, 2, · · · , PZ/α represents the available capacity states of the power system,
with a total of PZ/α + 1.

The initial available capacity probability density function when none of the units in the
system is in operation is F0 = [1 0 · · · 0]. According to Equation (1), F0 is continuously
modified until all N units are in operation, and the available capacity probability density
function of N units is obtained, which is compared with the system daily load curve on the
power axis as shown in Figure 2.
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Figure 2. Schematic diagram of sequential stochastic production simulation.

The gray part in Figure 2 shows the amount of load loss of the system at that moment
corresponding to the (m + 1)st state. The load Pl,t at a certain moment is compared with the
available capacity Mα one by one, and if Pl,t > Mα, the system is considered to be out of
load. Then the expected value of the system under load at time t is:
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EENSt =
Dl,t

∑
M=0

(Pl,t −Mα)PN(M) (2)

And the probability of insufficient power is as follows:

LOLPt =
Dl,t

∑
M=0

PN(M) (3)

The expected value of power shortage for the whole study cycle of the system is
as follows:

EENS =
T

∑
t=1

Dl,t

∑
M=0

(Pl,t −Mα)Pn(M) (4)

where Dl,t is expressed as:

Dl,t =

 INT( Pl,t
α ), Pl,t

α ∈ Z

INT( Pl,t
α )− 1, Pl,t

α /∈ Z
(5)

where T is the research cycle; Dl,t is the load level; PN(M) is the probability that the system
operates in M state after N generator units are put into operation.

2.2. Optimal Scheduling Model with Uncertainty in Accounting and Demand Response

As one of the effective means of demand-side management, demand response guides
various types of power market players to tap peaking resources and participate in demand
response according to their own conditions to improve the operational efficiency of the
power system and reduce operational costs [21,22]. Demand response is divided into
price-based [23] and incentive-based [24], in which incentive-based demand response
motivates users to participate in response by economic means while setting penalty prices
to reduce the probability of user default. However, unlike the traditional supply-side
generation system, due to the uncertainty of the external environment and the limited
ability of individual users to process and recognize information, it is difficult for demand-
side response users to always pursue their own economic efficiency maximization and
respond accurately to the changes in the external environment. Therefore, when analyzing
the response effect, it is necessary to consider the inevitable demand response uncertainty
on the user side and to have sufficient understanding and modeling analysis of the demand
response mechanism and uncertainty in order to obtain a more reasonable and accurate
demand response peak shaving and emission reduction effect [25,26].

2.2.1. Target Function

The main objective of demand response resources in peak load reduction is twofold:
firstly, to reduce the peak-to-valley difference of grid load so that power generation and
consumption tend to balance and avoid power pulling and restriction as far as possible;
secondly, to use clean demand-side resources to replace a part of traditional thermal power
units to achieve the purpose of energy saving and emission reduction.

(1) When the demand response resource capacity can meet the requirements of power
balance during peak load, the system will not experience power shortage, and the response
cost is the peak shaving cost, so the lowest demand-side response service cost and the
highest carbon emission reduction are taken as the optimization objectives.

Firstly, it is clear that the demand response cost is the change of power revenue before
and after load reduction. Before demand response, the revenue of power companies is
mainly electricity revenue.

Ibe f ore
n,t = r0Lbe f ore

n,t (6)

where Ibe f ore
n,t is the revenue of the electric utility before the demand response resource

participates in the peak shaving response; r0 is the retail electricity price, based on the
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integrated average electricity price; Lbe f ore
n,t is the load of the nth demand response resource

at the moment t before the demand response is implemented.
Demand-side resources participate in peak-shaving response and reduce the utility’s

electricity revenue while paying additional demand response costs. Ia f ter
n,t = r0(Lbe f ore

n,t − Ln,t)− Cn,t

Cn,t = anL2
n,t + bnLn,t

(7)

where Ia f ter
n,t is the revenue of the power company after the demand response resource

participates in the peak shaving response; Ln,t is the load reduction of the nth demand
response resource at the time; Cn,t is the financial compensation of the power company to the
customers participating in the demand response; an and bn are the quadratic and primary
coefficients of the compensation amount of the nth demand response resource, respectively.

Therefore, the response cost of demand-side resources during peak load periods is:

costn,t = Ibe f ore
n,t − Ia f ter

n,t (8)

Bringing Equations (6) and (7) into Equation (8), the relationship between response
cost and load reduction is obtained as:

costn,t = anL2
n,t + (bn + r0)Ln,t (9)

The cost of peak shaving is:

cost =
H

∑
n=1

T

∑
t=1

[anL2
n,t + (bn + r0)Ln,t] (10)

where H is the number of demand response resources.
Since there is no direct link between power generation and carbon emissions from coal-

fired power plants, it is necessary to first determine the coal consumption of thermal power
plants based on the coal consumption coefficients of each unit; then, the carbon content of
the coal consumed is determined by selecting the appropriate carbon content coefficient
according to the type of coal combusted; and finally, the carbon emissions of thermal power
plants are obtained based on the actual carbon generation CO2 coefficient, i.e., the carbon
emission reduction of thermal power plants after the participation of demand response
resources in peak shaving is [27]:

C = µ1µ2µ3

H

∑
n=1

T

∑
t=1

Ln,t (11)

where C is the CO2 emission; µ1 is the coal consumption factor; µ2 is the carbon content
factor; µ3 is the carbon generation CO2 factor.

(2) When the demand response capacity cannot fully meet the requirements of power
balance during the peak load period, the minimum peak shaving cost and orderly power
consumption management scale, the minimum peak shaving cost and the maximum carbon
emission reduction are taken as the optimization objectives. At this time, the peak shaving
cost consists of response cost and power shortage cost.

E =
T
∑

t=1
Lbe f ore

t −
H
∑

n=1

T
∑

t=1
Ln,t −

T
∑

t=1
Pt

cost =
H
∑

n=1

T
∑

t=1
[anL2

n,t + (bn + r0)Ln,t] + rwE
(12)

where Pt is the unit output for the time period; E is the amount of power pulling limit; rw is
the unit cost of power shortage.
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In the above calculations, it is considered that demand response users can fully respond
to the demand side according to the response amount agreed in advance when the load
fluctuates violently. However, in practice, there is great uncertainty in the response of
each user after the load reduction order is issued. Demand responsive users have three
situations: over response, full response, and under response. The first two have little
negative impact on the power company. The power company only needs to compensate the
responsive users according to Formula (9) according to the agreed load reduction and does
not need to pay other fees. When the responding user fails to reduce by a certain amount of
load as required, the power company will compensate the user according to the actual load
reduction of the user. However, at this time, the power company needs to consider the risk
of power shortage caused by demand response and user under response; that is, although
the power company reduces the response cost, it needs to bear the risks of re-purchasing
high-priced power generation capacity and maintaining network security and stability.

Therefore, when considering the uncertainty of demand response, the actual load re-
duction is divided into agreed load reduction and random deviation. The peak shaving cost,
minimum power limit, and carbon emission reduction are shown in Formulas (13)–(15).

cost =


H
∑

n=1

T
∑

t=1
[an(

−
Ln,t + θn,t)

2
+ (bn + r0)·(

−
Ln,t + θn,t) + rwθn,t], θn,t < 0

H
∑

n=1

T
∑

t=1
[an
−
L

2

n,t + (bn + r0)
−
Ln,t], θn,t ≥ 0

(13)

E =


0, θn,t ≥ 0

T
∑

t=1
Lbe f ore

t −
H
∑

n=1

T
∑

t=1
(
−
Ln,t + θn,t)−

T
∑

t=1
Pt, θn,t < 0

(14)

C = µ1µ2µ3

H

∑
n=1

T

∑
t=1

(
−
Ln,t + θn,t) (15)

where
−
Ln,t is the agreed load reduction of demand response resources; θn,t is the stochastic

deviation amount.

2.2.2. Constraints

Electricity users participate in response during the peak load period to obtain economic
benefits while reducing the sense of electricity experience to a certain extent, so the response
satisfaction of users participating in demand response must be considered in the demand
response model, so the energy response constraint and time response constraint are added
to the model, and the specific constraints are as follows.

(1) Load reduction constraint. The load shedding energy of a demand response
resource should be less than the maximum capacity it can provide and should also be
greater than 0 (in a responsive state).

0 ≤ Ln,t ≤ µn,tDmax
n,t (16)

where Dmax
n,t represents the maximum load reduction of the nst demand response resource

in the time period; µn,t is energy invocation status in the time period, 1 means invoked,
0 means not invoked.

(2) Response duration constraint. When receiving dispatching instructions from the
trading center, the demand response resources in the operation area need to be dispatched.
If the time response characteristics are not controlled, it will bring greater pressure to the
actual operation of suppliers and also affect the basic electricity demand of customers. In
order to facilitate customers to adjust their production and living electricity plans as well
as to take into account the technical characteristics of each demand response resource, the
response time should be limited to a certain range.
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Tmin
n ≤ Ton

n ≤ Tmax
n (17)

where Tn represents the response time of the nth demand response resource in the schedul-
ing cycle; Tmin

n and Tmax
n represent its minimum and maximum response times in the

scheduling cycle.
In summary, the flow of demand response analysis taking into account unit uncertainty

is shown in Figure 3.
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3. Results and Discussion

In this paper, the complex objective function and constraints in the power system
dispatch model are transformed into a linear programming problem and solved using
a Cplex solver in the solution process, which reduces the difficulty of solving the dual
uncertainty dispatch model. Two typical peak shaving scenarios of the IEEE30 node system
are selected for demand response analysis. The total installed capacity of the system is
480 MW, and the detailed parameters of the generating units are shown in Table 1 [28,29].

Table 1. Generator set parameters.

Unit Number Capacity(MW) Forced Outage Rate Forced Derate Rate

1 160 0.04 0.025
2 100 0.026 0.02
3 60 0.017 0.01
4 80 0.02 0.013
5 40 0.01 0.005
6 40 0.01 0.005

The unit commissioning sequence is determined according to the fuel cost, and the
available capacity probability density function of the system is generated based on the
forced outage rate of each unit, and the probability of this system operating at each available
capacity state is shown in Table 2.

Table 2. The probability density of available capacity.

Available Capacity (MW) Probability Available Capacity (MW) Probability

0~216 0.0001 416 0.0222
220~276 0.0025 420 0.0168
280~316 0.0037 424~436 0.0005
320~372 0.0383 440~444 0.0337

376 0.0011 448~452 0.0084
380 0.0229 456~460 0.0109

384~396 0.0008 464~476 0.0083
400 0.0149 480 0.8143

404~412 0.0005

Assuming that the demand response resources available for peak shaving in this
system are both electric vehicles and interruptible loads, it can be approximated that the
deviations of both load reductions obey a normal distribution with a mean of zero, and
their standard deviations are shown in Table 3.

Table 3. Demand response resource parameters.

Demand Response Resources Electric Vehicles Interruptible Load

a ($/MW·h) 0.9 0.95
b ($/MW·h) 80 85

Duration 2 3
Response capacity/MW 7.5 15

Standard deviation 0.63 0.1

The compensation coefficient of electric vehicles is large; that is, when the uncertainty
of demand response is not considered, the response cost of electric vehicles is higher. The
standard deviation of the interruptible load is small; that is, considering the uncertainty of
demand response, the response reliability of interruptible load is higher, and the estimated
power shortage cost is lower [30].
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3.1. Peak Shaving Scenario 1

The reliability index of scenario 1 is solved according to Equations (2)–(4), where the
expected value of time-sharing power shortage is shown in Table 4.

Table 4. Expected loss of energy.

Time EENS (MW) Time EENS (MW) Time EENS (MW)

0:00 5.50 8:00 12.39 16:00 16.51
1:00 4.79 9:00 12.78 17:00 18.95
2:00 4.27 10:00 12.78 18:00 15.65
3:00 4.12 11:00 12.39 19:00 12.78
4:00 4.12 12:00 12.39 20:00 12.67
5:00 4.27 13:00 12.39 21:00 9.79
6:00 7.19 14:00 11.65 22:00 6.93
7:00 10.84 15:00 12.02 23:00 4.79

From Table 4, it can be seen that the load from 16:00 to 18:00 is greater than the
maximum value of unit output, so there must be a loss of load in this period, i.e., the
probability of power shortage is 1. The load in the rest of the period is smaller, and the
probability of power shortage is very small after considering the uncertainty of unit output,
so it can be considered that the load and unit output in these periods can be balanced. The
demand response resources start to respond at 16:00, and the response results are shown in
Figure 4 and Table 5.
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Table 5. Loss of energy probability.

Time LOLP before
Demand Response

LOLP after
Demand Response Service Fees ($) Carbon Emission

Reduction (kg)

16:00 1 0.1775 1493.596 13,620.75
17:00 1 0.1857 1748.422 15,633.75
18:00 1 0.1647 1488.75 12,375

The difference between the original load curve and the post-response equivalent load
curve in the interval from 16:00 to 18:00 in Figure 4 is the load reduction of the system after
the operation of demand response resources.

As can be seen from Figure 4 and Table 5, after the implementation of the demand
response in Scenario 1, the active output of the generating units can basically meet the load
demand, and the probability of power shortage during peak hours also decreases from 1 to
within 0.2, i.e., it can be approximated that demand response makes Scenario 1 achieve
supply–demand balance even during peak load periods without the need to implement
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power pulling and restriction measures. The cost of the peak-shaving demand response
side service is $4730.77, and the carbon emission reduction is 42,169.05 kg.

In order to compare the effect of demand response uncertainty on the effect of peak
shaving, a new optimization scenario is set up, in which the cost of peak shaving is
considered with demand response uncertainty. Then, the range of two demand response
resources output is obtained by changing the reliability index of demand response resources,
as shown in Figure 5.
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Figure 5. Fluctuating range of demand response resources.

In Figure 5, the upper cluster of curves shows the fluctuation range of interruptible
load output, and the lower cluster of curves shows the fluctuation range of electric vehicle
output. It can be seen that after considering the demand response resource response
uncertainty, the response of interruptible load with higher reliability increases within its
regulation range (curve cluster changes upward), and the response of electric vehicle with
lower reliability decreases (curve cluster changes downward), and its response fluctuates
within a certain range.

3.2. Peak Shaving Scenario 2

The time-sharing power shortage expectations for Scenario 2 are shown in Table 6.

Table 6. Expected loss of energy.

Time EENS (MW) Time EENS (MW) Time EENS (MW)

0:00 6.61 8:00 14.23 16:00 39.31
1:00 5.64 9:00 14.63 17:00 32.68
2:00 5.10 10:00 14.63 18:00 24.29
3:00 4.93 11:00 14.23 19:00 18.38
4:00 4.93 12:00 14.23 20:00 14.53
5:00 5.10 13:00 14.23 21:00 11.47
6:00 8.43 14:00 15.32 22:00 8.17
7:00 12.59 15:00 25.20 23:00 5.64

From Table 6, we can see that the load from 15:00 to 19:00 is greater than the maximum
value of unit output, so the load loss state must occur in this period, i.e., the probability
of power shortage is 1. The load in the rest of the period is smaller, and the probability
of power shortage is very small after considering the uncertainty of unit output, so we
can assume that the load and unit output in these periods can be balanced. The demand
response resource starts to respond at 15:00, and the response results are shown in Figure 6
and Table 7.

The difference between the original load curve and the equivalent load curve after
response in the interval from 15:00 to 17:00 in Figure 6 is the load reduction of the system
after the operation of demand response resources.
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Table 7. Loss of energy probability.

Time LOLP before
Demand Response

LOLP after
Demand Response Service Fees ($) Carbon Emission

Reduction (kg)

15:00 1 0.1857 2139.375 18,562.5
16:00 1 1 2139.375 18,562.5
17:00 1 1 1488.75 12,375

As can be seen from Figure 6 and Table 7, after the implementation of the demand
response in Scenario 2, the generating units still cannot meet the demand of the load at all
times, except at 15:00, when the probability of power shortage decreases to 0.1857, but the
probability of power shortage in the rest of the time is not significantly reduced, i.e., it is still
necessary to adopt the method of power pulling and restriction to make the system supply
and demand balance during the peak hours. The response cost is $5767.5, the shortage cost
is $79,860, and the carbon emission reduction is 49,500 kg. The amount of power pulled
and restricted before and after the demand response and the carbon emission of thermal
power plants are shown in Figures 7 and 8.
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According to the comparison of the system pulling power limit before and after
demand response, it can be seen that because the demand response resources are in
the response state from 15:00 to 17:00, the power limit after the response in Figure 7
is significantly reduced compared with that before the response, of which 15:00 can be
basically considered as a complete response; there is no demand response measure in the
period from 18:00 to 19:00, so the power limit is not reduced. Therefore, demand response
can effectively reduce the outage range of the system. Figure 8 shows that the carbon
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emissions of thermal power plants in this power system are reduced after the demand
response resources are involved in peak shaving optimal dispatch.
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Setting up a new optimization scenario that considers demand response uncertainty, a
comparison of the response resource output is shown in Tables 8 and 9.

Table 8. Deterministic demand response volume.

Time
Response Volume (MW)

Electric Vehicles Interruptible Load

15:00 7.5 15
16:00 7.5 15
17:00 0 15

Table 9. Uncertain demand response volume.

Time
Response Volume (MW)

Electric Vehicles Interruptible Load

15:00 7.38 14.79
16:00 7.29 15
17:00 0 15

As can be seen from Tables 8 and 9, when all the demand response resources in the
scenario with a heavy peak-shaving task need to be put into operation, the response volume
is only equal to or less than the response resource capacity in two cases after considering
the demand response uncertainty, and when the response volume is less than the response
resource capacity, it will affect the peak-shaving effect of the demand response resources.

4. Conclusions

This paper investigates the impact of uncertain thermal units and demand response
resources on power system dispatch and emission reduction problems, and the following
conclusions are obtained.

1. Considering the impact of power supply uncertainty on unit output, a probabilistic
model is established for thermal power units by using a time-series stochastic produc-
tion simulation algorithm, a probabilistic active output curve is re-established, a unit
day-ahead output model is constructed, uncertain demand response resources are
involved in power system dispatch as a virtual power supply, and a power demand
response dispatch model accounting for double uncertainty is proposed.
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2. The uncertainty of thermal power unit output leads to the increase in peak valley
difference of the system. In this example, the probability of system power shortage is
set to be less than 0.2 as the supply–demand balance. The peak valley dispatching
period is 3–4 h, which is close to the maximum duration of demand response resources.
There are two situations when demand response resources participate in power
system dispatching as a virtual power source: The demand response capacity is
fully responsive when it meets the maximum power difference during the peak load
period, and the response cost is proportional to the load reduction. When the demand
response capacity cannot meet the peak shaving demand, the system still needs to
limit power in some areas after the response, but the orderly power consumption
scale is reduced. The dispatching model in this paper calculates the response volume,
service cost, and carbon emission of each period of the system and provides decision-
making opinions for the power dispatching department.

3. In this example, the response power range of electric vehicles is 6.82–7.5 MW; The
power range of interruptible load response is 9.01–14 MW. Through the analysis of
demand response uncertainty, it is found that when the peak shaving task is light and
the demand response resources do not need to be put into operation, the response
uncertainty will lead to an increase in the response volume of resources with high
reliability, resulting in an increase in the response cost. When the peak shaving task is
heavy and all demand response resources need to be put into operation, the under-
response caused by response uncertainty will affect the peak shaving effect. Therefore,
when allocating demand response resources for the system, it is necessary to fully
consider the reliability index of demand response resources.
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