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Abstract: Electricity access is strongly linked to human growth. Despite this, a portion of the world’s
population remains without access to energy. In Colombia, rural communities have energy challenges
due to the National Interconnected System’s (NIS) lack of quality and stability. It is common to
find that energy services in such locations are twice as costly as in cities and are only accessible
for a few hours every day due to grid overload. Implementing market mechanisms that enable
handling imbalances through the flexible load management of main loads within the grid is vital for
improving the rural power grid’s quality. In this research, the energy from the rural grid is primarily
employed to power a heating, ventilation, and air-conditioning (HVAC) system that chills flowers for
future commerce. This load has significant consumption within the rural grid, so handling HVAC
consumption in a suitable form can support the grid to avoid imbalances and improve the end-
user access to energy. The primary responsibilities of the flower greenhouse operator are to reduce
energy costs, maximize flexibility, and maintain a proper indoor temperature. Accordingly, this
research proposes a flexible energy market based on the bi-level mixed-integer linear programming
problem (Bi-MILP), involving the Agricultural Demand Response Aggregator (ADRA) and the flower
greenhouse. ADRA is responsible for assuring the grid’s stability and quality and developing pricing
plans that promote flexibility. A flower greenhouse in Colombia’s Boyacá department is used as
an application for this research. This study looked at the HVAC’s flexibility under three different
pricing schemes (fixed, time-of-use, and hourly) and graded the flower greenhouse’s flexibility as a
reliable system.

Keywords: local energy market; flexibility; demand response; differentiated tariffs; HVAC; bi-MIP;
pricing scheme

1. Introduction

Colombia is the world’s second-largest exporter of flowers. Colombian flowers are
produced to exacting standards, ensuring ideal size, color, and longevity. The Colombian
Association of Flower Producers (Asocolflores), the National Planning Agency (DANE),
and the Environment Ministry estimate that the floriculture sector employs approximately
140,000 people in rural areas. Colombia possesses the world’s widest variety of exotic
export-type flowers, and these blooms demand efficient energy systems to maintain Colom-
bia’s high-quality requirements. As a result of its economic significance in terms of GDP
per capita, it is essential to research how to improve energy efficiency and flower quality.

1.1. Literature Review

Sensing, image processing, and energy management are all part of agricultural mod-
ernization in Colombia. The research of [1–3] is a probe of that. The documents [4,5] are
oriented to control strategies to reduce total energy costs while maintaining the required

Energies 2022, 15, 4572. https://doi.org/10.3390/en15134572 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15134572
https://doi.org/10.3390/en15134572
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4812-6633
https://orcid.org/0000-0002-3836-7022
https://orcid.org/0000-0001-6181-6175
https://orcid.org/0000-0002-7590-1976
https://doi.org/10.3390/en15134572
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15134572?type=check_update&version=1


Energies 2022, 15, 4572 2 of 20

operational constraints of a greenhouse. In addition, it evaluates the mutual benefits of
clean energy agriculture systems in both the energy and food industries. It does not include
DR plans for the grid and end-user preferences. Every organization (for example, homes,
apartments, buildings, industries, or greenhouses) must manage energy in loads such as
refrigeration, heating, lighting, misting, circulation, irrigation, and ventilation. In green-
house applications, the principal energy consumption occurs during irrigation prior to and
during harvesting, as well as refrigeration, which is required during the post-harvest stage
to extend the product’s life and keep desirable characteristics [6].

Agriculture is becoming an increasingly popular subject of study due to the increased
use of innovative technologies and alternative energy sources. Access to energy and
overuse, global warming, and food waste necessitate investigation. It is feasible to ease
some of these difficulties through energy management, as [7] points out. The world’s
population’s energy requirements are increasing daily. As a result, the integration of
products and services continues to grow, raising concerns about product preservation
(cooling/heating) and more efficient energy systems [8]. The papers mentioned above
demonstrate the critical nature of designing and implementing energy management and
efficiency techniques to improve world energy. Against traditional management, it is
essential to research local energy markets to procure local production and consumption.

Numerous studies of on-demand flexibility for residential, commercial, and industrial
purposes have been conducted, including [9–12]. The primary subjects covered are the
water–energy nexus and the control applied to energy management. It is stated in [13]
that innovative and automated technologies are required to improve plant performance.
Additionally, to avoid energy interruptions, the authors of [14–16] advocate using renew-
able energy sources for self-consumption, taking into consideration renewable energy’s
unpredictability and intermittent nature. Promoting renewable energy sources is a global
effort to alleviate energy shortages and contribute to a more environmentally friendly
world. Prosumerism applications are discussed in detail in [17–20], where the central
notion is to establish new local energy marketplaces where users can exchange products
and services. The authors have previously presented many options involving technology
advancements in agricultural applications and propose prosumerism models for a cleaner
grid. However, it is necessary to propose models for energy management that take the grid
and user interests into account.

HVAC loads are critical for DR due to their adaptability. Several papers, such [21–24],
propose optimization models with demand response constraints in order to capture network
behavior and operational restrictions effectively. In [25–28], research on HVAC for DR
in houses is undertaken. The authors provide a technique for quantifying a building’s
adaptation to the user and seasonal preferences and propose to use a battery-equivalent
power model for self-consumption. The document [29] finds and analyzes flexibility loads
for building applications with DR plans. The authors of [30] perform research on the effect
of specific loads on the behavior of rural grids, and [31] contrast rural and urban home
consumption in order to design and execute incentives at the national level.

The above proposals study different DR plans and user adaptation to DR programs.
Nevertheless, some results aim to propose legislation and energy efficiency improvements
in building construction and not for energy management plans. In addition, The optimiza-
tion models presented above do not consider the load operation model in detail, only the
grid constraints. Based on the previous considerations, it is still necessary to research model
markets that incorporate both the user and grid interests in a local energy market scheme.

Document [32] presents an energy management system that is consumer-driven.
A Stackelberg game optimizes end-user advantages while minimizing power plant ex-
penses. Dynamic pricing plans are discussed in [33]. The paper [34] describes a stochastic
optimization framework for microgrids providing flexible services to System Operators
(SOs), which includes energy and battery degradation costs during flexible service op-
erations. The paper [35] proposes a two-variable energy management model for energy
overall consumption improvement. The authors [36] propose a model that requests self-
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consumption data from end-users, including their baseline energy use and capacity for
energy reduction. Research [37] proposes scheduling day shifts for programmable appli-
ances as an optimization issue for energy bill savings. In [38,39], a comprehensive planning
and management system for daytime scheduling and real-time dispatching in uncertain
distribution networks is presented. Authors in [40] presents a new approach for assessing
the energy exchange across many microgrids in order to sustain local consumption while
lowering grid usage expenses.

As a result of the previous, it is critical to emphasize that, while there are currently few
studies on agricultural energy management and its contribution to grid balance, current
research indicates that precise and accurate techniques are still required due to renewable
energy’s intermittency nature. These characteristics significantly impact DR programs
since agricultural DR solutions can be created with time scales ranging from 24 h to near
real-time, improving grid behavior.

However, additional research is necessary to incorporate the potential for flexibility
in various agricultural applications such as dairies, livestock, and flower greenhouses.
Additionally, an analysis should be conducted on applications that consider the interests
of the various agents participating in energy markets via demand response schemes ap-
plied to agriculture, for example, incorporating Demand Response Aggregator (ADRA) in
agricultural applications.

1.2. Contribution

The primary goal of this work is to investigate strategies for developing a flexible
energy market, with the primary load being the HVAC in a flower greenhouse. A secondary
goal is to exploit load flexibility to provide balance services to the rural grid. The Stackelberg
game is given a bilevel formulation in this study. The concept comprises a continuous
upper-level model and a MIP lower-level model. The ADRA is on the upper level, while
the flower greenhouse’s HVAC system is on the lower level. Given the Bi-MILP nature of
the proposal, a reformulation technique enables the building of a single-level problem that
can be solved using commercial solvers.

Using a flower greenhouse, this study illustrates a theoretical application in an energy
management program. The greenhouse is located in Boyacá, a Colombian department,
and is powered by a rural grid. The HVAC system maintains the harvest flower’s quality
(weeks or months) for a long time. This article makes the following contributions:

• Through a Stackelberg scheme, this study proposes pricing approaches in the lo-
cal flexibility market to maximize grid balance and minimize flower greenhouse
consumption.

• The application includes an MILP HVAC model to optimize the energy consumption
in the Stackelberg game and manage the flower greenhouse energy. Due to the MILP
nature, this research introduces a reformulation method for obtaining a constrained
mathematical problem from the (Bi-MILP) approach.

• This paper applies the proposed approach in a flower greenhouse application to
present the flexible capability of HVAC systems in Colombia’s Boyacá department for
improving energy consumption and grid balance.

Additionally, given the nature of MILP programs, this research employs the method
described in [41] and illustrated in Appendix B for producing an equivalent restricted
mathematical problem.

The remainder of this section contains the following: Section 2 outlines the research
context. Section 3 presents the Bi-MIP theory’s modeling and reformulation for use in the
HVAC industry. Section 4 presents the simulations and findings of the flexible local market.
Finally, Section 5 presents the study’s conclusion and future work.
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2. Flexible Market Considerations

This study aims to improve grid balance (in the interest of the Distributed System Op-
erator (DSO)), control energy, utilize the flexibility of a flower greenhouse (in the customer’s
interest), and increase ADRA profit. Figure 1 illustrates the flexible market design.

Figure 1. DSO-ADRA-HVAC Flexibility Scheme.

According to Figure 1, the DSO or retailer is in charge of operating the rural grid
and monitoring the threshold levels continuously. When the grid is near or at capacity,
the DSO requests that the ADRA increase or decrease end-user use to maintain grid balance.
The ADRA analyzes the DSO’s requirements and differential pricing to detect changes
in end-user demand. The ADRA transmits price signals that cause end-users to modify
the setpoint, preventing imbalances. The HVAC or the client can alter his pattern plan
by adjusting the setpoint value. In other words, the DSO instructs the ADRA to alter
consumer behavior.

It is necessary to consider the responsibilities of three critical players. The DSO’s
primary responsibility is to maintain the grid operational (balance). The ADRA must
establish a contract-based pricing structure, and the HVAC system must reduce energy
consumption and increase flexibility. The ADRA charges user prices, and the sequence is
explained as follows.

• First, the ADRA decides the pricing scheme (ToU, Fixed, or Hourly) that optimizes
its objective function depending on the grid requirements. Then, to guarantee grid
balance, it creates a time-variant using an hourly time scale.

• Second, the flower greenhouse selects the setpoint value based on the pricing signal,
indicating the amount of energy consumed by the HVAC system (on/off sequence)
throughout each minute. Consumers are rational agents who want to minimize their
costs in this formulation.

The ADRA is a price taker, and the consumer does not know the energy demand
for the next day in advance. The HVAC system for the flower greenhouse makes energy
consumption (setpoint) decisions based on daily price schemes. The flower greenhouse
HVAC system cannot supply energy to the grid or for self-consumption.

Although the flower greenhouse must maintain the flowers for future marketing, it
cannot restore grid operation. Additionally, the flower greenhouse HVAC system is consid-
ered a client capable of entrusting a portion of their consumption to a load management
service in exchange for a fair price. Moreover, it signifies that the buyer is prudent in
selecting the most effective alternative available.

Finally, the approach considers the decision-making process on a two-time scale.
Upper-level pricing varies hourly depending on the method (ToU, Fixed, or Hourly).
The mixed-integer linear problem HVAC model is at the lowest level. The lower-level
objective minimizes the number of ON/OFF sequences performed per minute. This
suggests that the HVAC decides on a minute-by-minute basis whether to switch on or off
the air conditioning to cool the flowers. Unlike a conventional solution, this technique
adds HVAC ON/OFF behavior (binary variables) into the Bi-MILP optimization problem.
The HVAC model behavior is built based on the proposals described in [42,43].
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2.1. Prices

The contract stipulates a maximum and minimum price of pimax and pimin, respectively.
These values are established by the Energy, Gas, and Fuel Regulation Commission’s (CREG)
standards in accordance with CREG 015-2018 (Resolution No. 015 of 2018 Colombian
Energy, Gas, and Fuel Regulation Commission. https://bit.ly/3m5lugD, accessed on
(15 April 2022), CREG is the Colombian entity attached to the Ministry of Mines and
Energy responsible for regulating electricity and gas services as established in laws 142 and
143 of 1994. The National Government of Colombia created it to regulate public service
activities). The pricing computing values are related to the classification of load intervals
using a typical load curve Pi, as illustrated in Figure 2, read from commercial borders using
measurement equipment.

The conventional method for establishing these load intervals is to calculate the
percentage of load carried by the system during a given period concerning the maximum
daily load. The computation procedure uses the categorization findings to establish the
times of day when the grid is at its peak, average, and minimum load and correlates these
numbers to the maximum, mean, and minimum pricing, respectively. Figure 2 illustrates
the typical load curve Pi that is employed to calculate these values. This curve is similar to
a duck curve, except that i symbolizes the 24 h of the day, and i ∈ I = 0, . . . , 23 is used to
establish the maximum, average, and minimum prices [44,45]. The approach is illustrated
in detail in Appendix C.
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Figure 2. Typical Load Curve for Price Setting.

Figure 2 shows three zones where Pi is above the green line for Hmax−load, between the
green and red lines Havg−load, and below the red line Hmin−load. It is essential to consider
that during the hours with a load in the upper 95% (green line), the price is maximum, and
between 75% (red line) and 95% (green line), the average price is computed. Furthermore,
the minimum price is below 75% (red line). The process to obtain the prices πmax, πavg and
πmin solves the following equation system:

1
fch

Hmax−loadPHmax−load
πmax + Hmin−loadPHmin−load

πavg+

fchHavg−loadPHavg−load
πmin = πs

i

23

∑
i=0

Pi

(1)

πmax

fchπavg =
Pmax−load

Pmin−load (2)

πmax

fch
2πs

i

=
Pmax−load

Pavg−load (3)

https://bit.ly/3m5lugD
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where fch = 2 is a factor for the hourly charges of the grid. Hmax−load, Hmin−load, and Havg−load

are vectors (parameters) associated with the hours of the day that have maximum, average,
and minimum loads, respectively. Pmax−load, Pmin−load, and Pavg−load are the power values
associated with the hours of maximum, min, and average load values, respectively, and
πs

t = COP $200 is the fixed charge using the grid operator. After solving (1), (2), and (3),
the results are the πmax, πavg, and πmin. These values allow the ADRA to design its pric-
ing schemes without violating the limits. As is mentioned above, this research has three
different ADRA pricing options that are explained as follows:

• Time of Use: According to our research, this method divides the 24 h of the day into
three strips of 8 h. According to the contract criteria, the Bi-MILP model decides the
time of occurrence and the πmax, πavg, and πmin of each. To ensure that the pricing
plan benefits the grid, the ADRA employs the πmax and πmin values during hours
when the flower greenhouse’s consumption must be reduced or increased.

• Fixed: During the 24 h of this program, the ADRA maintains a flat pricing of
πavg. The flower greenhouse can choose the setpoint in this scheme based on its
requirements.

• Hourly: The Bi-MILP optimization problem solution creates pricing depending on
grid requirements in this technique. Only the Stackelberg interaction establishes the
values πmax, πavg, or πmin.

2.2. HVAC Behavior Control Modeling

An ON/OFF controller regulates the HVAC system’s primary operation. These con-
trollers incorporate a thermostat to minimize switching when the temperature is near the
setpoint. The HVAC’s operating characteristics are illustrated in Figure 3 and correspond
to the desired operation of a cold room. All refrigeration systems have three zones: hot,
freezer, and desired.

In this research, the aim is to make the indoor temperature of a day θin
i stay within

desired values θmin ≤ θin
i ≤ θmax. The indoor temperature behavior is depicted in Figure 3;

notice that θin
i is within the green zone and change between the threshold temperature

values θmin and θmax. This change depends on thermostat behavior.

Figure 3. Indoor temperature behavior.

The thermostat is in charge of maintaining θin
i within the desired zone. The energy

consumption pattern is depicted in Figure 4. The device consumes a maximum power value
PAC−max. During the ON state, θin

i reaches the minimum possible operation temperature
θmin. Then, the HVAC has to change to the OFF state. In this state, HVAC consumes mini-
mum power values PAC−min typically, PAC−min ≈ 0, and allows θin

i to reach the maximum
temperature value available θmax. This behavior is repeated ensuring θmin ≤ θin

i ≤ θmax.
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Figure 4. Load Management—Flexibility Capability.

The lower and upper limits can change depending on the requirements or convenience.
This variation of the setpoint makes it possible for HVACs to provide flexible services.
The strategy is to reduce power consumption by changing the setpoint operation in response
to pricing signals and providing flexible services to support the grid balance. Figure 4 shows
the behavior of rational consumers when a signal (higher) price appears. The consumer has
a target price to pay, commonly the average price πavg value. If the price of energy exceeds
the average value (high price), the setpoint goes from θmax1 to θmax2 and, consequently,
from θmin1 to θmin2 , which means the setpoint changes, e.g., from the range 2–3 ◦C to the
range 3–4 ◦C, as is in Figure 4.

Figure 4 shows what flexible service means in this research. The change in the con-
sumption patterns creates the possibility of providing load change as a percentage of
flexibility to the grid. This behavior allows establishing a flexible percentage-related set-
point, such as a value for each degree centigrade of indoor temperature change.

3. Flexible DSO-ADRA-HVAC Model and Reformulation

The application presented in this work is modeled as a Bi-MILP optimization problem
with upper and lower-level objective functions. The ADRA objective function (4) is stated
to maintain the balance between produced and consumed. The ADRA has to design the
consumer price πc

i based on contract constraints. PHVAC
i is the amount of energy that the

ADRA supplies to the consumer. The ADRA acts as a price taker, then πDSO
i depicts the

DSO price, and PDSO
i the energy available. The ADRA designs prices on hourly scales,

where i ∈ I = {0, . . . , 23} represents every hour of a day. The consumer decides in a
minute scale denoted by j the minutes of one day j ∈ J = {60i + 1, . . . , 60i + 60}. The
ADRA decides in advance compared with the consumer:

max
πc

i
∑
i∈I

[
πc

i PHVAC
i

]
−∑

i∈I

[
πDSO

i PDSO
i

]
(4)

s.t. πc
i ≥ πmin; ∀ i ∈ I (5)

πc
i ≤ πmax; ∀ i ∈ I (6)

1
N ∑

i∈I
πc

i = πavg; ∀ i ∈ I (7)

PHVAC
i = ∑

j∈J
sjPAC−NOM∆j; ∀ i ∈ I and ∀ j ∈ J (8)

The ADRA must maintain the contract conditions. From above, the constraint (5)
makes the ADRA not experience losses by designing a price πc

i cheaper than the DSO price
πDSO

i . In (6), the ADRA ensures no over cost in the energy service by setting a maximum
available price πmax, and (7) is the constraint that guarantees that, at the end of the day
or 24 h, the price scheme πc

i is equivalent to an average price. This means the end-user is
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not charged with additional charges rather than the DSO average price. The advantage of
signing contracts with the ADRA is to receive payments through the flexibility services.
Constraint (8) is the linking constraint of the bi-level problem between the upper and lower
level, where PHVAC

i represents the consumption of the HVAC system, sj represents the
turning ON/OFF signal, ∆j represents the time step 1/60, and PAC−NOM = 1.5 kW is the
HVAC’s nominal power.

In this approach, the ADRA buys energy from DSO, where the price formation is
ex-post. Therefore, the ADRA designs prices for the flower greenhouse, and the con-
sumer does not know the energy demand for the next day in advance. Consequently,
the flower greenhouse HVAC decides which amount of energy consumption (setpoint)
in response to pricing schemes within the daily operation. The current proposal has an
optimization problem (ADRA problem (4)) constrained by another optimization problem
(HVAC problem (9)). The HVAC flower greenhouse model is stated in constraint (9), which
represents the lower-level objective function:

sj ∈ arg min
sj , dj

∑
j∈J

[
πc

j sjPAC−NOM
]

∆j (9)

s.t. θin
j+1 = αθin

j + βθout
j − γPAC−NOMsj + τFload

j ; ∀ j ∈ J (10)

θi
j ≤ θmax1(1− dj) + θmax2

j dj + Msj; ∀ j ∈ J (11)

θi
j ≥ θmax1(1− dj) + θmax2 dj −Mbj; ∀ j ∈ J (12)

θi
j ≤ θmin1(1− dj) + θmin2 dj + Maj; ∀ j ∈ J (13)

θi
j ≥ θmin1(1− dj) + θmin2 dj −M(1− sj); ∀ j ∈ J (14)

bj + aj − sj−1 + sj ≤ 2; ∀ j ∈ J (15)

bj + aj + sj−1 − sj ≤ 2; ∀ j ∈ J (16)

πc
j ≤ πavg + M(dj); ∀ j ∈ J (17)

πc
j ≥ πavg −M(1− dj); ∀ j ∈ J (18)

sj, aj, bj, dj ∈ {0, 1}; ∀ j ∈ J (19)

In (9), sj represents the ON/OFF signal that the HVAC has to minimize. πc
i is an

ADRA price designed in the upper level. PAC−NOM is the nominal power of the HVAC
unit equal to 1.5 kW, and ∆j is the time step. The lower optimization problem includes a
dynamical behavior of the room as a constraint (10). The indoor temperature is represented
by θin

j+1, where α, β, and γ are parameters related with the U-values (geometry of the cold

room) [42], and τFload
j represents the load of the cold room due to the flower greenhouse

energy consumption by storage.
Constraints (11)–(14) operate to maintain the setpoint within a temperature range

(desired zone as in Figure 3). These constraints makes the indoor temperature θin
j operate

within two different temperature thresholds. As it is shown in Figure 4, the indoor tem-
perature changes from the range θmin1

j –θmax1
j to range θmin2

j –θmax2
j in response to the price

signal. It is important to mention that the signal in charge of changing between the two
temperature ranges is the binary value dj. In addition, M and M2 are big values that are
used in the model to ensure that the sj signal makes the indoor temperature stay within the
temperature thresholds.

To optimize the ON/OFF sequence sj, it is necessary to include constraints (15) and (16),
where the binary variables aj and bj are for avoiding over switching and to ensure consis-
tency of the lower mixed-integer programming model. Finally, it is necessary to ensure
the change in load pattern when the price signal appears. For this purpose constraints
(17) and (18) are used, where the binary variable dj is activated when the price exceeds a
threshold. The flower greenhouse model is as from (9) to (19). The whole Bi-MILP problem
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is stated in Equations (4) to (19). For this purpose, the reformulation procedure of [41]
is used. All the parameters, variables, functions ans index information are presented in
Appendix A. The theoretical formulation is presented in the Appendix B, the Algorithm A1
is presented in Appendix C and the restated current Bi-MILP proposed in this work is
developed in Appendix D. The reformulation procedure is performed to obtain the result
resumed in Figure 5. The single-level mixed-integer problem can be solved in an easy form
with commercial software and does not require a great number of computational resources.

Figure 5. Bilevel MIP Problem reformulation into a Single MIP Problem.

The cornerstone of the reformulation procedure is to duplicate the lower-level prob-
lem’s decision variables and constraints. In addition, it is necessary to include additional
variables ρ̂ic, where ic ∈ IC = {1, . . . , 8} for each inequality constraint guarantee the rela-
tively complete response property [41]; expressly, the duplicated variables are in constraints
(A24) to (A34).

In this problem, the upper level makes decisions hourly, while the lower level makes
decisions each minute. Constraint (A24) shows the linking power constraint with dupli-
cated values (upper zero indices). In addition, these constraints include the lower level
variable s0

j , which models the ON/OFF state, and the variable πc0
j represents the consumer

price. Constraint (A25) represents the duplicated variable θin0

j that represents the indoor
temperature of the room. Constraints (A26) to (A29) are used to ensure HVAC turns on
for indoor temperatures above the maximum temperature. Moreover, the HVAC turns
off when the indoor temperature is below a minimum temperature. In these constraints,
the variable d0

j has the task of informing when the price goes over the average price, and the
flower greenhouse changes the setpoint in response to that.

Constraints (A30) and (A31) are for the consistency in the MILP HVAC model and
for avoiding over-switching in the HVAC. Finally, constraints (A32) and (A33) are used to
activate the DR signal. Constraint (A34) represents the constraint related to the follower
objective, and the variables ρ̂ic, where ic represents the number of constraints for ensuring
the relatively complete response property of the problem, are also included. The final
step of the reformulation procedure is to use the Karush–Kuhn–Tucker (KKT) conditions
transformation applied to the lower-level problem (9) to (19), and the KKT equivalent is
shown from (A35) to (A47). Finally, the whole single-level optimization problem is shown
in Figure 5, where the reformulation results of a single-level MIP problem is stated.

4. Simulations and Results

This section simulates the DSO-ADRA-HVAC approach, which is developed to pro-
vide grid flexibility in a local energy market. One of the primary objectives of the research is
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to establish the degree of flexibility that HVAC can provide to the rural grid to maintain grid
balance. The other objective is to assess the three distinct pricing schemes and demonstrate
the relative merits and demerits in light of the player interests. Following the reformulation
described previously, the Bi-MILP optimization issue is written in GAMS Distribution
37.1.0 and solved using the NEOS SERVER 6.0 tool via the solver ANTIGONE (Algorithms
for Continuous-Integer Global Optimization of Nonlinear Equations).

4.1. Flexible Capability

The procedure executed for computing the flexible capability of the HVAC greenhouse
is performed by setting conditions and simulating the MILP HVAC model to obtain the
results. The Flower HVAC has a constrained indoor temperature operation. The flowers
cannot be exposed to temperatures above 6 ◦C for more than 12 h because the maturation
process accelerates. The ideal indoor temperature is 2 ◦C and 3 ◦C to adhere to stringent
export regulations and ensure exceptional size, color, and durability. This operational
condition implies that the HVAC at maximum can change the setpoint value in 3 ◦C going
from 2 to 3 ◦C (ideal indoor temperature) to 5 to 6 ◦C (maximum allowed temperature).
Taking into account the above consideration, first, a simulation is performed to know the
consumption in (kWh) of the cold room when it is set in the range of 2–3 ◦C for 12 h.
The HVAC consumes 430.5 kWh, in the range 2 to 3 ◦C. This consumption is selected as the
energy baseload.

The flexible evaluation results are in Table 1. In this table, four columns represent
the number of hours the HVAC provide flexibility services (first column) and the setpoint
change in centigrade degrees that the cold room changes (second to fourth columns). Each
of the rows of the columns is related to the time that the cold room has to change the flower
temperature refrigeration value.

Table 1. HVAC Flower Greenhouse Flexible Consumption Evaluation.

Hour (kWh) 3 ◦C to 4 ◦C (kWh) 4 ◦C to 5 ◦C (kWh) 5 ◦C to 6 ◦C

1 421.5 412.5 417
2 417 411 409.5
3 414 409.5 396
4 409.5 402 388
5 406 393 381
6 403.5 394.5 378
7 399 393 381
8 396 381 372
9 394.5 376.5 364.5

10 391.5 378 352.5
11 387 364.5 345
12 387 360 345

As an objective of relating a quantity of flexible energy for each grade centigrade
setpoint change, the data compiled in Table 1 are computed as is shown in Figure 6.
For better understanding, the row 5 of Table 1 shows that the end-user has three options for
support flexible services for five hours, changing the setpoint to one, two, or a maximum
of three degrees centigrades. If the cold room only changes by 1◦C, the consumption is
406 kWh. If it changes by 2 ◦C, the consumption is 393 kWh, and finally, if it decides
to change by 3 ◦C, the consumption is 381 kWh. Depending on the setpoint variation,
the end-user can provide 6%, 9%, and up to 12% of his energy consumption in response to
grid requirements.

From Figure 6, it is possible to establish the relation between power consumption
and the number of hours that change the setpoint to 1 ◦C, 2 ◦C, or 3 ◦C. This analysis is
consequential to the grid because when the DSO monitoring system detects a possible
emergency status, it requests flexibility from the ADRA, and the ADRA publishes a new
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price. The flower greenhouse HVAC can decide its setpoint depending on grid requirements
in response to this behavior. According to Figure 6, it is possible to establish that the flower
greenhouse can support 10%, 16%, or up to 20% flexibility over 12 h.

Figure 6. Linear approximation for the flexibility services from 1 to 12 h. In (a) is computed for 1 ◦C
change, in (b) for 2 ◦C change, and in (c) for 3 ◦C change.

4.2. Pricing Schemes

The effect of Time of Use and hourly pricing plans is depicted in Figure 7. In both
designs, the tariff for each hour is established by the Stackelberg formulation of the Bi-MIP.
It is critical to highlight that the statistics show the pricing threshold limits. The consumer
price cannot exceed the maximum price πmax (yellow line), it cannot be less than the
minimum price πmin (orange line), and the mean price must be equal to the daily average
price πavg (purple line) over 24 h.
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Figure 7. Pricing Scheme Results.

Figure 8 shows the energy consumption pattern of the flower greenhouse HVAC in
response to the pricing schemes. From this figure, it is possible to see that energy has an
expected behavior in the sense that when the ToU price change from the πmin to πmax,
HVAC decreases its energy use to a minimum value in the hour eight of the day. Then,
in hour 16 of the day, the ToU changes the price from πmax to a day’s average price πavg.
The green flower house over the ToU pricing scheme has an energy level during the 24 h
of 747 kWh. The grid does not need the end-user to reduce the pattern when the average
price is set. The energy value of the day of this pricing scheme is shown in Table 2. In the
hourly pricing plan, the Stackelberg formulation of the Bi-MIP decides the tariff of each
one of the hours. Constraints for the pricing design are that the consumer price cannot
exceed the max price obtained at the spot price. The consumer price cannot be lower than
the minimum price obtained at the spot price, and during the 24 h, the mean price has to
be equal to the daily average price.

Finally, since end-users are rational consumers when prices exceed a certain threshold,
the setpoint must shift from one range to another with reduced consumption. This operation
is performed because the user selects the optimal alternative. The outcomes of the three
pricing strategies are shown in Table 2.
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Figure 8. Flower Greenhouse Energy Consumption in Response to Pricing Schemes.

Table 2. Pricing Schemes Comparison.

Scheme
Temp.

Change
(◦C)

Daily Bill
COP($)

Consumption
(kW)

Monthly
Bill

COP($)

User
Savings
(%)

Flexibility
(%)

Fixed 0 726,711 1302 21,801,330 0 0

ToU
1 709,799 1278 21,293,970 2 2
2 691,574 1251 20,746,410 5 4
3 677,481 1231 20,324,430 7 5

Hourly
1 682,061 1270 20,461,830 6 2
2 657,842 1243 19,461,830 9 5
3 629,550 1221 18,886,500 13 6

The simulations are presented for each price proposal to establish the quantity of
energy the end-user consumes each day and month, money savings, and how much
flexibility they will provide the grid. The results of the price plan simulations are provided
in Table 2. There are seven columns in this table. The pricing structure consists of fixed
Time of Use and hourly rates. Additionally, the table illustrates the setpoint shift that the
flower greenhouse suffers if it chooses to give flexibility.

The fixed program provides flexibility regarding pricing scheme results if the grid
experiences an energy excess and requests an increase in end-user demand. The price is
set equal to the daily average price in this pricing scheme, and users are not required to
modify the setpoint procedure. In ToU and hourly pricing schemes, both the end-user and
the grid can benefit from advanced pricing. The simulation findings indicate that the ToU
program can supply the grid with up to 5% of its daily energy usage. This flexibility service
provided to the grid saves around 7% on its energy bills. Compared to the ToU program,
the hourly plan is the more attractive option because it allows the end-user to save up to
13% on his energy bill and support up to 6% of his energy use to the grid.

5. Conclusions and Future Work

This document proposed a pricing structure for a local energy market that includes an
ADRA and a flower greenhouse HVAC system. A Stackelberg game was used to model
the local energy market by developing a bilevel mixed-integer linear problem to represent
the players’ interests. The problem was reformulated using a decomposition approach to
generate a restricted mathematical program with complimentary constraints, which was
then solved using the GAMS and Neos Server tools via the solver ANTIGONE (Algorithms
for Continuous/Integer Global Optimization of Nonlinear Equations).

The research findings were possible due to the reformulation procedure, which enables
the bordering of several classes of mixed-integer problems by creating a duplicated compli-
cated variable set and, depending on the nature of the problem, by including additional
continuous functions to ensure a relatively complete response. The CREG normative was
employed to calculate the pricing thresholds (πmin, πavg, and πmax). These values were
used to calculate the pricing for the three different plans. The simulations of Time of Use,
fixed, and hourly schemes indicate that the flower greenhouse HVAC system can provide
up to 20% flexibility. This behavior translates into financial savings for the end customer.
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If the DSO has a contingency, the end-user might assist by 20% of his usage under specified
conditions and for 12 h.

The future study will consider the uncertainty associated with renewable energy
adoption. It is necessary to investigate scenarios for photovoltaic generation and stochastic
formulations. Furthermore, a new variable will be introduced to reflect flower consumption
per kW. This value is calculated using monthly data on energy usage measured in flower
stem equivalents per kilowatt.
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Appendix A. Parameters, Variables, Functions, and Index Information

Table A1. Parameters, Variables, Functions, and Index Information.

PARAMETERS
Definition Notation Units

Big numbers M1, M2
Building U-values α, β, γ
Factor for hourly charges fch COP$
HVAC Nominal Power Consumption PAC−NOM kWh
Maximum Temperature θmax ◦C
Minimum HVAC Power Consumption PAC−min kWh
Minimum Temperature θmin ◦C
Number of periods in a day N
Power at hour i Pi kWh
Time Step ∆j minutes

VARIABLES

Average Price πavg COP$
Binary variables s, a, b, c
Consumer Energy Price πc COP$
Demand Response Signal drj
DSO Price πDSO

i COP$
Duplicated Bilevel Optimization Problem Θduplicated

◦C
Duplicated variables upper index 0

Energy consumed by end-user PHVAC
i kWh

Energy available for DSO PDSO
i kWh

Flower Consumption Load τ ◦C
Grid operator charge πs

i COP$
Indoor temperature θin ◦C
KKT multipliers λ, µ

Maximum Hour Load Hmax−load hour
Maximum HVAC Power Consumption PAC−max kWh
Maximum Load Value Pmax−load kWh
Maximum Price πmax COP$
Minimum low Load Hmin−load hour
Minimum Load Value Pmin−load kWh
Minimum Price πmin COP$

FUNCTIONS

Continuous Decision Variables x, y
Continuous Function ρ̂ic
Functions f , g, h, A, b, w, v, P, N, R, K
Identity Matrix I

INDEX
Definition Notation Units

Time Index j minutes
Time Index i hours
Constraint index ρic

Appendix B. Bi-Level Mixed Integer Linear Problem and Theoretical Reformulation

Since its formulation, this issue has stimulated academics’ interest in exploring and
implementing bilevel optimization problems. By definition, bi-level optimization issues are
those in which one optimization problem’s constraints constitute another problem. Since
1934, the Stackelberg formulation has been used in the application of market economics [46].
The standard formulation states the problem as two parts, the upper and lower level or
the leader and follower [47,48]. The follower’s feasible set is established by the leader’s
feasible set. According to their nature, bi-level optimization problems may be categorized
into four categories as follows [49]:
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1. Upper variables are integers, and lower variables are continuous.
2. Upper and lower variables admit integer and continuous values simultaneously.
3. Upper and lower variables are all integers.
4. Lower variables are integers, and the upper variables are continuous.

In the theory methods for Mixed Integer Problems (MIP), but for the purely lin-
ear/nonlinear integers, there are minimal algorithms [50]. The general formulation of the
Bi-MIP problem Θ developed in this paper is depicted in Equations (A1) to (A4):

Θ = max
x,y,z

f (x) + g(y) + h(z) (A1)

s.t. A(x) ≤ b; x ∈ Rmc
+ ×Zmd

+ (A2)

(y, z) ∈ F (x) arg min w(y) + v(z) (A3)

s.t. P(y) + N(z) ≤ R− K(x); x,y ∈ Rnc
+ , z ∈ Znd

+ (A4)

In Θ, x represents the leader’s continuous decision variables, y represents the fol-
lower’s continuous decision variables, and z represents the discrete follower decision
variables. The upper level in Equations (A1) and (A2) and the lower level in Equations (A3)
and (A4) have opposite objectives. Commonly, while one of the levels intends to maximize
his interests, the other one intends to minimize them. Due to the nature of the Bi-MILP op-
timization problems, the computing process is not easy, even for the most straightforward
bilevel mixed-integer programming (MIP) problem; it is theoretically NP-hard [41]. This
research implements a reformulation procedure to represent the Bi-MILP in a constrained
mathematical problem.

The purpose of obtaining an equivalent representation is to find a good approximation
to the optimal value using commercial software. A decomposition algorithm based on
the column-and-constraint generation method is transforming the Bi-MILP into a con-
strained mathematical program with complementary constraints. This procedure ensures
the problem converges to an ε-optimal solution value within finite operations [41].

The Bi-MILP common approach is as stated in Equations (A1) to (A4). The cornerstone
of the reformulation procedure is to duplicate the lower-level problem’s decision variables
and constraints. The duplicating problem Θduplicated process result is stated (A5) to (A9):

Θduplicated = max
x,y,z

f (x) + g(y0) + h(z0) (A5)

s.t. A(x) ≤ b (A6)

P(y0) + N(z0) ≤ R− K(x) (A7)

w(y0) + v(z0) ≤ min w(y) + v(z) (A8)

s.t. P(y) + N(z) ≤ R− K(x) (A9)

In Θduplicated, x represents the continuous decision variables of the leader player, y0 and
z0 represent the duplicated continuous and discrete decision variables of the follower player,
respectively. The duplicating variables and constraints provide a set that incorporates the
original upper x level variables and the y, z lower-level variables. The concept behind this
decision-maker is that the upper level will be able to use the couple (y0, z0) to obtain a
simulation of the decision in the lower level, and with this result, it evaluates the impact of
that lower-level response. In mathematical terms, under constraints (A8) and (A9), it is clear
that the set (x, y0, z0) is the inducible region or feasible set of the Bi-MILP problem. After
obtaining the duplicated problem, it is necessary to expand constraints (A7) and (A8). This
procedure implies that for any possible (x,y), the remaining lower level has a finite ε-optimal
value. This assumption is similar to establish that the resource is relatively complete if
for every x ∈ X, and every possible realization of random data, the lower level problem
is feasible. that is, the relatively complete resource property. If there exists a tuple (x, y) in
the lower level that does not meet the relatively complete response property, it means the
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lower level is infeasible. For solving these, it is necessary to introduce additional variables
ρ̂ = (ρ1, ρ2, . . . , ρn) with big-M penalty coefficients for constraint violations. Specifically
the procedure replaces the (A8) and (A9) for (A10) and (A11):

w(y0) + v(z0) ≥ min w(y) + v(z)−M ∑ ρ̂ic (A10)

s.t. P(y) + N(z) ≤ R− K(x) + Iρ̂ic (A11)

where I represents the identity matrix, and ρic represents the additional continuous func-
tions added to each constraint. Furthermore, it is necessary to take into account the
following considerations:

• The bilevel optimization problem includes lower level discrete variables, which im-
plies that when it cannot be reduced to the min value, the reformulation steps are
useful to derive the ε− optimal solution.

• The inclusion of variables ρ̂ic ensures the problem has the relative complete response.
Then, this provides a sufficient condition to ensure the existence of an ε-optimal solu-
tion.

• There exists an optimal solution to the extended formulation that is also feasible and
optimal to the original one.

Finally, to obtain an MIP problem, it is possible to compute the Karush–Kuhn–Tucker
(KKT) conditions of constraints (A10) and (A11), after the KKT procedure, the new con-
straints are stated in (A12) to (A16), where λ represents the KKT multiplier, and ⊥ is
employed to represent complementary constraints compactly:

wy0 + vz0 ≥ max wy + vz −M ∑
ic

ρ̃ic (A12)

Py ≤ Rx − Nz (A13)

Ptλ ≥ wt (A14)

y ⊥ (Ptλ− wt) (A15)

λ ⊥ (R− Kx − Nz − Py − ρ̃ic) (A16)

The final mathematical program with complementary constraints Θmpcc is depicted
in (A17)–(A23).

Θmpcc : max f (x) + g(y0) + h(z0) (A17)

s.t. A(x) ≤ b, x ∈ Rmc
+ ×Znd

+ (A18)

P(y0) + N(z0) ≤ R− K(x), y0 ∈ Rnc
+ , z0 ∈ Znd

+ (A19)

w(y0) + v(z0) ≥ v(z) + w(y), (A20)

P(y) ≤ R(x)− N(z), Ptλ ≥ wt (A21)

y ⊥ (Ptλ− wt), λ ⊥ (R− K(x)− N(z)− P(y)− ρ̃ic) (A22)

ρ̃ic ∈ Rnc
+ , λ ∈ Rn1

+ (A23)

The problem stated in Θmpcc can be easily written in a commercial software and do
not require a great quantity of computational resources.

Appendix C. Algorithm to Obtain DSO Prices Based on CREG Normative

This appendix shows the Algorithm A1 applied to the load curve shown in Figure 2
to obtain the three zones, where Pi is above the green line for Hmax−load, between the green
and red lines for Havg−load, and below the red line for Hmin−load. It is essential to consider
that during the hours with a load upward of 95% (green line), the price is maximum, and
between 75% (red line) and 95% (green line), the average price is computed. Furthermore,
the minimum price is below 75% (red line).
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Algorithm A1: Executed for Compute Threshold Pricing Values
Initialization;
Create vectors for Hmax−load, Hmin−load, Havg−load, Pmax−load, Pmin−load, Pavg−load;
Load the Pi values;
Declare fch = 2 and πs

i = 200;
The length of Hmax−load and Pmax−load = Times where Pi ≥ 0.95;
The length of Havg−load and Pavg−load = Times where 0.75 ≥ Pi ≤ 0.95 AND;
The length of Hmin−load and Pmin−load = Times where Pi ≤ 0.75;
while i ≤ 23 do

if Pi ≥ 0.95 then
Hmax−load

i = Pi;
Pmax−load

i = mean(Pi Hmax−load
i );

i = i + 1
else

if 0.75 ≥ Pi ≤ 0.95 then
Havg−load

i = Pi;

Pavg−load
i = mean(Pi H

avg−load
i );

i = i + 1
else

if Pi ≤ 0.75 then
Hmin−load

i = Pi;
Pmin−load

i = mean(Pi Hmin−load
i );

i = i + 1
else

solve the equation system (1), (2) and (3) and relates with the positions of
Hmax−load, Havg−load and Hmin−load to obtain πmax, πavg and πmin.

Appendix D. Current Approach Reformulation Result

The cornerstone of the reformulation procedure is to duplicate the lower-level prob-
lem’s decision variables and constraints. In addition, it is necessary to include additional
variables ρ̂ic for each inequality constraint (ic) to guarantee the relatively complete response
property; expressly, the duplicated variables are in constraints (A24) to (A34):

PHVAC
i = ∑

j∈J
s0

j PAC−NOM∆j; ∀ i ∈ I (A24)

θin
j+1 = αθin0

j + βθout
j − γPAC−NOMs0

j + τFload
j ; ∀ j ∈ J (A25)

θin0

j ≤ θmax1(1− dj) + θmax2 d0
j + Ms0

j ; ∀ j ∈ J (A26)

θin0

j ≥ θmax1(1− d0
j ) + θmax2 d0

j −Mb0
j ; ∀ j ∈ J (A27)

θin0

j ≤ θmin1(1− d0
j ) + θmin2 d0

j + Ma0
j ; ∀ j ∈ J (A28)

θin0

j ≥ θmin1(1− d0
j ) + θmin2 d0

j −M(1− s0
j ); ∀ j ∈ J (A29)

b0
j + a0

j − s0
j−1 + s0

j ≤ 2; ∀ j ∈ J (A30)

b0
j + a0

j + s0
j−1 − s0

j ≤ 2; ∀ j ∈ J (A31)
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πc0
j ≤ πavg + M(d0

j ); ∀ j ∈ J (A32)

πc0
j ≥ πavg −M(1− d0

j ); ∀ j ∈ J (A33)

∑
j∈J

[
πc0

j s0
j PAC−NOM

]
∆j − ∑

j∈J

[
πc

j sjPAC−NOM
]

∆j +
ic

∑
i=1

(M2ρ̂ic) ≤ 0 (A34)

In this problem, the upper level makes decisions hourly while the lower level makes
each minute. Constraint (A24) shows the linking power constraint with duplicated values
(upper zero indices). In addition, these constraints include the lower-level variable s0

j , which

models the ON/OFF state, and the variable πc0
j represents the consumer price. Constraint

(A25) represents the duplicated variable θin0

j that represents the indoor temperature of
the room. Constraints (A26) to (A29) are used to ensure the HVAC turns on for indoor
temperatures above the maximum temperature. In addition, HVAC turns off when the
indoor temperature goes below a minimum temperature. In these constraints, the variable
d0

j has the task of informing when the price goes over the average price, and the flower
greenhouse changes the setpoint in response to that.

Constraints (A30) and (A31) are for the consistency of the MILP HVAC model and
for avoiding over switching in the HVAC. Finally, constraints (A32) and (A33) are used to
activate the DR signal. Constraint (A34) represents the constraint related to the follower
objective, and the variables ρ̂ic, where ic represents the number of constraints for ensuring
the relatively complete response property of the problem, are included:

λ1 ⊥ (θi
j+1 − αθin

j − βθout
j + γPAC−NOMsjτFload

j ); ∀ j ∈ J (A35)

µ1 ⊥ (θin
j − θmax1(1− dj)− θmax2 dtm −Msj − ρ̂1); ∀ j ∈ J (A36)

µ2 ⊥ (−θin
j + θmax1(1− dj) + θmax2 dj −Mbj − ρ̂2); ∀ j ∈ J (A37)

µ3 ⊥ (θin
j − θmin1(1− dj)− θmin2 dj −Maj − ρ̂3); ∀ j ∈ J (A38)

µ4 ⊥ (−θin
j + θmin1(1− dj) + θmin2 dj −M(1− sj)− ρ̂4); ∀ j ∈ J (A39)

µ5 ⊥ (bj + aj − sj−1 + sj − 2− ρ̂5); ∀ j ∈ J (A40)

µ6 ⊥ (bj + aj + sj−1 − sj − 2− ρ̂6); ∀ j ∈ J (A41)

µ7 ⊥ (πc
j − πavg −M(dj)− ρ̂7); ∀ j ∈ J (A42)

µ8 ⊥ (−πc
j + πavg −M(1− dj)− ρ̂8); ∀ j ∈ J (A43)

M2 ≥ µic; ∀ ic ∈ {1, . . . , 8} (A44)

µic ≥ 0; ∀ ic ∈ {1, . . . , 8} (A45)

ρ̂ic ≥ 0; ∀ ic ∈ {1, . . . , 8} (A46)

sj, aj, bj, dj s0
j , a0

j , b0
j , d0

j ∈ {0, 1}; ∀ j ∈ J (A47)

The final step of the reformulation procedure is to use the Karush–Kuhn–Tucker (KKT)
conditions transformation applied to the lower-level problem (9) to (19), and the KKT
equivalent is shown from (A35) to (A47). Finally, the whole single-level optimization
problem is as in Figure 5, where the reformulation result to a single-level MIP problem
is stated.
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