

  energies-15-04571




energies-15-04571







Energies 2022, 15(13), 4571; doi:10.3390/en15134571




Article



Energy-Aware Bag-of-Tasks Scheduling in the Cloud Computing System Using Hybrid Oppositional Differential Evolution-Enabled Whale Optimization Algorithm



Amit Chhabra 1,*[image: Orcid], Sudip Kumar Sahana 2, Nor Samsiah Sani 3,*[image: Orcid], Ali Mohammadzadeh 4 and Hasmila Amirah Omar 3





1



Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar 143005, India






2



Department of Computer Science & Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India






3



Center for Artificial Intelligence Technology, Faculty of Information Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia






4



Department of Computer Engineering, Shahindezh Branch, Islamic Azad University, Shahindezh 5981693695, Iran









*



Correspondence: amit.cse@gndu.ac.in (A.C.); norsamsiahsani@ukm.edu.my (N.S.S.)







Academic Editor: Ravinesh Deo



Received: 28 May 2022 / Accepted: 11 June 2022 / Published: 22 June 2022



Abstract

:

Bag-of-Tasks (BoT) scheduling over cloud computing resources called Cloud Bag-of-Tasks Scheduling (CBS) problem, which is a well-known NP-hard optimization problem. Whale Optimization Algorithm (WOA) is an effective method for CBS problems, which still requires further improvement in exploration ability, solution diversity, convergence speed, and ensuring adequate exploration–exploitation tradeoff to produce superior scheduling solutions. In order to remove WOA limitations, a hybrid oppositional differential evolution-enabled WOA (called h-DEWOA) approach is introduced to tackle CBS problems to minimize workload makespan and energy consumption. The proposed h-DEWOA incorporates chaotic maps, opposition-based learning (OBL), differential evolution (DE), and a fitness-based balancing mechanism into the standard WOA method, resulting in enhanced exploration, faster convergence, and adequate exploration–exploitation tradeoff throughout the algorithm execution. Besides this, an efficient allocation heuristic is added to the h-DEWOA method to improve resource assignment. CEA-Curie and HPC2N real cloud workloads are used for performance evaluation of scheduling algorithms using the CloudSim simulator. Two series of experiments have been conducted for performance comparison: one with WOA-based heuristics and another with non-WOA-based metaheuristics. Experimental results of the first series of experiments reveal that the h-DEWOA approach results in makespan improvement in the range of 5.79–13.38% (for CEA-Curie workloads), 5.03–13.80% (for HPC2N workloads), and energy consumption in the range of 3.21–14.70% (for CEA-Curie workloads) and 10.84–19.30% (for HPC2N workloads) over well-known WOA-based metaheuristics. Similarly, h-DEWOA also resulted in significant performance in comparison with recent state-of-the-art non-WOA-based metaheuristics in the second series of experiments. Statistical tests and box plots also revealed the robustness of the proposed h-DEWOA algorithm.






Keywords:


cloud computing; Bag-of-Tasks scheduling; metaheuristics; energy efficiency; simulation; optimization












1. Introduction


Modern cloud computing setups offer incredible seamless, ubiquitous, reliable, cost-effective, and scalable resources, e.g., databases, platforms, software, computers, and servers as services to execute a variety of user-oriented applications [1,2]. Infrastructure as a service (IaaS) clouds provide customized anytime-anywhere computing resources to customers with ease. Due to these features, IaaS clouds become an attractive platform for executing parallel and high-performance computing (HPC) applications [2]. IaaS clouds usually contain a number of CDCs containing thousands of pre-configured virtual machines (VMs) to execute parallel applications, satisfying users or service providers’ requirements [3]. Examples of different IaaS cloud infrastructures are Amazon EC2, Windows Azure, Rackspace, and Google Compute Engine [3].



1.1. Research Motivations


Cloud computing enables the remote execution of diverse applications of different types of customers. Such applications span a variety of fields such as IoT, Big-data analytics, HPC engineering, biomedical, etc. For example, global CDC traffic increased from 6 ZB in 2016 to around 20 ZB in the year 2021 [4,5]. Additionally, the recent COVID-19 pandemic has further triggered the heavy use of cloud computing resources since most of the essential day-to-day services associated with healthcare, work, food, and education are accessed online [6]. Consequently, CDC infrastructures are expanding in terms of size and scale to accommodate growing needs of user-oriented traffic. Such expansion resulted in a huge rise in energy consumption due to cloud resources, which further enhances carbon emissions and energy costs. As per a recent report, CDCs are among the world’s largest energy consumers, and will be consuming 4.5% of total world energy consumption in 2025, and their energy costs are likely to be doubled almost every 5 years [7,8]. Predictively by 2025, data centers will contribute to emitting nearly 3.5% of carbon emissions (equivalent to 100 million metric tons of carbon pollution) globally per year in the environment [8]. As a result, it is essential to address the ever-growing issue of cloud energy consumption.



Along with the issue of cloud energy consumption, another research dimension focuses on cloud users demanding the execution of their applications as fast as possible with reduced makespan [6,7,8]. Therefore, multi-objective task scheduling strategy which meets the performance-energy tradeoff is the need of the hour. In this paper, a performance- and energy-aware scheduling solution for executing famous BoT applications over IaaS clouds is proposed. It is worth mentioning here that BoTs belong to the class of most executed workloads on clouds and other cloud-like parallel computing platforms [7,8].



The CBS problem for scheduling independent BoT applications over cloud resources is a popular NP-hard problem due to resource and workload heterogeneity, problem size, and cloud dynamicity [9,10,11]. In the past, many researchers addressed the CBS problem using queuing-, heuristic-, and metaheuristic (MH)-based solutions. Out of these, both queuing- and heuristic-based solutions did not produce global optimum results especially for bigger scheduling problems [8,9,10,11,12]. Contrarily, metaheuristics have produced effective scheduling solutions in polynomial time as compared to existing heuristics and queuing approaches [11,12,13,14,15]. WOA is one such prominent swarm-intelligence-based metaheuristic, and has proven its excellence in solving a wide range of real-life optimization problems including from wireless sensor networks, fluid mechanics, applied sciences, engineering, and academia [16,17,18,19,20,21,22,23,24,25,26]. However, besides the effectiveness in obtaining competitive solutions, the WOA still struggles to maintain robust exploration and has chances of trapping in local optima, resulting int inadequate exploration–exploitation tradeoff [23,24,25]. These deficiencies affect the scheduling solution quality thereafter. In addition to this, “No free lunch theorem (NFL)” [9] proves that there is no single metaheuristic algorithm fit enough to optimize all optimization problems. These facts act as strong motivations to undertake the current research work to propose a hybrid WOA-based scheduling approach to overcome the standard WOA limitations by hybridizing it with DE, chaotic maps, and OBL techniques. A list of acronyms used in this paper is presented in Table 1.




1.2. Research Contributions


Inspired by the aforesaid issues, a hybrid metaheuristic for optimizing the CBS problem is proposed to schedule concurrent BoT applications. Research contributions are highlighted as follows:




	(1)

	
A hybrid metaheuristic called h-DEWOA is suggested, which uses the search mechanisms of chaotic map and OBL techniques to generate diverse initial population, and integrates the evolutionary DE method with the basic WOA approach to improve search exploration and convergence rate.




	(2)

	
The DE metaheuristic is further augmented with the OBL method to improve convergence rate and solution diversity throughout the h-DEWOA approach.




	(3)

	
A fitness-aware tradeoff scheme is integrated in the h-DEWOA approach to provide sufficient tradeoff between exploration and exploitation phases, which further helps to improve the quality of scheduling solutions.




	(4)

	
Finally, real-workloads of CEA-Curie and HPC2N supercomputing sites are selected for performance evaluation. Simulation results of the proposed h-DEWOA are compared with WOA-based and other state-of-the-art scheduling approaches using extensive experiments. Results and observations clearly show the supremacy of h-DEWOA over baseline algorithms.









The remaining part of the paper is outlined as follows. Section 2 highlights the related CBS problem research works. In Section 3, details of the system model, BoT application model, problem definition, and proposed fitness function are presented. Section 4 describes the encoding of the scheduling solution and methodology of the suggested h-DEWOA approach. Section 5 presents the simulation results, followed by the discussion and observations. In the end, the paper concludes by listing conclusions and future directions in Section 6.





2. Related Works


Existing research works for solving CBS problems involve the use of heuristics (e.g., FCFS, SJF, Min-min, Max-min, MCT, MET, and Suffrage [11]) and metaheuristics (e.g., GA, CS, ACO, PSO, WOA, BFO, etc. [10]). Heuristics offer problem-specific solutions and are suitable for small-sized problems, whereas metaheuristics (MHs) are simple, flexible, derivative-free, repetitive algorithms which guide a subordinate heuristic by an intelligent mechanism [27,28,29]. Out of these, metaheuristics-based scheduling solutions have produced better results than problem-specific heuristics, especially for complex and bigger scheduling problems [12,13,30]. However, MHs generally experience certain deficiencies, e.g., premature convergence, being caught in local optima, lack of diversity, and imbalance between exploration–exploitation phases [31,32]. These deficiencies may result in unacceptable solutions when applied over task scheduling problems. Hybrid metaheuristics have also been proposed in the literature to overcome standalone metaheuristics limitations by combining these with other MHs to produce better solutions [14,15].



A number of WOA-based scheduling solutions have already been suggested which are inspired by the hunting strategy of humpback whales, for scheduling BoT applications to obtain near-optimal results. These include solutions using standard, modified, and hybrid WOA approaches [8,22,23]. A recent cloud scheduling solution named GCWOAS2 [22] combines a Gaussian model, standard WOA, and OBL methods to generate efficient task–resource pairs. In another recent research work [8], a hybrid metaheuristic solution called OWPSO is proposed to remove the WOA deficiencies by combining OBL and PSO algorithms with the original WOA. In [24], authors suggested random double adaptive WOA (RDWOA) by utilizing the mutation operators of a Bee optimization algorithm for scheduling cloud tasks to minimize execution time and cost. Authors in [25] suggested an improved WOA approach by the using two advanced optimization strategies and incorporating the increase and decrease operators in the standard WOA to enhance search ability. In [26], authors suggested an IWC algorithm, which uses the inertial weight strategy to improve the local search efficiency and avoid the premature convergence of the basic WOA. Authors in [33] introduced WHOA by hybridizing WOA with HS to improve execution time, cost, and energy consumption. Sharma and Garg [34] suggested the WOA-based cloud task scheduling method, which results in simultaneous optimization of makespan and energy consumption. The whale-Scheduler approach was suggested to schedule BoT application over clouds, producing optimal makespan and execution cost [35].



Various GA-based scheduling solutions have been proposed in the past, either by applying standard GA method [36], or using improved GA approaches by modifying traditional mutation and crossover operations, and hybrid GA solutions, which integrate traditional GA with other methods [37,38]. Basic versions of SOS and certain modifications to SOS algorithms using chaotic maps and opposition-based learning have been employed by many researchers to achieve significant scheduling performance over state-of-the-art heuristics [39,40]. Standard ACO and other modified ACO-based scheduling solutions have been suggested by researchers to solve CBS problems to achieve different QoS objectives [41,42].



Standard PSO algorithms, modified PSO, and hybrid PSO variants have been used in many studies for solving CBS problems to optimize different objectives such as makespan, execution cost, degree of imbalance, and throughput [43,44]. An adaptive PSO approach is suggested for the CBS problem, by introducing an adaptive inertia weight scheme to tradeoff between exploration and exploitation [45]. Chen and Long [46] suggested a hybrid scheduling solution combining PSO and ACO methods to maintain population diversity and improve solution quality. In [37], authors applied a bi-objective PSO scheduler to enhance system performance and reduce the execution cost. Two deadline-constrained scheduling techniques employ a multi-objective PSO strategy to improve QoS metrics parameters [47,48]. In Ref. [49], authors applied a multi-objective PSO to reduce the workload makespan time.



Various CS-based task scheduling solutions have been proposed by using a standard version of CS [50] as well as by modifying the basic structure of CS, and hybridizing it with other metaheuristics [13,51,52]. In [13], Chhabra et al. proposed a hybrid CS metaheuristic by integrating CS and DE algorithms to improve the exploration of the original CS metaheuristic, resulting in better scheduling performance over the state-of-the-art heuristics. Another robust metaheuristic viz. GWO has been used in the past for producing near-optimal scheduling solutions to optimize different QoS metrics. For example, an MO-GWO approach was suggested to optimize both makespan and energy [53]. Modified versions of GWO, named MGWO and mean GWO, were proposed, which resulted in better performance over the baseline algorithms [54,55].



In another research work, Elaziz et al. in [56] have combined the efficient local searching feature of the DE algorithm in the MS algorithm to improve the scheduling solution. Milan et al. [57] have suggested the BFO-based scheduling approach to optimize the idle time, degree of imbalance, and overall runtime. The WPCO algorithm mimicking the occurrence of change in the water density is proposed to solve the CBS problem involving a single BoT application, resulting in optimal solution quality as compared to the baseline metaheuristics [58]. In Ref. [59], authors proposed an SGO-based scheduling solution, which mimics social group interactions to solve CBS problems, resulting in maximal throughput and reduced makespan. Authors in [6] tried to optimize performance and energy by generating the initial population of the used GA approach with the help of a Modified Worst Fit Decreasing heuristic. Some other recent task scheduling research works are presented in [60,61,62,63,64,65,66,67,68,69,70,71].



In a recent scheduling solution [72], a hybrid of multi-verse optimizer (MVO) and GA is combined to construct the MVO–GA approach to reduce total execution time of independent tasks of CBS problems. Similarly, we found that many recent research works involving multiple effective scheduling algorithms for executing a single BoT application are suggested, using improved ACO in [73], a hybrid of MRFO and SSA in [74], and deep-reinforcement learning (DRL) scheduler [75] to optimize different QoS parameters.



Limitations of existing recent scheduling techniques are shown in Table 2. General issues or limitations of the existing metaheuristics-based research works for scheduling BoT applications over cloud systems are insufficient balancing between exploration and exploitation phases, slow convergence, no focus on optimization of schedule order, lack of performance benchmarking using standard workloads, insufficient or absence of convergence analysis to tune metaheuristic parameters, and concurrent optimization of performance and energy consumption objectives. These deficiencies create the sufficient space to improve existing metaheuristics or design new metaheuristics to improve the efficiency of the CBS problem.



The current paper suggests a unique h-DEWOA approach, which takes into account both maximum completion time of tasks and energy saving aspects, adopts real supercomputing workloads for benchmarking, conducts systematic convergence examination to tune the proposed hybrid metaheuristic, optimizes both task-execution order and allocation of VMs sub-problems, and removes the inherent WOA deficiencies by incorporating chaotic maps, OBL, and DE techniques.




3. System Model and Problem Definition


This section explains the modeling of the BoT application, cloud data center, problem objectives, and the fitness function used in the proposed scheduling approach. Various notations are presented in Table 3.



3.1. Cloud Data Center Model


The IaaS cloud infrastructure considered in this paper is composed of a single data center containing Nvm virtual machines associated with Npm physical machines for assignment to the queued BoT applications using the proposed h-DEWOA scheduling algorithm.



The cloud data center (CDC) is represented as follows:


  C D C =  {  P  M 1  , P  M 2  , … , P  M i  , … , P  M   N  p m      }  ,  



(1)







Each   P  M i    is characterized as set of unique virtual machines as follows:


  P  M i  =  {  V  M 1  , V  M 2  , … , V  M m  , … , V  M   N  v m      }  ,  



(2)







Each VMm is denoted using three attributes:


  V  M m  =  {  V M I  D m  ,   N  C m  ,   M I P  S m   }  ,  



(3)







Each CPU core k of VMm, i.e.,   C O R  E  m k     is represented using four tuples:


  C O R  E  m k   =  {  C O R E I  D  m k   , C O R E M I P  S  m k   , E C C O R  E  m k   , E I C O R  E  m k    }  ,  



(4)








3.2. BoT Application, Execution Time, and Scheduling Model


Each BoT application is a set of non-communicating tasks, where each task requires a single CPU core for execution [8,12]. Due to the nature of BoT applications, it is a common practice to submit such applications in static mode to the cloud for execution. Concurrent BoT applications are submitted to the CDC broker for execution, which in turn invokes the h-DEWOA scheduling algorithm to decide the execution order of submitted BoTs and allocation of demanded number of VMs to BoT applications subject to the satisfaction of the fitness function as shown in Figure 1.



CBA is a set of concurrent BoT applications denoted as follows:


  C B A =  {   T 1  ,  T 2  ,  T 3  , … ,  T j  , … ,  T   N  B T S      }  ,  



(5)







Every BoT application (   T j   ) is defined as follows:


   T j  =  {  T I  D j  , T S i z  e j  ,   T l e n g t  h j  , E  T j   }  ,  



(6)







Execution time to execute a BoT application is calculated as follows:


  E  T j  =   T l e n g t  h j        ∑       k = 1       m ∈ V M       T S i z  e j     C  m k     ×   C M I P  S  m k        



(7)








3.3. Problem Objectives and Fitness Function


3.3.1. Makespan Model


Makespan (MS) is last task completion time while executing all tasks of submitted BoT applications. Completion time is calculated by adding the task wait time to task execution time. MS is calculated as follows:


  M S = m a  x  j ∈ C B A      (  C o m p l e t i o n T i m  e j   )     



(8)








3.3.2. Energy Model


The energy consumption (EC) of an individual CPU core can be expressed as:


  E C  (   C k   )  =   ∫  0  M S   E C C (  C k  , t ) + E C I  (   C k    ,   t  )  d t ,  



(9)







The total energy consumption of the cloud data center can be calculated as:


  E C =   ∑    C k    N v m   E C  (   C k   )     



(10)








3.3.3. Fitness Function


In this research paper, the CBS problem is represented as a constrained combinatorial optimization problem to reduce both makespan and total energy consumption objectives. The fitness function, F(X), is represented using a Weighted-sum-method [8] as follows:


F(X) = min (MSweight × MS + ECweight × EC)



(11)




where MSweight and ECweight are weights of Makespan and Energy consumption objectives, respectively. After conducting a few independent pilot experiments by varying weights, we found that optimal values of these weights are MSweight = 0.5 and ECweight = 0.5. Therefore, Equation (12) can be rewritten with the obtained weight values as follows:


F(X) = min (0.5 × MS + 0.5 × EC)



(12)







Constraints of the CBS problem are given as per below:




	
Every BoT application demands a static number of VMs for processing.



	
Every VM only processes a single task of the BoT application at a time.



	
The numbers of BoT applications and VMs in cloud data center are fixed.



	
Deadlines are not associated with the execution of BoT applications.











4. Proposed Scheduling Methodology


This sub-section briefly explains methods, e.g., chaotic maps, opposition-based learning, basic WOA algorithm, and traditional DE algorithm, which form the basis of the proposed h-DEWOA strategy.



4.1. Chaotic Maps (CM)


Chaos is a bounded nonlinear arrangement having both ergodic and stochastic properties. Generally, for initial population generation, metaheuristics (MHs) use random solutions having sub-standard population diversity, leading to less-fitted final solutions. To overcome such situations in MHs, many recent research works have employed chaotic maps to generate an initial population of well-distributed non-repetitive chaotic sequences leading to more population diversity, better exploration, and improved convergence rate. Figure 2 shows the performance of pilot experiments of h-DEWOA with ten different chaotic maps in the case of CEA-Curie workload. It is evident that the logistic map improves the efficiency of the proposed h-DEWOA approach among all tested chaotic maps and overall chaotic maps resulted in better scheduling performance as compared to the situation when the initial population is randomly generated.




4.2. Opposition-Based Learning (OBL)


OBL is another useful strategy for metaheuristics, and has been proved to be useful for helping MHs avoid trapping in local optima and hence improve their convergence rate [80]. The OBL method is straightforward: it selects candidate solutions from the original population at random and generates their inverse solutions. Following that, the best-fitting solutions among OBL solutions and random solutions are chosen as the beginning population. In this approach, the OBL method aids the suggested h-DEWOA strategy by adding optimal diversified initial populations rather than solely random solutions, resulting in increased population variety and speed of convergence.




4.3. Whale Optimization Algorithm (WOA)


The WOA is a population-based MH mimicking the foraging and hunting behavior of humpback whales [81]. It consists of a population of search agents (called whales or solutions) capable of conducting independent searches and having indirect concurrent communications between each other during exploration and exploitation phases, which results in achieving global optima in the solution space [25]. The WOA search mechanism is described mathematically in the following sub-sections obtained from the original WOA research paper [81]. WOA notations and symbols are defined in Table 4.



4.3.1. Encircling Prey (When |A| < 1 and p < 0.5)


Encircling behavior of humpback whales is represented using the following equations [81]:


   X →   (  G + 1  )  =   X →  *   ( G )  −  A →  ·  D →   



(13)






   D →  =  |   C →  ·   X →  *   ( G )  −  X →   ( G )   |   



(14)






   A →  = 2  a →  ·  r →  −  a →   



(15)






   C →  = 2  r →   



(16)






  a = 2 −   2 G    G  m a x      



(17)








4.3.2. Bubble-Net Attacking (Exploitation Process)


In this phase, whale solutions swim around the target solution in a shrinking circle and along a spiral path simultaneously with 50% chances of performing each activity [81].



Shrinking Encircling Mechanism


This mechanism is achieved by decreasing the fluctuation range of vector A in Equation (15), which uses the variable a, using Equation (17) to update the position of the candidate solution anywhere between     X →   *      ( G )    and    X →   ( G )   .




Spiral updating position (When |A| < 1 and p < 0.5)


A spiral path between the present whale position and target prey solution, which simulates the helix-shaped movement of whales, can be defined as follows:


   X →   (  G + 1  )  =   D →  ′  ·  e  b l   · cos  (  2 π l  )  +   X →  *   ( G )   



(18)






    D →  ′  =  |    X →  *   ( G )  −  X →   ( G )   |   



(19)









4.3.3. Search for Prey


This exploration mechanism represented by Equation (20) is called when the value of p ≥ 0.5.


   X →   (  G + 1  )  =   X →   r a n d    ( G )  −  A →  ·  D →   



(20)






   D →  =  |   C →  ·   X →   r a n d    ( G )  −  X →   ( G )   |   



(21)









4.4. Differential Evolution (DE)


DE is an evolutionary MH possessing faster convergence, low computational complexity, and satisfactory exploration ability [56]. These qualities make it popular among researchers for solving a variety of optimization problems [56,82]. DE evolves a population of possible solutions by using mutation, crossover, and selection operations. The DE algorithm can be mathematically formulated as follows:



DE initial population consisting of p random solutions is denoted as PX,G as follows:


XL⩽Xi,0⩽XU ∀i∈{1,2,...,P}, PX,G = (Xi,G), i ∈{1,2,...,P}, G ∈{0,1,...,Gmax}, Xi,G = (Xj,i,G), j∈{1,2,...,d}.








where PX,G represents an array of p vector solutions, Xi,G denotes d—dimensional vector representing a solution, i is a solution vector index, j is a problem dimension index, and the parentheses indicate an array.



4.4.1. DE Mutation Operator


For every generation, the following mutation operations are applied on the current population PX,G to obtain a mutated population PM,G [82].


   M  i , G   =  {       X  b e s t , G   + F ·  (   X  r 1 , G   −  X  r 2 , G    )  ,     i f    (  r a n d    (  0 , 1  )  ⩽  r b   )         X  i , G   + F ·  (   X  b e s t   −  X  i , G    )  + F ·  (   X  r 1 , G   −  X  r 2 , G    )  ,     o t h e r w s i e        



(22)




where r1, and r2 are random solutions in {0,1,…,p − 1} and F is a scalar parameter. A high value of F is desirable for exploration. Switching factor    r b    allows the mutation to switch between DE/best/1/bin and DE/rand-to-best/1/bin mutation mechanisms.




4.4.2. DE Crossover Operator


Next, a trial population PC,G is generated as follows:


   C  i , G + 1   =  {       M  i , j , G   ,     i f    (  r a n d    (  0 , 1  )  ⩽ C R   o r     j =  j  r a n d    )         X  i , j , G   ,    o t h e r w s i e       



(23)




where jrand is a random index in {0,1,…,p − 1} to ensure that at least one design variable originates from the mutant vector, and Cr is a scalar DE algorithm parameter, which is normally in the range (0,1] in the classical DE. CR controls the mutation; a larger CR ensures that more solution vectors are selected from mutant population [82].




4.4.3. DE Selection Operator


The final step is applying a greedy selection method [82] to obtain the minimum fitness solution as follows:


   X  i , G + 1   =  {       C  i , G   ,     i f   F i t n e s s  (   U  i , G    )  < F i t n e s s  (   X  i , G    )         X  i , G   ,     o t h e r w i s e        



(24)







Note that, in this research work, DE operators have been incorporated in the h-DEWOA approach to improve the exploration ability of the basic WOA method.





4.5. Limitations of the Standard WOA Approach


Existing research works [16,17,18,19,20,21,22,23,24,25] have exposed certain deficiencies of WOA viz. weak exploration, improper exploration–exploitation tradeoff, and insufficient solution diversity. WOA performs spiral updating exploitation activity with 50% chances, while whales tend to perform exploitation by encircling the prey and search new solutions (i.e., conduct exploration) activities in the rest of 50% chances [20]. This clearly confirms that the original WOA method conducts more exploitation than exploration, resulting in serious imbalance between exploitation and exploration as well as causing insufficient solution diversity over the generations of execution of the WOA method. Thus, the WOA may become stuck in local optima, forcing premature convergence and causing weak solutions. Moreover, the exploration–exploitation imbalance also weakens the performance during initial phases because early stages require more exploration than exploitation [21].



Another limitation of the WOA method is that its exploration activity is more dependent on the random search, which fails to incorporate any knowledge about the current position of the best solution found thus far [25]. This random exploration produces sub-standard solutions in the successive generations, affecting WOA solution diversity and final solution quality thereafter.



Lastly, the exploration–exploitation tradeoff in the traditional WOA is purely decided using a randomization mechanism without incorporating the fitness of current solution, which subsequently results in degradation of WOA performance [8].




4.6. Proposed h-DEWOA Algorithm


The proposed h-DEWOA eliminates aforesaid deficiencies of the standard WOA method by boosting the exploration ability, improving solution diversity, and enhancing balance in the exploration–exploitation tradeoff. h-DEWOA hybridizes DE, OBL, and chaotic map techniques with the standard WOA to schedule a set of BoTs over different types of cloud resources. Before explaining the detailed methodology of h-DEWOA, it is important to discuss the encoding of the proposed CBS solution, which plays a great role in the implementation of final solution.



4.6.1. Solution Encoding


The solution (X) to the CBS problem involves encoding of BoT application ordering (XO) and Resource allocation (XA) dimensions as shown in Figure 3.



The basic WOA is only applicable for continuous-value problems. To apply the WOA approach over discrete-nature CBS problems, a discretization mechanism is suggested to convert real-value solutions to equivalent discrete ones in the proposed h-DEWOA approach. The discretization process is shown in Figure 4 and explained as follows:



Discretization of BoT Application-Order Vector


In the beginning, the BoT application-order dimension of scheduling solution is encoded by a continuous solution vector, XO. Discrete-value execution order (X*O) is obtained by applying the smallest position value (SPV) method over XO using Algorithm 1 [8,13]. The process is elaborated in Figure 5a.





	Algorithm 1. SPV method.



	Input: Real-value BoT application-order vector    X o   



	Output: Discrete BoT application-order vector    X  * o    



	1. Begin



	2. Sort    X o    in the increasing order



	3. Calculate    X  * o     with discrete-values where    X  * o   = dimension ( sorted  X o  )  



	4. End







Discretization of Resource Allocation Vector


Initially, the resource allocation dimension (XA) is represented by VM availability matrix (AM) [38,57,58] consisting of real-value entries representing a BoT application-vmType pair. Each pair entry indicates the fixed percentage of availability of VMs of a particular vmType for allocation to the BoT application. X*A vector, i.e., the actual discrete allocation of VMs to tasks of BoT application, is obtained by applying the MDeRA (Modified Discrete and Efficient Resource Allocation) heuristic on AM matrix and X*O vector, as shown in the Figure 4 and Figure 5b. MDeRA heuristic (pseudo-code in the Algorithm 2) is an improved version of the published work DeRA heuristic [13] and allocation heuristic [38]. Instead of random BoTs execution-order in the DeRA heuristic, MDeRA initially sorts the BoTs in the increasing order of their expected execution time (Line 1). The rest of the MDeRA mechanism is the same as the DeRA heuristic. Readers are further encouraged to read [13] for discussion about the rest of the allocation mechanism in detail. In a nutshell, the MDeRA heuristic provides an efficient discrete resource allocation of VMs to BoT applications, optimizing both makespan and energy consumption.





	Algorithm 2. MDeRA heuristic.



	Input: PM: Total physical machines (pm), VM: Total virtual machines (vm),



	vms.PM: Virtual machines (vm) in each pm, CBA: Set of concurrent BoT applications



	Require: AM matrix representing VMs availability



	Result: Allocation list (AL): a pair of (BoT application ∈ CBA, vm ∈ VM)



	1. Sort available BoTs in CBA in the ascending order of their expected execution time



	2. for each BoT application ∈ CBA do



	3. Apply DeRA heuristic [13].



	4. end for








4.6.2. Pseudo-Code of the h-DEWOA Algorithm


Pseudo-code of the h-DEWOA is provided in Algorithm 3 as follows:



	Algorithm 3. h-DEWOA Algorithm.



	Input: Tasks, Virtual machines, fitness function: ObjFn(X),



	Variables: PX,G: Real-value population, PXD,G: Equivalent discrete-value population, G: Generation index; N: Population size, Gmax: Total generations



	Output:     X D  →   *: Best solution containing discrete-value BoT-order and resource allocation



	1: Initialization of parameters of scheduling problem, WOA, and DE metaheuristics



	2: G = 1//First generation for producing initial population



	3: PXChaotic,G ← ½ ChaoticInitialPopulation( )//First half of initial real-value population using logistic map



	4: PXOBL,G ← ½ OBLbasedInitialPopulation( )//Second half of initial real-value population using OBL



	5: PX,G ← PXChaotic,G + PXOBL,G    //Merge both halves of initial real-value population



	6: PXD,G←MDeRA(SPV(PX,G))    //Generate discrete-form population using SPV and MDeRA heuristics



	7: Fitness (PXD,G) ← ObjFn(PXD,G)     //Evaluate the fitness of population



	8:     X D  →   * = argmin (Fitness (PXD,G))     //Global best discrete-value solution



	9:   X →  *   ←   get real value solution   (   X D  →   )    //Global best real-value solution



	10. G = G + 1



	11: while (G < MaxGeneration)



	12:  for each solution X𝑖,G ∈ population PX,G do



	13:  if (Fitness (solution X𝑖,G) <= Fitness(gBestG−1)) //Exploration–exploitation tradeoff condition



	14:   for both task-order and allocation dimensions of solution X𝑖,G do//WOA Exploitation



	15:    Apply WOA on solution X𝑖,G using Equation (13) and Equation (18) to obtain X𝑖,G+1



	16:    Store position if X𝑖,G+1 is better than X𝑖,G



	17:   end for      //WOA phase ends



	18:   else (Fitness (solution X𝑖,G) > Fitness(gBestG−1))



	19:   for both task-order and allocation dimensions of solution X𝑖,G do//DE Exploration



	20:    Generate Mutant of X𝑖,G using Equation (22)



	21:     Crossover of Mutant with the original solution using Equation (23)



	22:     Obtain solution X𝑖,G+1 using selection operator using Equation (24)



	23:       Apply OBL on X𝑖,G+1//Apply OBL on DE solution to improve exploration



	24:       Retain best solution among OBL- and non-OBL-based DE solution



	25:   end for     //DE phase ends



	26:  end if



	27:  end for



	28:   PXD,G← MDeRA(SPV(PX,G))//Generate discrete-form population



	29:   Fitness (PXD,G) ← ObjFn(PXD,G) //Fitness evaluation Evaluate the fitness of population



	30: Update the current integer and real-value global best solution



	31: end while



	32:     X D  →   * = argmin (Fitness (PXD,G))//Record the global best scheduling solution found








The line-by-line explanation of the proposed h-DEWOA scheduling approach is provided as follows:




	
Line 1: Initialize parameters of the scheduling problem, WOA algorithm, and DE algorithm



	
Line 2: Initialize G equal to 1



	
Line 3: Generate first random half of initial real-value population using logistic chaotic maps.



	
Line 4: Generate second random half of initial real-value population using opposition-based learning method.



	
Line 5: Merge both initial population halves generated in Line 2 and 3 to generate full initial real-value population.



	
Line 6: Convert real-form population into an equivalent discrete-form population using SPV and MDeRA heuristic.



	
Line 7: Evaluate the fitness of the population using objective function.



	
Line 8: Find the global best discrete-value solution from whole population



	
Line 9: Generate the real-value population



	
Line 10: Update G value



	
Line 11: Iterations of the h-DEWOA using while loop till (G < MaxGeneration) condition is true



	
Line 12: Start of the for loop to update the position of solutions



	
Line 13–17: Exploration–exploitation tradeoff condition is tested on the basis of fitness of current solution (Line 13). When the current solution’s fitness is equal to or better than the previous generation population’s global best solution (Line 13), then WOA exploitation mechanism is applied on the current solution position to search nearby better solutions (Line 14–17).



	
Line 18–25: When the current solution’s fitness is less than the previous generation population’s global best solution (Line 18), the h-DEWOA algorithm performs DE exploration activity for searching better far-away solutions (Line 19–22). After that, OBL is applied on the real-value solution and select the best solution between the OBL solution and non-OBL solution (Line 23–25).



	
Line 26: End of if condition for switching between exploration and exploitation.



	
Line 27: End of for loop for updating solution position.



	
Line 28: Obtain the discrete-form population by applying SPV and MDeRA heuristic.



	
Line 29: Evaluate the fitness of new population using fitness function.



	
Line 30: This step results in updating of the current integer and real-value global best solution.



	
Line 31: End of while loop since algorithm iteration condition is met.



	
Line 32: Output the best solution found with minimum fitness, which represents the optimal schedule consisting of BoT application-order and allocation of VMs to BoT applications.








Summarizing the discussion, the following substantial amendments are added to improve the standard WOA, resulting in the design of the proposed h-DEWOA approach:




	
Initially, both logistic map and OBL are incorporated to produce an optimal initial population, leading to improved exploration and convergence rate thereafter in the later stages of the proposed h-DEWOA approach.



	
Thereafter, the DE metaheuristic is added to the traditional WOA to boost the exploration ability and convergence rate. The OBL method is also incorporated in the DE to further maintain population diversity throughout consecutive generations, producing efficient final solutions and improving convergence rate further.



	
Further, a fitness-based exploration–exploitation tradeoff mechanism is incorporated in the proposed h-DEWOA method to adequately balance the DE exploration and WOA exploitation phases, which leads to generation of better schedules.










4.7. Time Complexity Analysis


Overall time complexity of the h-DEWOA is dependent on the structure and phases of the algorithm involving WOA, DE, OBL, CM, the number of iterations (Gmax), population size (N), and dimension (dim) of the CBS problem. The time complexity of DE is O((N × dim + N × dim + N) × Gmax), which can be reduced to O(N × dim × Gmax), whereas the time complexities of the logistic chaotic map and OBL (line 3–4) are O(N × dim) and O(N × dim), respectively. Similarly, the time complexity of WOA is O(N × dim × Gmax). Combining all these time complexities of the h-DEWOA can be written as follows:


O(h-DEWOA) = O(CM) + O(OBL) + O(WOA) + O(DE)



(25)






O(h-DEWOA) = O(N × dim) + O(N × dim) + O(α × (N × dim) + (N − α) × (N × dim + N × dim) Gmax)



(26)




where α and (N − α) are the solutions processed by the WOA exploitation and DE exploration operators, respectively. It can be seen that Equation (26) can be easily reduced to O(N × dim × Gmax), which is the same as that of complexity of the traditional WOA method.





5. Experimentation and Results


Testing and implementation of algorithms involved in this paper were conducted on the CloudSim 3.0.3 simulator [83] using Java language and JMetal 5.4 [84] installed on a computer system with i7-8550U @ 1.80–2.0 GHz (8 Cores) processor, 16 GB RAM, and Windows 10 operating system. CloudSim is a standard simulator, which provides testing of synthetic and real workloads in a repeatable and controllable environment with different infrastructure configurations.



5.1. Workloads and Cloud Configuration


In the current research work, experiments are conducted using 20 different real-workloads, which are obtained from CEA-Curie and HPC2N workload logs of supercomputing sites (refer to http://www.cs.huji.ac.il/labs/parallel/workload accessed on 23 January 2022) as shown in Table 5.



This paper assumes a cloud computing system comprising of a single data center which further contains five different categories of pre-configured VMs, as shown in Table 6 [19].




5.2. Comparative Results


In this paper, two series of experiments are conducted; one with WOA-based metaheuristics and another with non-WOA-based metaheuristics as shown in Table 7.



5.2.1. Comparison with WOA Variants—First Series of Experiments


This sub-section deals with the performance evaluation of the h-DEWOA against popular WOA-based metaheuristics using CEA-Curie and HPC2N benchmarks.




5.2.2. Baseline WOA Variants


In this section, the theoretical characteristics of all comparative scheduling algorithms and the proposed h-DEWOA approach are presented as per Table 8.



This section is dedicated towards presenting comparative results of the h-DEWOA and baseline scheduling algorithms using benchmarking workloads. To remove any biasing and to provide statistical analysis, each scheduling algorithm runs 30 times with fixed workload and VM configuration.




5.2.3. Convergence Examination and Final Values of Parameters


Convergence investigation is carried out to fix optimal values of the population size (PopSize) and number of generations (NGen) parameters of undertaken metaheuristics, as these values affect the final solution quality. Some pilot experiments are conducted using CEA-Curie and HPC2N workloads to find optimal values by alternatively varying the PopSize (10-100) and NGen (1-100) so that an adequate tradeoff point between solution quality and convergence rate can be determined. Initial convergence investigation with workload of 200 BoT applications reveals that almost every scheduling approach showed good performance when the PopSize is in the range of 60 to 70 for both HPC2N and CEA-Curie workloads. The convergence investigation of tested scheduling algorithms for CEA-Curie workloads with PopSize = 60 is shown in Figure 6. Values of parameters other than PopSize and NGen of different metaheuristics are taken from original research papers [16,22,81,85].



After performing parameter tuning, final parameter settings of different metaheuristics with PopSize = 60 are shown in Table 9 for the first series of experiments.




5.2.4. Performance Evaluation of First Set of Experiments


This sub-section analyzes the h-DEWOA algorithm’s efficiency and robustness over WOA-based baseline scheduling approaches in terms of Best, Average, and Worst metrics, which are minimum, average, and maximum value, respectively, among 30 executions using individual workloads from the set of CEA-Curie and HPC2N workloads.



Workload-Wise Makespan Results for CEA-Curie Workloads


Figure 7 presents the makespan results of scheduling algorithms obtained from executing WL0–WL9 workloads of CEA-Curie traces. It is observed that the h-DEWOA algorithm produces the minimum makespan values of best, average, and worst case metrics in most CEA-Curie workloads.




Workload-Wise Energy Consumption Results for CEA-Curie Workloads


Figure 8 indicates that the h-DEWOA algorithm produces the minimum best, average, and worst values of the energy consumption in a majority of CEA-Curie workloads.




Workload-Wise Makespan Results for HPC2N Workloads


The h-DEWOA algorithm also produces very good results against WOA-based baseline techniques for HPC2N workloads as shown in Figure 9.




Workload-Wise Energy Consumption Results for HPC2N Workloads


Figure 10 indicates that the h-DEWOA algorithm produces the minimum best, average, and worst values of the energy consumption for almost every HPC2N workload.





5.2.5. Overall Collective Results—First Set of Experiments


In the previous section, a comparison of the workload-wise performance of proposed h-DEWOA was presented with respect to WOA-based metaheuristics. This section presents the overall collective results from all workloads together associated with all the scheduling experiments in the form of box plots. Box plots help us to characterize the large number of experimental results in the form of overall minimum, maximum, mean, and median values of makespan and energy consumption.



Figure 11, Figure 12, Figure 13 and Figure 14 present the box plots of makespan and energy consumption of all WOA-based scheduling approaches for CEA-Curie and HPC2N workloads. Readers are encouraged to refer to [86] to better understand the various characteristics and parameters of box plots. These box plots clearly indicate that the h-DEWOA produces the overall lowest minimum, maximum, median, and mean makespan among all scheduling approaches for both workloads. The performance of IWOA and GCWOAS2 is found to be closer to the h-DEWOA approach.



Summarizing the Overall Results—First Series of Experiments


Finally, the performance of overall experimental results is summarized with the help of mean, median, and standard deviation values of the makespan and energy consumption results associated with all workloads as shown in Table 10. The proposed h-DEWOA method has clearly obtained the lowest values of different performance measures amongst all tested scheduling metaheuristics, which clearly shows the dominance and stability of h-DEWOA over comparative algorithms.



In addition to this, performance improvement rate percentage (PIR %) is also calculated to derive the amount of percentage reduction achieved by the h-DEWOA approach over baseline algorithms. PIR % is calculated as follows and results are shown in Table 11.


  P I R  ( % )  =   M e t r i c    (  B a s e l i n e   A l g o r i t h m  )  − M e t r i c    (  h − D E W O A  )      M e t r i c    (  h − D E W O A  )    × 100 %  











PIR% results achieved by the h-DEWOA are promising for both CEA-Curie and HPC2N workloads for makespan and energy consumption metrics. For example, for CEA-Curie workloads, the h-DEWOA achieves 5.79, 6.77, 10.98, and 13.38% makespan reduction over WOA, IWOA, HSWOA, and GCWOAS2 algorithms, respectively. Similarly in the case of energy consumption for CEA-Curie workloads, h-DEWOA results in 8.14, 6.47, 6.44, and 11.32% performance improvement over compared algorithms, respectively. For HPC2N workloads, h-DEWOA approach attains 5.03–13.80% makespan improvement and 10.84–19.30% energy consumption improvement over baseline algorithms.






5.3. Comparative Results with State-of-the-Art Algorithms—Second Series of Experiments


5.3.1. Baseline State-of-the-Art Scheduling Algorithms


The theoretical characteristics of all comparative scheduling algorithms and the proposed h-DEWOA approach are presented as per Table 12.




5.3.2. Convergence Examination and Final Values of Parameters


Convergence investigation is again carried out for the second series of experiments by conducting some pilot experiments. PopSize is fixed to 60 for both workloads for all scheduling approaches and the number of generations (NGen) is varied from 1 to 100 as shown in Figure 15. Parameters settings of different metaheuristics are taken from original research papers [13,38,49,50,69,87]. Final parameters after parameter tuning are shown in Table 13.




5.3.3. Performance Evaluation of Second Set of Experiments


The following sub-section presents the best, average, and worst case readings of each scheduling algorithm for 30 independent evaluations for the tested workloads.



Workload-Wise Makespan Results for CEA-Curie Workloads


Table 14 shows that the h-DEWOA algorithm produces the minimum best, average, and worst values for the makespan objective for most CEA-Curie workloads.




Workload-Wise Energy Consumption Results for WL0–WL9 Workloads


Results in Table 15 show that the h-DEWOA approach produces the lowest statistical values of energy consumption for most of the WL0–WL9 workloads. The average metric of h-DEWOA is the minimum among all comparative algorithms for each tested workload.




Workload-Wise Makespan Results for HPC2N Workloads


Statistical data in Table 16 clearly show that the h-DEWOA approach results in the lowest best, average, and worst makespan values over compared algorithms in most of the WL10–WL19 workloads.




Workload-Wise Energy Consumption Results for HPC2N Workloads


As can been seen from Table 17, the h-DEWOA obtains significantly better best, average, and worst statistical values than the well-known baseline scheduling algorithms for almost each workload.





5.3.4. Overall Collective Results—Second Series of Experiments


Further, a box plot tool is utilized to explain the makespan and energy consumption results of the entire second series of scheduling experiments. It is evident from Figure 16, Figure 17, Figure 18 and Figure 19 that the h-DEWOA method has shown significant improvements, represented by box plot parameters such as minimum, maximum, mean, and median for both makespan and energy consumption objectives when compared to recent non-WOA scheduling metaheuristics. MFO, CSDEO, and BLEMO algorithms have also performed competitively well. Makespan dispersion and standard deviation of the h-DEWOA algorithm in all box plots is also found to be least among all scheduling algorithms, indicating its strength, dominance, and stability.



Summarizing the Overall Results—Second Series of Experiments


Finally, Table 18 shows the summary of performance of overall experimental results of the second series of experiments in terms of mean, median, and standard deviation values of the makespan and energy consumption objectives. It is evident that the h-DEWOA achieved better overall results as compared to other classical scheduling metaheuristics.



Percentage reduction, i.e., PIR% achieved by the h-DEWOA approach over baseline algorithms for the second series of experiments is shown in Table 19.



Table 19 shows that the proposed h-DEWOA algorithm produces significant reduction in both makespan and energy consumption objectives for CEA-Curie and HPC2N workloads over compared scheduling approaches. For CEA-Curie workloads, makespan and energy consumption reduction in h-DEWOA are in the range of 5.14–22.41% and 4.10–18.30%, respectively. In the case of HPC2N workloads, h-DEWOA achieved 5.23–28.12% makespan reduction and 6.01–32.54% energy consumption reduction over the recent scheduling metaheuristics.



In a nutshell, the h-DEWOA algorithm showed extraordinary performance for both makespan and energy consumption objectives for CEA-Curie and HPC2N workloads as compared to WOA-based metaheuristics and other state-of-the-art scheduling techniques. In addition to this, the run-time to simulate the proposed hybrid h-DEWOA approach is also in acceptable limits when compared to baseline algorithms as shown in Table 20 and Table 21.






5.4. Main Reasons for Excellent Performance of h-DEWOA


Main reasons for excellent scheduling performance of the proposed h-DEWOA approach are the use of chaotic maps and OBL strategies in generating optimal initial population, use of the OBL-enabled DE method to carry out global search, employing excellent exploitation properties of the standard WOA, fusion of fitness-based exploration–exploitation tradeoff scheme, and application of the efficient MDeRA heuristic for mapping of resources to BoT applications. Moreover, the h-DEWOA approach optimizes both BoT application ordering and resource allocation sub-problems of the CBS problem, whereas most existing scheduling heuristics focus on only optimizing resource allocation sub-problems and ignore optimizing scheduling order problems.





6. Conclusions


In the last decade, tremendous escalation in the energy consumption of cloud computing systems has been observed due to unprecedented increase in the cloud-user base. Consequently, CSPs always hunt to incorporate energy saving solutions to cut-down their hefty energy bills and reduce carbon emissions. Alongside this trend, the priority of cloud users is to execute their applications as fast as possible with shorter makespan. To address these issues, this paper proposed a hybrid metaheuristic h-DEWOA to schedule BoT applications over IaaS clouds to optimize both makespan and energy consumption. The h-DEWOA approach eliminates the shortcomings of standard WOA by combining the advantages of WOA, DE, OBL, and chaotic maps, finally producing efficient scheduling solutions. Additionally, an effective fitness-enabled balancing mechanism and an efficient resource allocation heuristic are also incorporated in the h-DEWOA approach to ensure sufficient exploration–exploitation tradeoff and optimal resource allocation, respectively, which further strengthens the resource allocation and BoT application scheduling performance. Each scheduling algorithm is evaluated on the CloudSim simulator using supercomputing workloads. In comparison with WOA-based approaches, the h-DEWOA approach achieved 5.79−13.38% makespan improvement and 8.14−11.32% energy saving for CEA-Curie workloads, and 5.03−13.80% makespan improvement and 10.84−17.35% energy consumption improvement for HPC2N workloads. Similar substantial performance improvement of h-DEWOA has also been observed against MOPSO, BELMO, MOCS, CSDEO, BOA, and MFO metaheuristics for both CEA-Curie and HPC2N workloads. In addition to this, the convergence rate of the proposed h-DEWOA approach is also found to be reasonably good. In the future, the h-DEWOA algorithm will be evaluated against other well-known scheduling algorithms with different objective functions and with different types of workloads as well.







Author Contributions


Conceptualization, A.C.; Data curation, A.C.; Formal analysis, A.C.; Funding acquisition, N.S.S. and H.A.O.; Investigation, A.C.; Methodology, A.C.; Project administration, A.C.; Resources, A.C.; Software, A.C.; Supervision, A.C.; Validation, A.M., S.K.S., N.S.S. and H.A.O.; Visualization, A.C.; Writing—original draft, A.C.; Writing—review & editing, S.K.S., N.S.S. and H.A.O. All authors have read and agreed to the published version of the manuscript.




Funding


The APC of this research paper is funded by Universiti Kebangsaan Malaysia (UKM) and Ministry of Education (MOE), Malaysia under the grant number FRGS/1/2018/ICT02/UKM/02/6.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Data used and produced is available in the article.




Acknowledgments


The authors would like to thank Universiti Kebangsaan Malaysia (UKM) and Ministry of Education (MOE), Malaysia under the grant FRGS/1/2018/ICT02/UKM/02/6 for funding this research.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Moghaddam, S.K.; Buyya, R.; Ramamohanarao, K. Performance-Aware Management of Cloud Resources: A Taxonomy and Future Directions. ACM Comput. Surv. 2019, 52, 1–37. [Google Scholar] [CrossRef]

	



Netto, M.A.S.; Calheiros, R.N.; Rodrigues, E.R.; Cunha, R.L.F.; Buyya, R. HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges. ACM Comput. Surv. 2018, 51, 1–29. [Google Scholar] [CrossRef]

	



Amazon EC2 Instance Types-Amazon Web Services. 2022. Available online: https://aws.amazon.com/ec2/instance-types/ (accessed on 6 March 2022).

	



Ilager, S.; Ramamohanarao, K.; Buyya, R. ETAS: Energy and thermal-aware dynamic virtual machine consolidation in cloud data center with proactive hotspot mitigation. Concurr. Computat. Pract. Exper. 2019, 31, e5221. [Google Scholar] [CrossRef]

	



Khattar, N.; Sidhu, J.; Singh, J. Toward energy-efficient cloud computing: A survey of dynamic power management and heuristics-based optimization techniques. J. Supercomput. 2019, 75, 4750–4810. [Google Scholar] [CrossRef]

	



Materwala, H.; Ismail, L. Performance and energy-aware bi-objective tasks scheduling for cloud data centers. Procedia Comput. Sci. 2022, 197, 238–246. [Google Scholar] [CrossRef]

	



Brochard, L.; Kamath, V.; Corbalán, J.; Holland, S.; Mittelbach, W.; Ott, M. Energy-Efficient Computing and Data Centers; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]

	



Chhabra, A.; Huang, K.-C.; Bacanin, N.; Rashid, T.A. Optimizing Bag-of-Tasks scheduling on cloud data centers using hybrid swarm-intelligence meta-heuristic. J. Supercomput. 2022, 78, 9121–9183. [Google Scholar] [CrossRef]

	



Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Computat. 1997, 1, 67–82. [Google Scholar] [CrossRef]

	



Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cyber. 2019, 11, 1501–1529. [Google Scholar] [CrossRef]

	



Madni, S.H.H.; Abd Latiff, M.S.; Abdullahi, M.; Abdulhamid, S.M.; Usman, M.J. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment. PLoS ONE 2017, 12, e0176321. [Google Scholar] [CrossRef]

	



Sukhoroslov, O.; Nazarenko, A.; Aleksandrov, R. An experimental study of scheduling algorithms for many-task applications. J. Supercomput. 2019, 75, 7857–7871. [Google Scholar] [CrossRef]

	



Chhabra, A.; Singh, G.; Kahlon, K.S. Multi-criteria HPC task scheduling on IaaS cloud infrastructures using meta-heuristics. Clust. Comput. 2021, 24, 885–918. [Google Scholar] [CrossRef]

	



Kumar, M.; Sharma, S.C.; Goel, A.; Singh, S.P. A comprehensive survey for scheduling techniques in cloud computing. J. Netw. Comput. Appl. 2019, 143, 1–33. [Google Scholar] [CrossRef]

	



Amini Motlagh, A.; Movaghar, A.; Rahmani, A.M. Task scheduling mechanisms in cloud computing: A systematic review. Int J. Commun. Syst. 2020, 33, e4302. [Google Scholar] [CrossRef]

	



Mostafa Bozorgi, S.; Yazdani, S. IWOA: An improved whale optimization algorithm for optimization problems. J. Comput. Des. Eng. 2019, 6, 243–259. [Google Scholar] [CrossRef]

	



Abdel-Basset, M.; Abdle-Fatah, L.; Sangaiah, A.K. An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment. Clust. Comput. 2019, 22, 8319–8334. [Google Scholar] [CrossRef]

	



Luan, F.; Cai, Z.; Wu, S.; Jiang, T.; Li, F.; Yang, J. Improved Whale Algorithm for Solving the Flexible Job Shop Scheduling Problem. Mathematics 2019, 7, 384. [Google Scholar] [CrossRef]

	



Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng. 2018, 5, 275–284. [Google Scholar] [CrossRef]

	



Mohammed, H.M.; Umar, S.U.; Rashid, T.A. A Systematic and Meta-Analysis Survey of Whale Optimization Algorithm. Comput. Intell. Neurosci. 2019, 2019, 8718571. [Google Scholar] [CrossRef]

	



Lee, K.-C.; Lu, P.-T. Application of Whale Optimization Algorithm to Inverse Scattering of an Imperfect Conductor with Corners. Int. J. Antennas Propag. 2020, 2020, 8205797. [Google Scholar] [CrossRef]

	



Ni, L.; Sun, X.; Li, X.; Zhang, J. GCWOAS2: Multiobjective task scheduling strategy based on gaussian cloud-whale optimization in cloud computing. Comput. Intell. Neurosci. 2021, 2021, 5546758. [Google Scholar] [CrossRef]

	



Movahedi, Z.; Defude, B.; Mohammad, H.A. An efficient population-based multi-objective task scheduling approach in fog computing systems. J. Cloud Comput. 2021, 10, 53. [Google Scholar] [CrossRef]

	



Manikandan, N.; Gopalakrishnan, N.; Pradeep, K. Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Comput. Commun. 2022, 187, 35–44. [Google Scholar] [CrossRef]

	



Chen, X.; Cheng, L.; Liu, C.; Liu, Q.; Liu, J.; Mao, Y.; Murphy, J. A WOA-based optimization approach for task scheduling in cloud computing systems. IEEE Syst. J. 2020, 14, 3117–3128. [Google Scholar] [CrossRef]

	



Jia, L.; Li, K.; Shi, X. Cloud computing task scheduling model based on improved whale optimization algorithm. Wirel. Commun. Mob. Comput. 2021, 2021, 4888154. [Google Scholar] [CrossRef]

	



Bezdan, T.; Zivkovic, M.; Bacanin, N.; Strumberger, I.; Tuba, E.; Tuba, M. Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm. IFS 2021, 42, 411–423. [Google Scholar] [CrossRef]

	



Muhammad, A.; Abdullah, S.; Samsiah Sani, N. Optimization of Sentiment Analysis Using Teaching-Learning Based Algorithm. Comput. Mater. Contin. 2021, 69, 1783–1799. [Google Scholar] [CrossRef]

	



Aldulaimi, M.H.; Zainudin, S.; Bakar, A.A. An improved method to enhance protein structural class prediction using their secondary structure sequences and genetic algorithm. Int. J. Bioinform. Res. Appl. 2018, 14, 376–400. [Google Scholar] [CrossRef]

	



Shreem, S.S.; Ahmad Nazri, M.Z.; Abdullah, S.; Sani, N.S. Hybrid Symmetrical Uncertainty and Reference Set Harmony Search Algorithm for Gene Selection Problem. Mathematics 2022, 10, 374. [Google Scholar] [CrossRef]

	



Buang, N.; Hanawi, S.A.; Mohamed, H.; Jenal, R. B-Spline Curve Modelling Based on Nature Inspired Algorithms. APJITM 2016, 5. [Google Scholar] [CrossRef]

	



Alathamneh, G.M.; Abdullah, S.; Sani, N.S. Genetic Algorithm Selection Strategies based Rough Set for Attribute Reduction. IJCSNS 2019, 19, 187–194. [Google Scholar]

	



Albert, P.; Nanjappan, M. WHOA: Hybrid based task scheduling in cloud computing environment. Wirel. Pers. Commun. 2021, 121, 2327–2345. [Google Scholar] [CrossRef]

	



Sharma, M.; Garg, R. Energy-aware whale-optimized task scheduler in cloud computing. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 121–126. [Google Scholar]

	



Sreenu, K.; Sreelatha, M. W-Scheduler: Whale optimization for task scheduling in cloud computing. Cluster Comput. 2019, 22, 1087–1098. [Google Scholar] [CrossRef]

	



Rekha, P.M.; Dakshayini, M. Efficient task allocation approach using genetic algorithm for cloud environment. Cluster Comput. 2019, 22, 1241–1251. [Google Scholar] [CrossRef]

	



Sun, Y.; Li, J.; Fu, X.; Wang, H.; Li, H. Application research based on improved genetic algorithm in cloud task scheduling. J. Intell. Fuzzy Syst. 2020, 38, 239–246. [Google Scholar] [CrossRef]

	



Vila, S.; Guirado, F.; Lerida, J.L.; Cores, F. Energy-saving scheduling on IaaS HPC cloud environments based on a multi-objective genetic algorithm. J. Supercomput. 2019, 75, 1483–1495. [Google Scholar] [CrossRef]

	



Abdullahi, M.; Ngadi, M.A.; Abdulhamid, S.M. Symbiotic Organism Search optimization based task scheduling in cloud computing environment. Future Gener. Comput. Syst. 2016, 56, 640–650. [Google Scholar] [CrossRef]

	



Abdullahi, M.; Ngadi, M.A.; Dishing, S.I. Chaotic symbiotic organisms search for task scheduling optimization on cloud computing environment. In Proceedings of the 2017 6th ICT International Student Project Conference (ICT-ISPC), Johor, Malaysia, 23–24 May 2017; pp. 1–4. [Google Scholar]

	



Li, G.; Wu, Z. Ant Colony Optimization Task Scheduling Algorithm for SWIM Based on Load Balancing. Future Internet 2019, 11, 90. [Google Scholar] [CrossRef]

	



Zuo, L.; Shu, L.; Dong, S.; Zhu, C.; Hara, T. A Multi-Objective Optimization Scheduling Method Based on the Ant Colony Algorithm in Cloud Computing. IEEE Access 2015, 3, 2687–2699. [Google Scholar] [CrossRef]

	



Huang, X.; Li, C.; Chen, H.; An, D. Task scheduling in cloud computing using particle swarm optimization with time varying inertia weight strategies. Clust. Comput. 2020, 23, 1137–1147. [Google Scholar] [CrossRef]

	



Gill, S.S.; Buyya, R.; Chana, I.; Singh, M.; Abraham, A. BULLET: Particle Swarm Optimization Based Scheduling Technique for Provisioned Cloud Resources. J. Netw. Syst. Manag. 2018, 26, 361–400. [Google Scholar] [CrossRef]

	



Nabi, S.; Ahmad, M.; Ibrahim, M.; Hamam, H. AdPSO: Adaptive pso-based task scheduling approach for cloud computing. Sensors 2022, 22, 920. [Google Scholar] [CrossRef] [PubMed]

	



Chen, X.; Long, D. Task scheduling of cloud computing using integrated particle swarm algorithm and ant colony algorithm. Clust. Comput. 2019, 22, 2761–2769. [Google Scholar] [CrossRef]

	



Kumar, M.; Sharma, S.C. PSO-COGENT: Cost and energy efficient scheduling in cloud environment with deadline constraint. Sustain. Comput. Inform. Syst. 2018, 19, 147–164. [Google Scholar] [CrossRef]

	



Kumar, M.; Sharma, S.C. PSO-based novel resource scheduling technique to improve QoS parameters in cloud computing. Neural Comput Applic. 2019, 32, 12103–12126. [Google Scholar] [CrossRef]

	



Zhou, Z.; Li, F.; Abawajy, J.H.; Gao, C. Improved PSO Algorithm Integrated with Opposition-Based Learning and Tentative Perception in Networked Data Centers. IEEE Access 2020, 8, 55872–55880. [Google Scholar] [CrossRef]

	



Madni, S.H.H.; Latiff, M.S.A.; Ali, J.; Abdulhamid, S.M. Multi-objective-Oriented Cuckoo Search Optimization-Based Resource Scheduling Algorithm for Clouds. Arab. J. Sci. Eng. 2019, 44, 3585–3602. [Google Scholar] [CrossRef]

	



Madni, S.H.H.; Abd Latiff, M.S.; Abdulhamid, S.M.; Ali, J. Hybrid gradient descent cuckoo search (HGDCS) algorithm for resource scheduling in IaaS cloud computing environment. Cluster Comput. 2019, 22, 301–334. [Google Scholar] [CrossRef]

	



Pradeep, K.; Jacob, T.P. CGSA scheduler: A multi-objective-based hybrid approach for task scheduling in cloud environment. Inf. Secur. J. A Glob. Perspect. 2018, 27, 77–91. [Google Scholar] [CrossRef]

	



Natesha, B.V.; Kumar Sharma, N.; Domanal, S.; Reddy Guddeti, R.M. GWOTS: Grey Wolf Optimization Based Task Scheduling at the Green Cloud Data Center. In Proceedings of the 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), Guangzhou, China, 12–14 September 2018; pp. 181–187. [Google Scholar]

	



Alzaqebah, A.; Al-Sayyed, R.; Masadeh, R. Task Scheduling based on Modified Grey Wolf Optimizer in Cloud Computing Environment. In Proceedings of the 2nd International Conference on new Trends in Computing Sciences (ICTCS), Amman, Jordan, 9–11 October 2019; pp. 1–6. [Google Scholar]

	



Natesan, G.; Chokkalingam, A. Task scheduling in heterogeneous cloud environment using mean grey wolf optimization algorithm. ICT Express 2019, 5, 110–114. [Google Scholar] [CrossRef]

	



Elaziz, M.A.; Xiong, S.; Jayasena, K.P.N.; Li, L. Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution. Knowl.-Based Syst. 2019, 169, 39–52. [Google Scholar] [CrossRef]

	



Srichandan, S.; Ashok Kumar, T.; Bibhudatta, S. Task scheduling for cloud computing using multi-objective hybrid bacteria foraging algorithm. Future Comput. Inform. J. 2018, 3, 210–230. [Google Scholar] [CrossRef]

	



Nasr, A.A.; Chronopoulos, A.T.; El-Bahnasawy, N.A.; Attiya, G.; El-Sayed, A. A novel water pressure change optimization technique for solving scheduling problem in cloud computing. Clust. Comput. 2019, 22, 601–617. [Google Scholar] [CrossRef]

	



Praveen, S.P.; Rao, K.T.; Janakiramaiah, B. Effective Allocation of Resources and Task Scheduling in Cloud Environment using Social Group Optimization. Arab. J. Sci. Eng. 2018, 43, 4265–4272. [Google Scholar] [CrossRef]

	



Domanal, S.G.; Guddeti, R.M.R.; Buyya, R. A Hybrid Bio-Inspired Algorithm for Scheduling and Resource Management in Cloud Environment. IEEE Trans. Serv. Comput. 2020, 13, 3–15. [Google Scholar] [CrossRef]

	



Shirani, M.R.; Safi-Esfahani, F. Dynamic scheduling of tasks in cloud computing applying dragonfly algorithm, biogeography-based optimization algorithm and Mexican hat wavelet. J. Supercomput. 2020, 77, 1214–1272. [Google Scholar] [CrossRef]

	



Gill, S.S.; Buyya, R. A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View. ACM Comput. Surv. 2019, 51, 1–33. [Google Scholar] [CrossRef]

	



Lu, Y.; Sun, N. An effective task scheduling algorithm based on dynamic energy management and efficient resource utilization in green cloud computing environment. Clust. Comput. 2019, 22, 513–520. [Google Scholar] [CrossRef]

	



Haris, M.; Khan, R.Z. A Systematic Review on Load Balancing Issues in Cloud Computing. In Sustainable Communication Networks and Application; Karrupusamy, P., Chen, J., Shi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 297–303. [Google Scholar]

	



Wei, J.; Zeng, X. Optimal computing resource allocation algorithm in cloud computing based on hybrid differential parallel scheduling. Clust. Comput. 2019, 22, 7577–7583. [Google Scholar] [CrossRef]

	



Milan, S.T.; Rajabion, L.; Darwesh, A.; Hosseinzadeh, M.; Navimipour, N.J. Priority-based task scheduling method over cloudlet using a swarm intelligence algorithm. Clust. Comput. 2020, 23, 663–671. [Google Scholar] [CrossRef]

	



Assiri, A.S.; Hussien, A.G.; Amin, M. Ant Lion Optim ization: Variants, Hybrids, and Applications. IEEE Access 2020, 8, 77746–77764. [Google Scholar] [CrossRef]

	



Chhabra, A.; Singh, G.; Kahlon, K.S. QoS-aware energy-efficient task scheduling on HPC cloud infrastructures using swarm-intelligence meta-heuristics. Comput. Mater. Contin. 2020, 64, 813–834. [Google Scholar] [CrossRef]

	



Assiri, A.S. On the performance improvement of Butterfly Optimization approaches for global optimization and Feature Selection. PLoS ONE 2021, 16, e0242612. [Google Scholar] [CrossRef]

	



Ajitha, K.M.; Indra, N.C. Fisher linear discriminant and discrete global swarm based task scheduling in cloud environment. Clust. Comput. 2022. [Google Scholar] [CrossRef]

	



Abd Elaziz, M.; Attiya, I. An improved Henry gas solubility optimization algorithm for task scheduling in cloud computing. Artif. Intell. Rev. 2021, 54, 3599–3637. [Google Scholar] [CrossRef]

	



Abualigah, L.; Alkhrabsheh, M. Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing. J. Supercomput. 2022, 78, 740–765. [Google Scholar] [CrossRef]

	



Natarajan, Y.; Kannan, S.; Dhiman, G. Task Scheduling in Cloud Using ACO. RACSC 2022, 15, 348–353. [Google Scholar] [CrossRef]

	



Attiya, I.; Elaziz, M.A.; Abualigah, L.; Nguyen, T.N.; Abd El-Latif, A.A. An Improved Hybrid Swarm Intelligence for Scheduling IoT Application Tasks in the Cloud. IEEE Trans. Ind. Inf. 2022, 18, 6264–6272. [Google Scholar] [CrossRef]

	



Cheng, F.; Huang, Y.; Tanpure, B.; Sawalani, P.; Cheng, L.; Liu, C. Cost-aware job scheduling for cloud instances using deep reinforcement learning. Clust. Comput. 2022, 25, 619–631. [Google Scholar] [CrossRef]

	



Yin, L.; Zhou, J.; Sun, J. A stochastic algorithm for scheduling Bag-of-Tasks applications on hybrid clouds under task duration variations. J. Syst. Softw. 2022, 184, 111123. [Google Scholar] [CrossRef]

	



Kashikolaei, S.M.G.; Hosseinabadi, A.A.R.; Saemi, B.; Shareh, M.B.; Sangaiah, A.K.; Bian, G.-B. An enhancement of task scheduling in cloud computing based on imperialist competitive algorithm and firefly algorithm. J. Supercomput. 2019, 76, 6302–6329. [Google Scholar] [CrossRef]

	



Prem Jacob, T.; Pradeep, K. A multi-objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization. Wirel. Pers. Commun. 2019, 109, 315–331. [Google Scholar] [CrossRef]

	



Agarwal, M.; Srivastava, G.M.S. Genetic Algorithm-Enabled Particle Swarm Optimization (PSOGA)-Based Task Scheduling in Cloud Computing Environment. Int. J. Info. Tech. Dec. Mak. 2018, 17, 1237–1267. [Google Scholar] [CrossRef]

	



Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]

	



Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]

	



Eltaeib, T.; Mahmood, A. Differential Evolution: A Survey and Analysis. Appl. Sci. 2018, 8, 1945. [Google Scholar] [CrossRef]

	



Available online: https://github.com/Cloudslab/cloudsim/releases/tag/cloudsim-3.0.3 (accessed on 20 March 2022).

	



jMetal 5 Web Site. Available online: http://jmetal.github.io/jMetal/ (accessed on 1 March 2022).

	



Chakraborty, S.; Saha, A.K.; Chakraborty, R.; Saha, M.; Nama, S. HSWOA: An ensemble of hunger games search and whale optimization algorithm for global optimization. Int. J. Intell. Syst. 2022, 37, 52–104. [Google Scholar] [CrossRef]

	



Available online: https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51 (accessed on 13 May 2022).

	



Hussien, A.G.; Amin, M.; Abd El Aziz, M. A comprehensive review of moth-flame optimisation: Variants, hybrids, and applications. J. Exp. Theor. Artif. Intell. 2020, 32, 705–725. [Google Scholar] [CrossRef]








[image: Energies 15 04571 g001 550] 





Figure 1. Proposed scheduling model using h-DEWOA. 






Figure 1. Proposed scheduling model using h-DEWOA.



[image: Energies 15 04571 g001]







[image: Energies 15 04571 g002 550] 





Figure 2. Performance of pilot experiments of h-DEWOA with chaotic maps for CEA-Curie workload: (a) Makespan; (b) Energy consumption. 






Figure 2. Performance of pilot experiments of h-DEWOA with chaotic maps for CEA-Curie workload: (a) Makespan; (b) Energy consumption.



[image: Energies 15 04571 g002]







[image: Energies 15 04571 g003 550] 





Figure 3. Encoding of the initial solution. 






Figure 3. Encoding of the initial solution.



[image: Energies 15 04571 g003]







[image: Energies 15 04571 g004 550] 





Figure 4. Discretization mechanism for producing discrete-value solution [13]. 






Figure 4. Discretization mechanism for producing discrete-value solution [13].



[image: Energies 15 04571 g004]







[image: Energies 15 04571 g005 550] 





Figure 5. (a) Example showing procedure to obtain    X  * O     vector applying SPV method, (b) Example showing procedure to obtain    X  * A     vector applying MDeRA heuristic. 






Figure 5. (a) Example showing procedure to obtain    X  * O     vector applying SPV method, (b) Example showing procedure to obtain    X  * A     vector applying MDeRA heuristic.



[image: Energies 15 04571 g005]







[image: Energies 15 04571 g006 550] 





Figure 6. Convergence examination of algorithms with PopSize = 60 for CEA-Curie workload for first series of experiments. 






Figure 6. Convergence examination of algorithms with PopSize = 60 for CEA-Curie workload for first series of experiments.



[image: Energies 15 04571 g006]







[image: Energies 15 04571 g007 550] 





Figure 7. Statistical results of the makespan metric for WL0–WL9 workloads. 






Figure 7. Statistical results of the makespan metric for WL0–WL9 workloads.



[image: Energies 15 04571 g007]







[image: Energies 15 04571 g008 550] 





Figure 8. Statistical results of the energy consumption metric for WL0–WL9 workloads. 






Figure 8. Statistical results of the energy consumption metric for WL0–WL9 workloads.



[image: Energies 15 04571 g008]







[image: Energies 15 04571 g009 550] 





Figure 9. Statistical results of the makespan metric for WL10–WL19 workloads. 






Figure 9. Statistical results of the makespan metric for WL10–WL19 workloads.



[image: Energies 15 04571 g009]







[image: Energies 15 04571 g010 550] 





Figure 10. Statistical results of the energy consumption objective for WL10–WL19 workloads. 






Figure 10. Statistical results of the energy consumption objective for WL10–WL19 workloads.



[image: Energies 15 04571 g010]







[image: Energies 15 04571 g011 550] 





Figure 11. Comparative boxplot analysis of the overall makespan of h-DEWOA- and WOA-based scheduling algorithms for CEA-Curie workloads. 






Figure 11. Comparative boxplot analysis of the overall makespan of h-DEWOA- and WOA-based scheduling algorithms for CEA-Curie workloads.



[image: Energies 15 04571 g011]







[image: Energies 15 04571 g012 550] 





Figure 12. Comparative boxplot analysis of the overall energy consumption of h-DEWOA- and WOA-based scheduling algorithms for CEA-Curie workloads. 






Figure 12. Comparative boxplot analysis of the overall energy consumption of h-DEWOA- and WOA-based scheduling algorithms for CEA-Curie workloads.



[image: Energies 15 04571 g012]







[image: Energies 15 04571 g013 550] 





Figure 13. Comparative boxplot analysis of the overall makespan of h-DEWOA- and WOA-based scheduling algorithms for HPC2N workloads. 






Figure 13. Comparative boxplot analysis of the overall makespan of h-DEWOA- and WOA-based scheduling algorithms for HPC2N workloads.



[image: Energies 15 04571 g013]







[image: Energies 15 04571 g014 550] 





Figure 14. Comparative boxplot analysis of the overall energy consumption of h-DEWOA- and WOA-based scheduling algorithms for HPC2N workloads. 






Figure 14. Comparative boxplot analysis of the overall energy consumption of h-DEWOA- and WOA-based scheduling algorithms for HPC2N workloads.



[image: Energies 15 04571 g014]







[image: Energies 15 04571 g015 550] 





Figure 15. Convergence examination of scheduling algorithms with PopSize = 60 for CEA-Curie workload for the second series of experiments. 






Figure 15. Convergence examination of scheduling algorithms with PopSize = 60 for CEA-Curie workload for the second series of experiments.



[image: Energies 15 04571 g015]







[image: Energies 15 04571 g016 550] 





Figure 16. Comparative boxplot analysis of the overall makespan of h-DEWOA and recent state-of-the-art algorithms for CEA-Curie workloads. 






Figure 16. Comparative boxplot analysis of the overall makespan of h-DEWOA and recent state-of-the-art algorithms for CEA-Curie workloads.



[image: Energies 15 04571 g016]







[image: Energies 15 04571 g017 550] 





Figure 17. Comparative boxplot analysis of the overall energy consumption of h-DEWOA and recent state-of-the-art algorithms for CEA-Curie workloads. 






Figure 17. Comparative boxplot analysis of the overall energy consumption of h-DEWOA and recent state-of-the-art algorithms for CEA-Curie workloads.



[image: Energies 15 04571 g017]







[image: Energies 15 04571 g018 550] 





Figure 18. Comparative boxplot analysis of the overall makespan of h-DEWOA and recent state-of-the-art algorithms for HPC2N workloads. 






Figure 18. Comparative boxplot analysis of the overall makespan of h-DEWOA and recent state-of-the-art algorithms for HPC2N workloads.



[image: Energies 15 04571 g018]







[image: Energies 15 04571 g019 550] 





Figure 19. Comparative boxplot of the overall energy consumption of h-DEWOA and recent state-of-the-art algorithms for HPC2N workloads. 






Figure 19. Comparative boxplot of the overall energy consumption of h-DEWOA and recent state-of-the-art algorithms for HPC2N workloads.



[image: Energies 15 04571 g019]







[image: Table] 





Table 1. List of acronyms.






Table 1. List of acronyms.





	Acronyms
	Full Form
	Acronyms
	Full Form





	ACO
	Ant colony optimization
	HS
	Harmony search



	ABC
	Artificial bee colony
	ICA
	Imperialist colony algorithm



	BAT
	Bat algorithm
	LWOA
	Levy flight whale optimization algorithm



	BFO
	Bacterial foraging optimization
	MCT
	Minimum completion time



	CS
	Cuckoo search
	MET
	Minimum execution time



	CSOA
	Cat swarm optimization algorithm
	MS
	Moth search algorithm



	CSOS
	Coexistence symbiotic organism search
	MFO
	Moth flame optimization



	DE
	Differential evolution
	MRFO
	Manta-ray foraging optimizer



	DSOS
	Discrete symbiotic organism search
	PSO
	Particle swarm optimization



	FA
	Firefly algorithm
	SA
	Simulated annealing



	FCFS
	First come first serve
	SGO
	Social group optimization



	GA
	Genetic algorithm
	SJF
	Shortest job first



	GD
	Gradient descent
	SOS
	Symbiotic organism search



	GWO
	Grey wolf optimization
	SSA
	Salp swarm algorithm



	GSA
	Gravitational search algorithm
	WPCO
	Water pressure change optimization










[image: Table] 





Table 2. Limitations and issues of recent cloud scheduling techniques.






Table 2. Limitations and issues of recent cloud scheduling techniques.





	
Ref. & Year

	
Technique

	
Single/Multiple

BoTs

	
Architecture

	
Simulator

	
Limitations/Issues *

	




	
L1

	
L2

	
L3

	
L4

	
L5

	
L6






	
[45]; 2022

	
AdPSO

	
Single

	
Private Cloud

	
CloudSim

	
√

	

	
√

	
√

	

	
√




	
[76]; 2022

	
IABS

	
Multiple

	
Hybrid Cloud

	
JAVA

	
√

	

	
√

	

	

	
√




	
[72]; 2022

	
MVO-GA

	
Single

	
Hybrid Cloud

	
MATLAB

	
√

	

	
√

	
√

	

	
√




	
[73]; 2022

	
IACO

	
Single

	
Private Cloud

	
MATLAB

	
√

	
√

	
√

	
√

	

	
√




	
[74]; 2022

	
MRFOSSA

	
Single

	
Private Cloud

	
CloudSim

	
√

	

	
√

	

	

	
√




	
[75]; 2022

	
DRL

	
Single

	
Private Cloud

	
Python

	

	

	

	

	

	




	
[8]; 2022

	
OWPSO

	
Multiple

	
Private Cloud

	
CloudSim

	
√

	

	

	

	
√

	




	
[6]; 2022

	
GA_LC-MLR

	
Single

	
Private Cloud

	
CloudSim

	
√

	

	
√

	

	
√

	
√




	
[24]; 2022

	
RDWOA

	
Single

	
Private Cloud

	
CloudSim

	
√

	

	
√

	

	

	
√




	
[70]; 2022

	
FLD-DGSTS

	
Single

	
Private Cloud

	
CloudSim

	
√

	

	
√

	

	
√

	
√




	
[22]; 2021

	
GCWOAS2

	
Single

	
Private Cloud

	
MATLAB

	
√

	

	
√

	
√

	

	
√




	
[26]; 2021

	
IWC

	
Single

	
Private Cloud

	
MATLAB

	
√

	

	
√

	
√

	
√

	
√




	
[33]; 2021

	
WHOA

	
Single

	
Private Cloud

	
CloudSim

	
√

	

	
√

	
√

	

	




	
[71]; 2021

	
IHHO

	
Single

	
Private Cloud

	
CloudSim

	
√

	

	

	

	
√

	
√




	
[13]; 2021

	
CSDEO

	
Multiple

	
Private Cloud

	
CloudSim

	
√

	

	

	

	
√

	




	
[68]; 2020

	
CSPSO

	
Multiple

	
Private Cloud

	
CloudSim

	
√

	
√

	

	

	
√

	




	
[49]; 2020

	
OBL-TP-PSO

	
Single

	
Private Cloud

	
CloudSim

	
√

	
√

	
√

	
√

	

	
√




	
[38]; 2019

	
BLEMO

	
Multiple

	
Private Cloud

	
CloudSim

	
√

	

	

	
√

	
√

	




	
[51]; 2019

	
HCSGD

	
Single

	
Private Cloud

	
CloudSim

	

	

	
√

	
√

	

	
√




	
[53]; 2019

	
Mean GWO

	
Single

	
Private Cloud

	
CloudSim

	

	
√

	
√

	
√

	
√

	
√




	
[54]; 2019

	
MGWO

	
Single

	
Private Cloud

	
CloudSim

	

	
√

	
√

	
√

	
√

	
√




	
[77]; 2019

	
ICA-FA

	
Single

	
Private Cloud

	
MATLAB

	

	

	
√

	
√

	
√

	
√




	
[56]; 2019

	
MSDE

	
Single

	
Private Cloud

	
CloudSim

	

	
√

	
√

	
√

	

	
√




	
[23]; 2021

	
OppoCWOA

	
Single

	
Fog

	
Python

	

	
√

	
√

	
√

	

	
√




	
[35]; 2019

	
W-Scheduler

	
Single

	
Private Cloud

	
CloudSim

	
√

	
√

	
√

	
√

	

	
√




	
[50]; 2019

	
MOCSO

	
Single

	
Private Cloud

	
MATLAB

	

	
√

	
√

	
√

	
√

	
√




	
[47]; 2019

	
COGENT

	
Single

	
Private Cloud

	
CloudSim

	
√

	
√

	
√

	
√

	

	
√




	
[78]; 2019

	
CPSO

	
Single

	
Private Cloud

	
CloudSim

	

	
√

	
√

	
√

	

	
√




	
[52]; 2018

	
CGSA

	
Single

	
Private Cloud

	
CloudSim

	

	
√

	
√

	
√

	
√

	
√




	
[79]; 2018

	
PSOGA

	
Single

	
Private Cloud

	
CloudSim

	

	

	
√

	
√

	
√

	
√








* L1: Insufficient balance between exploitation and exploration, L2: Insufficient or absence of convergence investigation, L3: No optimization of BoT application ordering, L4: Benchmarking with real-cloud workloads, L5: Slow convergence, L6: Lack of/no attention on performance and energy together.













[image: Table] 





Table 3. System notations.






Table 3. System notations.





	Notations
	Meaning





	PM
	Physical machine



	VM
	Virtual machine



	Npm
	Total physical machines



	Nvm
	Total virtual machines



	m
	Index of pre-configured VM



	   V M I  D m    
	Unique identification number of mth VM



	   N  C m    
	Total CPU cores in mth VM



	   M I P  S m    
	VM capacity in million-instructions-per-second (MIPS)



	    C  m k     
	CPU core k at mth VM



	   C I  D  m k     
	Unique identification number of core



	   C M I P  S  m k     
	Computation capacity of the core in MIPS



	   E C  C  m k     
	Energy consumption of    C  m k     in execution mode (watts/hour)



	   E I  C  m k     
	Energy consumption of    C  m k     in idle mode (watts/hour)



	    T j    
	BoT application with index j



	CBA
	Number of concurrent BoT applications



	   T I  D j      
	Unique identification number of BoT application



	   T S i z  e j    
	Number of cores needed to execute BoT application



	   T l e n g t  h j    
	BoT application task length in million-instructions format










[image: Table] 





Table 4. WOA notations and symbols.






Table 4. WOA notations and symbols.





	Notations
	Meaning





	G
	Generation index



	    X →   ( G )    
	Present solution position at generation G



	     X →  *     ( G )    
	Position of present best solution



	   D →   
	Distance between any solution and current best solution



	    A →      and    C →    
	Coefficient vectors



	a
	Variable that linearly decreases from 2 to 0



	| |
	Absolute value



	dot (⋅)
	Element-by-element multiplication



	   r →   
	Random vector in [0, 1]



	Gmax
	Maximum number of generations



	     D →  ′    
	Absolute distance between any solution and present best solution



	b
	Constant representing the shape of the logarithmic spiral



	l
	Random number in [−1, 1]



	     X →   r a n d    ( G )    
	Random solution during exploration phase for generation G










[image: Table] 





Table 5. Sample real experimental workloads.






Table 5. Sample real experimental workloads.





	Workload Log
	Workloads
	Number
	BoTs per Workload
	Max. CPUs





	CEA-Curie
	WL0–WL9
	10
	200
	32



	HPC2N
	WL10–WL19
	10
	200
	16










[image: Table] 





Table 6. Description of the VM configuration.






Table 6. Description of the VM configuration.





	VM Instance

Type
	VM Instance id
	# VMs
	# CPU Cores per VM
	MIPS per Core
	CPU Model
	Energy during Idle Time (W/h)
	Energy during Comp. Time (W/h)





	Category 1
	T2.nano
	20
	1
	3400
	Xeon E5-2637 V4
	23.625
	33.75



	Category 2
	T2.xlarge
	10
	4
	2600
	Xeon E5-2623 V4
	59.5
	85



	Category 3
	T2.2xlarge
	8
	8
	2100
	Xeon E5-2620 V4
	59.5
	85



	Category 4
	M5.4xlarge
	6
	16
	2500
	Xeon Plat. 8180 M
	82
	117.14



	Category 5
	M4.10xlarge
	4
	40
	2400
	Xeon E5-2686 V4
	225.55
	322.22










[image: Table] 





Table 7. Comparative experimental plan.






Table 7. Comparative experimental plan.





	Experiments
	Details
	Workloads





	First series
	Comparing h-DEWOA with popular WOA-based metaheuristics
	CEA-Curie and HPC2N



	Second series
	Comparing h-DEWOA with well-known non-WOA-based metaheuristics
	CEA-Curie and HPC2N










[image: Table] 





Table 8. Characteristics of WOA-based scheduling algorithms.






Table 8. Characteristics of WOA-based scheduling algorithms.





	Algorithm
	Algorithm Type
	Algorithm Description
	BoT Application Ordering Method
	Scheduling Problem Optimization





	WOA [81]
	MH
	Aggregation-based Multi-objective WOA
	FCFS
	AL



	IWOA [16]
	h-MH
	Pareto front-based Multi-objective WOA + DE
	FCFS
	AL



	HSWOA [85]
	h-MH
	Aggregation-based Multi-objective HS + WOA
	FCFS
	AL



	GCWOAS2 [22]
	h-MH
	Pareto front-based Multi-objective WOA
	FCFS
	AL



	h-DEWOA (proposed)
	h-MH
	Aggregation-based Multi-objective WOA + DE
	h-DEWOA
	AO and AL







MH: Metaheuristic; h-MH: Hybrid Metaheuristic; AL: Allocation; AO: Application ordering.













[image: Table] 





Table 9. Optimal parameter settings of algorithms for the first series of experiments for 30 independent evaluations.






Table 9. Optimal parameter settings of algorithms for the first series of experiments for 30 independent evaluations.





	Algorithm
	Generations
	Parameters





	WOA
	60
	a = 2



	IWOA
	60
	a = 2, F = [0.1–0.9], and CR = 0.75



	HSWOA
	60
	a = 2



	GCWOAS2
	70
	a = 2, lb = −5, ub = 10



	h-DEWOA
	50
	a = 2, F = [0.5–0.9], and CR = 0.75










[image: Table] 





Table 10. Summary of overall results of scheduling algorithms for CEA-Curie and HPC2N workloads for the first set of experiments.






Table 10. Summary of overall results of scheduling algorithms for CEA-Curie and HPC2N workloads for the first set of experiments.














	Algorithm
	
	WOA
	IWOA
	HSWOA
	GCWOAS2
	h-DEWOA





	CEA-Curie
	
	
	
	
	
	



	Makespan (s)
	Mean
	11,890.95
	11,639.63
	11,198.02
	11,095.44
	10,488.06



	
	Median
	11,522.28
	11,199.14
	10,751.37
	10,475.4
	9848.7



	
	Std. dev.
	5773.51
	5682.59
	5520.11
	5463.85
	5453.62



	Energy Consumption (W)
	Mean
	7502.48
	7173.63
	7175.54
	7287.76
	6739.39



	
	Median
	7218.97
	6872.21
	7032.31
	7122.41
	6588.44



	
	Std. dev.
	3577.75
	3572.11
	3528.71
	3493.12
	3494.09



	HPC2N
	
	
	
	
	
	



	Makespan (s)
	Mean
	13,030.95
	12,846.14
	12,755.14
	12,026.48
	11,450.91



	
	Median
	12,165.13
	11,958.84
	12,494.82
	11,748.11
	11,172.98



	
	Std. dev.
	8089.23
	8099.17
	6725.83
	6726.24
	6722.55



	Energy Consumption (W)
	Mean
	8328.99
	7953.16
	8467.48
	7866.75
	7097.58



	
	Median
	7568.49
	7311.03
	7946.03
	7533.84
	6779.76



	
	Std. dev.
	5793.52
	5484.77
	5083.24
	4851.47
	4844.79







Bold values are better.













[image: Table] 





Table 11. PIR% of the h-DEWOA over other WOA-based scheduling algorithms.






Table 11. PIR% of the h-DEWOA over other WOA-based scheduling algorithms.





	
Policy

	
WOA

	
IWOA

	
HSWOA

	
GCWOAS2






	
CEA-Curie

	

	

	




	
Makespan (s)

	

	

	

	




	
PIR% of h-DEWOA over

	
+13.38

	
+10.98

	
+6.77

	
+5.79




	
Energy Consumption (W)

	

	

	

	




	
PIR% of h-DEWOA over

	
+11.32

	
+6.44

	
+6.47

	
+8.14




	
HPC2N

	

	

	




	
Makespan (s)

	

	

	

	




	
PIR% of h-DEWOA over

	
+13.80

	
+12.18

	
+11.39

	
+5.03




	
Energy consumption (W)

	

	

	

	




	
PIR% of h-DEWOA over

	
+17.35

	
+12.05

	
+19.30

	
+10.84








+ sign shows improved performance of the h-DEWOA approach over compared algorithms.













[image: Table] 





Table 12. Characteristics of tested scheduling algorithms.






Table 12. Characteristics of tested scheduling algorithms.





	Algorithm
	Algorithm Type
	Algorithm Description
	BoT Application Ordering Method
	Scheduling

Problem Optimization





	MOPSO [49]
	MH
	Aggregation-based Multi-objective PSO
	FCFS
	AL



	MOCS [50]
	MH
	Aggregation-based Multi-objective CS
	FCFS
	AL



	BLEMO [38]
	MH
	Pareto front-based Multi-objective GWASF-GA
	FCFS
	AL



	CSDEO [13]
	h-MH
	Aggregation-based Multi-objective CS + DE
	FCFS
	AL



	BOA [69]
	h-MH
	Aggregation-based Multi-objective BOA
	FCFS
	AL



	MFO [87]
	h-MH
	Pareto front-based Multi-objective MFO
	FCFS
	AL



	h-DEWOA (proposed)
	h-MH
	Aggregation-based Multi-objective WOA + DE
	h-DEWOA
	AO and AL







MH: Metaheuristic; h-MH: Hybrid Metaheuristic; AL: Allocation; AO: Application ordering.













[image: Table] 





Table 13. Parameter settings of algorithms for the second series of experiments for 30 independent executions of each algorithm.






Table 13. Parameter settings of algorithms for the second series of experiments for 30 independent executions of each algorithm.





	Algorithm
	Generations
	Parameters





	MOPSO
	60
	Initial value of variable a: 2



	MOCS
	60
	WOA parameters: Same as WOA algorithm

DE parameters: Scaling factor (F): 0.1–0.9, and Crossover rate (CR): 0.75



	BLEMO
	40
	Crossover rate: 0.33 and Mutation rate: 0.10



	CSDEO
	50
	CS parameters: step size (α0): 0.01, β: 1.5

DE parameters: Scaling factor (F): 0.1–0.3, and Crossover rate (CR): 0.75



	BOA
	60
	Modular modality c is 0.01, p = 0.8, and power exponent a is increased from 0.1 to 0.3



	MFO
	60
	b = 1



	h-DEWOA
	50
	WOA parameters: Same as WOA algorithm

DE parameters: Scaling factor (F): 0.5–0.9, and Crossover rate (CR): 0.75










[image: Table] 





Table 14. Makespan statistical results for WL0–WL9 workloads.






Table 14. Makespan statistical results for WL0–WL9 workloads.
















	CEA-Curie Workloads
	Indicator
	MOPSO
	BLEMO
	MOCS
	CSDEO
	BOA
	MFO
	h-DEWOA





	WL0
	Best
	11,960.26
	10,200.10
	11,547.45
	10,969.92
	11,545.10
	10,651.75
	10,275.9



	
	Avg.
	14,454.11
	13,165.61
	14,237.23
	12,482.34
	13,491.24
	12,449.01
	11,660.04



	
	Worst
	21,599.99
	20,732.08
	19,633.46
	15,499.38
	16,945.47
	15,779.38
	14,435.67



	WL1
	Best
	14,443.43
	11,700.21
	14,696.73
	13,850.81
	14,580.85
	14,130.81
	12,679.97



	
	Avg.
	17,483.91
	16,597.74
	17,035.45
	15,889.18
	16,663.68
	15,725.85
	15,109.39



	
	Worst
	25,807.67
	24,840.16
	22,049.84
	18,831.50
	20,470.21
	19,111.50
	18,477.35



	WL2
	Best
	8811.59
	7200.21
	7820.90
	7442.08
	8247.814
	7722.08
	6829.378



	
	Avg.
	12,080.79
	10,413.30
	11,095.74
	10,186.98
	10,931.14
	10,466.98
	9560.564



	
	Worst
	16,524.91
	16,350.10
	14,946.78
	13,173.06
	14,463.57
	13,453.06
	11,850.62



	WL3
	Best
	19,848.23
	16,650.21
	19,095.59
	18,177.46
	18,929.71
	18,457.46
	17,764.81



	
	Avg.
	24,679.88
	22,875.85
	22,845.36
	21,676.68
	22,815.07
	21,956.68
	20,896.7



	
	Worst
	29,426.71
	32,400.10
	28,146.30
	25,609.87
	27,323.36
	25,889.87
	24,003.9



	WL4
	Best
	15,174.35
	13,005.17
	15,353.75
	14,758.71
	15,190.5
	15,038.71
	13,416.31



	
	Avg.
	18,752.94
	17,552.51
	17,939.16
	17,108.33
	17,821.62
	17,388.33
	16,508.44



	
	Worst
	25,005.48
	24,444.68
	24,029.27
	19,959.83
	21,840.89
	20,239.83
	20,937.46



	WL5
	Best
	4517.03
	3798.96
	4230.69
	4203.09
	4505.652
	4483.09
	3620.954



	
	Avg.
	6274.81
	5483.11
	5782.48
	5109.55
	5704.507
	5389.55
	4684.121



	
	Worst
	9284.97
	8535.21
	8351.09
	6733.47
	7316.663
	7013.47
	6140.261



	WL6
	Best
	9058.90
	8771.46
	9402.54
	8843.01
	9560.026
	9123.01
	8277.555



	
	Avg.
	12,689.67
	12,950.13
	12,704.20
	11,153.84
	12,176.79
	11,433.84
	10,371.22



	
	Worst
	19,732.64
	20,400.21
	17,142.14
	13,390.13
	15,173.11
	13,670.13
	12,517.62



	WL7
	Best
	3746.42
	3180.21
	4001.28
	3653.73
	3915.613
	3933.73
	3208.096



	
	Avg.
	5614.67
	4967.06
	5158.19
	4451.31
	5018.274
	4731.31
	4008.443



	
	Worst
	8717.20
	8325.21
	8766.96
	5876.96
	6996.048
	6156.96
	6041.973



	WL8
	Best
	5975.56
	5400.10
	5644.80
	4929.97
	5815.429
	5209.97
	4308.133



	
	Avg.
	8785.39
	7770.17
	7507.07
	6093.44
	7435.082
	6373.44
	5599.787



	
	Worst
	12,786.17
	14,850.21
	10,272.95
	8509.48
	10,293.07
	8789.48
	7020



	WL9
	Best
	5883.46
	4500.21
	5855.55
	4368.56
	5833.676
	4648.56
	3988.775



	
	Avg.
	7564.67
	7282.67
	7594.58
	6876.61
	7438.893
	7156.61
	6481.927



	
	Worst
	10,204.26
	11,250.10
	10,011.50
	7924.87
	8814.705
	8204.87
	7672.408







Bold values are lowest.













[image: Table] 





Table 15. Energy consumption statistical results for WL0–WL9 workloads.






Table 15. Energy consumption statistical results for WL0–WL9 workloads.
















	CEA-Curie Workloads
	Indicator
	MOPSO
	BLEMO
	MOCS
	CSDEO
	BOA
	MFO
	h-DEWOA





	WL0
	Best
	7206.21
	6588.22
	7408.80
	6529.32
	6945.26
	6880.32
	6120.27



	
	Avg.
	8721.13
	8229.59
	8432.26
	7824.27
	8340.70
	8198.12
	7591.65



	
	Worst
	11,899.30
	12,070.62
	11,263.31
	8849.12
	9674.02
	9180.12
	9289.22



	WL1
	Best
	8633.28
	7783.98
	7719.42
	8868.56
	8739.48
	9229.56
	8220.83



	
	Avg.
	11,053.11
	10,479.61
	10,504.87
	9872.62
	10,456.31
	10,238.58
	9480.57



	
	Worst
	17,715.73
	15,133.85
	15,054.43
	11,603.77
	12,087.60
	11,859.77
	11,514.59



	WL2
	Best
	5582.60
	4733.53
	5414.94
	5144.26
	5737.73
	5393.17
	4793.72



	
	Avg.
	7165.61
	6524.43
	6805.25
	6289.01
	6608.40
	6525.21
	6052.35



	
	Worst
	8970.75
	9882.84
	8988.50
	7918.24
	7997.96
	8102.24
	8237.94



	WL3
	Best
	13,506.06
	10,812.66
	12,322.39
	12,872.81
	12,874.75
	13,026.76
	12,464.88



	
	Avg.
	15,468.06
	14,200.27
	14,715.03
	14,140.03
	14,594.40
	14,481.83
	13,887.57



	
	Worst
	17,426.96
	19,538.90
	17,242.44
	16,095.68
	16,758.80
	16,491.68
	15,988.8



	WL4
	Best
	9899.06
	8569.14
	9563.15
	8968.66
	9601.81
	9286.66
	8296.68



	
	Avg.
	12,001.09
	11,099.04
	11,016.98
	10,326.07
	10,935.66
	10,611.28
	9870.25



	
	Worst
	14,625.70
	14,141.90
	12,556.49
	12,301.57
	12,509.75
	12,427.57
	12,316.24



	WL5
	Best
	3007.40
	2504.03
	2980.97
	2410.98
	2824.03
	2772.98
	2278.04



	
	Avg.
	3809.02
	3398.61
	3619.83
	3101.46
	3511.13
	3355.32
	2883.59



	
	Worst
	4468.13
	5128.42
	5211.90
	3780.75
	4333.96
	4111.37
	3684.22



	WL6
	Best
	6815.78
	5812.50
	6796.31
	6512.76
	6643.86
	6696.47
	6212.68



	
	Avg.
	7954.14
	8046.64
	7982.58
	7402.84
	7774.60
	7627.41
	7137.29



	
	Worst
	9842.82
	12,332.43
	10,135.10
	8123.47
	9248.67
	8327.51
	7824.83



	WL7
	Best
	2561.79
	2074.51
	2702.79
	2295.04
	2420.52
	2422.04
	2006.16



	
	Avg.
	3797.62
	3082.18
	3415.45
	2791.81
	3193.88
	3048.35
	2525.13



	
	Worst
	5173.74
	4962.87
	4473.37
	3714.33
	4157.40
	4040.33
	3317.04



	WL8
	Best
	3970.40
	3462.00
	4076.17
	3512.84
	3919.93
	3698.84
	3113.85



	
	Avg.
	4905.71
	4771.51
	4761.41
	4187.68
	4624.10
	4487.93
	3942.42



	
	Worst
	6194.94
	8650.75
	6604.29
	4901.30
	5779.50
	5084.30
	4989.44



	WL9
	Best
	2868.46
	2937.93
	3519.60
	2891.83
	3458.43
	3106.15
	2561.73



	
	Avg.
	4849.14
	4481.61
	4817.17
	4217.99
	4651.67
	4573.47
	4023.08



	
	Worst
	7715.02
	6644.12
	6823.52
	5178.55
	5642.32
	5375.55
	5496.83







Bold values are lowest.













[image: Table] 





Table 16. Makespan statistical results for WL10–WL19 workloads.






Table 16. Makespan statistical results for WL10–WL19 workloads.
















	HPC2N Workloads
	Indicator
	MOPSO
	BLEMO
	MOCS
	CSDEO
	BOA
	MFO
	h-DEWOA





	WL10
	Best
	22,935.48
	21,000.10
	22,450.11
	20,036.63
	22,066.17
	20,136.63
	18,801.74



	
	Avg.
	31,659.31
	27,397.33
	27,258.24
	22,258.71
	26,959.94
	22,358.71
	21,579.70



	
	Worst
	47,578.36
	41,259.62
	37,070.36
	35,291.42
	37,109.26
	35,391.42
	33,700.98



	WL11
	Best
	18,980.14
	14,644.01
	16,359.12
	16,522.34
	15,919.99
	16,622.34
	14,953.21



	
	Avg.
	22,903.96
	19,552.95
	20,227.04
	18,941.76
	19,948.61
	19,041.76
	17,567.38



	
	Worst
	28,885.86
	28,848.91
	27,708.46
	22,696.08
	27,174.21
	22,796.08
	22,324.56



	WL12
	Best
	20,212.26
	16,650.10
	19,382.40
	17,810.82
	19,164.36
	17,910.82
	16,649.19



	
	Avg.
	25,260.03
	22,961.31
	22,812.50
	20,308.97
	22,572.30
	20,408.97
	19,329.17



	
	Worst
	32,357.04
	33,907.60
	30,560.06
	29,312.09
	30,301.89
	29,412.09
	26,644.20



	WL13
	Best
	16,746.90
	13,522.67
	14,416.59
	14,515.07
	13,719.31
	14,615.07
	13,366.98



	
	Avg.
	19,585.00
	17,200.76
	17,893.86
	17,188.48
	17,648.52
	17,288.48
	16,207.58



	
	Worst
	22,251.07
	22,965.20
	21,316.48
	20,332.90
	21,513.13
	20,432.90
	20,203.84



	WL14
	Best
	11,622.14
	10,650.25
	11,106.19
	11,616.94
	10,476.61
	11,716.94
	99,72.00



	
	Avg.
	13,851.12
	13,953.94
	13,868.76
	13,067.45
	13,654.34
	13,167.45
	12,274.21



	
	Worst
	18,141.63
	18,150.31
	16,804.36
	14,915.63
	16,400.40
	15,015.63
	14,380.36



	WL15
	Best
	4524.74
	4200.10
	4212.11
	4017.70
	3922.51
	4117.70
	3704.70



	
	Avg.
	7052.93
	5930.53
	6206.88
	5576.38
	5957.67
	5676.38
	5320.46



	
	Worst
	12,901.66
	11,625.10
	9690.71
	7468.60
	9005.34
	7568.60
	7980.15



	WL16
	Best
	9200.91
	8287.76
	8751.31
	7828.44
	8218.58
	7928.44
	7581.52



	
	Avg.
	11,268.08
	10,553.76
	10,893.29
	10,110.14
	10,626.45
	10,210.14
	9821.84



	
	Worst
	15,773.25
	15,232.71
	14,651.73
	11,991.02
	14,576.44
	12,091.02
	12,118.86



	WL17
	Best
	4738.35
	3825.10
	4012.78
	3778.44
	4087.09
	3878.44
	3338.51



	
	Avg.
	6559.59
	5910.08
	6007.81
	5380.60
	5747.06
	5480.60
	5137.35



	
	Worst
	9001.94
	9450.17
	9569.37
	7980.22
	9081.96
	8080.22
	7803.77



	WL18
	Best
	3047.82
	3600.10
	3347.34
	3006.86
	2760.23
	3206.86
	2969.94



	
	Avg.
	4386.93
	4738.25
	4507.69
	3964.54
	4284.68
	4064.54
	3834.73



	
	Worst
	6202.69
	21,937.59
	12,418.78
	7878.97
	12,194.68
	7978.97
	5808.41



	WL19
	Best
	2804.61
	2250.10
	2787.46
	2130.94
	2175.34
	2230.94
	1875.20



	
	Avg.
	4179.46
	4657.41
	4367.47
	3697.48
	4061.85
	3797.48
	3436.67



	
	Worst
	7970.18
	20,970.09
	12,303.99
	7232.97
	12,209.61
	7332.97
	5548.10







Bold values are lowest.













[image: Table] 





Table 17. Energy consumption statistical results for WL10–WL19 workloads.






Table 17. Energy consumption statistical results for WL10–WL19 workloads.
















	HPC2N

Workloads
	Indicator
	MOPSO
	BLEMO
	MOCS
	CSDEO
	BOA
	MFO
	h-DEWOA





	WL10
	Best
	17,723.35
	13,584.58
	15,982.21
	14,511.92
	15,342.49
	14,711.92
	13,823.81



	
	Avg.
	23,907.99
	16,937.46
	20,533.79
	16,970.77
	19,040.17
	17,170.77
	15,966.82



	
	Worst
	31,626.77
	23,420.63
	26,343.40
	20,251.14
	22,918.38
	20,451.14
	19,593.61



	WL11
	Best
	11,258.19
	9776.93
	11,048.08
	9855.60
	10,731.61
	10,055.60
	9369.74



	
	Avg.
	13,991.44
	12,258.83
	12,694.22
	11,550.63
	12,402.66
	11,750.63
	10,978.52



	
	Worst
	18,560.88
	16,909.84
	15,501.51
	14,855.03
	15,098.86
	15,055.03
	14,459.70



	WL12
	Best
	11,558.36
	10,789.13
	10,670.37
	11,086.86
	11,234.09
	11,286.86
	10,588.87



	
	Avg.
	14,067.10
	13,704.00
	13,670.77
	12,698.74
	13,364.66
	12,898.74
	12,161.39



	
	Worst
	17,854.48
	17,730.69
	17,097.92
	15,458.78
	15,571.12
	15,658.78
	15,449.40



	WL13
	Best
	10,186.48
	8964.51
	9135.88
	9024.07
	9444.43
	9224.07
	8644.88



	
	Avg.
	12,652.43
	10,894.61
	10,985.65
	10,256.97
	10,979.42
	10,456.97
	9687.76



	
	Worst
	15,289.81
	13,618.89
	13,268.02
	11,479.04
	12,416.42
	11,679.04
	11,209.28



	WL14
	Best
	7506.78
	6926.25
	7082.51
	6774.34
	7555.62
	6974.34
	6411.12



	
	Avg.
	9044.92
	8819.79
	8892.65
	8085.65
	8577.42
	8285.65
	7700.74



	
	Worst
	11,732.53
	11,121.16
	11,114.54
	9365.08
	10,243.36
	9565.08
	9227.94



	WL15
	Best
	3340.41
	2854.22
	2669.03
	2645.06
	2985.37
	2845.06
	2272.91



	
	Avg.
	4210.07
	3838.32
	4041.86
	3340.14
	3679.90
	3540.14
	3009.24



	
	Worst
	5197.82
	7066.33
	5700.02
	5205.52
	4984.47
	5405.52
	5219.22



	WL16
	Best
	5576.80
	5418.26
	5207.54
	5382.38
	5656.58
	5582.38
	5019.96



	
	Avg.
	7145.42
	6688.17
	6579.13
	6128.16
	6503.26
	6328.16
	5790.69



	
	Worst
	10,248.08
	9209.20
	9065.99
	7711.92
	7590.18
	7911.92
	7603.42



	WL17
	Best
	2984.80
	2586.33
	2497.43
	2227.06
	2814.00
	2427.06
	1852.30



	
	Avg.
	3888.74
	3477.84
	3652.42
	2990.15
	3399.06
	3190.15
	2654.09



	
	Worst
	5374.67
	5140.45
	4522.45
	3810.12
	4106.29
	4010.12
	3612.28



	WL18
	Best
	1767.25
	1776.39
	1967.11
	1222.13
	1510.62
	1422.13
	1036.32



	
	Avg.
	2517.81
	2183.11
	2445.86
	1714.90
	2070.95
	1914.90
	1596.70



	
	Worst
	6170.04
	7264.35
	5009.49
	4565.55
	4590.59
	4765.55
	4500.49



	WL19
	Best
	1518.28
	1278.92
	1495.37
	938.99
	1155.77
	1138.99
	888.67



	
	Avg.
	2644.26
	2079.39
	2427.79
	1501.94
	2014.08
	1701.94
	1429.86



	
	Worst
	5604.93
	6403.11
	4905.22
	2568.03
	3852.78
	2768.03
	2978.92







Bold values are lowest.













[image: Table] 





Table 18. Summary of overall results of scheduling algorithms for CEA-Curie and HPC2N workloads for the second set of experiments.






Table 18. Summary of overall results of scheduling algorithms for CEA-Curie and HPC2N workloads for the second set of experiments.
















	Algorithm
	
	MOPSO
	BLEMO
	MOCS
	CSDEO
	BOA
	MFO
	h-DEWOA





	CEA-Curie
	
	
	
	
	
	
	
	



	Makespan (s)
	Mean
	12,838.08
	11,905.82
	12,189.95
	11,027.16
	11,949.63
	11,307.16
	10,488.06



	
	Median
	12,130.13
	11,103.94
	11,867.99
	10,586.13
	11,509.14
	10,866.13
	9848.7



	
	Std. dev.
	6223.92
	6034.79
	5782.63
	5519.54
	5682.59
	5519.54
	5453.62



	Energy Cons. (W)
	Mean
	7972.46
	7431.35
	7602.63
	7015.38
	7418.61
	7265.13
	6739.39



	
	Median
	7539.61
	6951.81
	7298.25
	6831.89
	7028.03
	7117.54
	6588.44



	
	Std. dev.
	3873.96
	3714.71
	3571.39
	3521.47
	3569.56
	3529.74
	3494.09



	HPC2N
	
	
	
	
	
	
	
	



	Makespan (s)
	Mean
	14,670.64
	13,285.63
	13,404.35
	12,049.45
	13,146.14
	12,149.45
	11,450.91



	
	Median
	12,945.09
	12,281.47
	12,576
	11,751.78
	12,258.84
	11,851.78
	11,172.98



	
	Std. dev.
	9569.72
	8476.04
	8098.13
	7046.38
	8099.17
	7046.38
	6722.55



	Energy Cons. (W)
	Mean
	9407.02
	8088.15
	8592.42
	7523.8
	8203.16
	7723.8
	7097.58



	
	Median
	8019.48
	7772.85
	7749.99
	7097.58
	7561.03
	7297.58
	6779.76



	
	Std. dev.
	6717.04
	5200.80
	5752.87
	5071.34
	5484.77
	5071.34
	4844.79







Bold values are better.













[image: Table] 





Table 19. PIR% of the h-DEWOA over comparative algorithms for the second set of experiments.






Table 19. PIR% of the h-DEWOA over comparative algorithms for the second set of experiments.





	
Policy

	
MOPSO

	
MOCS

	
BLEMO

	
IWOA

	
CSDEO

	
BOA

	
MFO






	
CEA-Curie

	

	

	

	

	

	




	
Makespan (s)

	

	

	

	

	

	

	




	
PIR% of h-DEWOA over

	
+22.41

	
+13.52

	
+16.23

	
+10.98

	
+5.14

	
+13.94

	
+7.81




	
Energy Consumption (W)

	

	

	

	

	

	

	




	
PIR% of h-DEWOA over

	
+18.30

	
+10.27

	
+12.81

	
+6.44

	
+4.10

	
+10.08

	
+7.80




	
HPC2N

	

	

	

	

	

	




	
Makespan (s)

	

	

	

	

	

	

	




	
PIR% of h-DEWOA over

	
+28.12

	
+16.02

	
+17.06

	
+12.18

	
+5.23

	
+14.80

	
+6.10




	
Energy consumption (W)

	

	

	

	

	

	

	




	
PIR% of h-DEWOA over

	
+32.54

	
+13.96

	
+21.06

	
+12.05

	
+6.01

	
+15.58

	
+8.82








+ sign shows improved performance of the h-DEWOA approach over compared algorithms.













[image: Table] 





Table 20. Mean simulation time of scheduling algorithms for the first series of experiments.






Table 20. Mean simulation time of scheduling algorithms for the first series of experiments.













	Policy
	WOA
	IWOA
	HSWOA
	GCWOAS2
	h-DEWOA





	CEA-Curie
	
	
	
	
	



	Simulation Time (s)
	17.64
	15.98
	17.06
	16.76
	14.87



	HPC2N
	
	
	
	
	



	Simulation Time (s)
	28.98
	27.01
	28.89
	28.19
	15.59







Bold values are better.













[image: Table] 





Table 21. Mean simulation time of scheduling algorithms for the second series of experiments.






Table 21. Mean simulation time of scheduling algorithms for the second series of experiments.
















	Policy
	MOPSO
	MOCS
	BLEMO
	IWOA
	CSDEO
	BOA
	MFO
	h-DEWOA





	CEA-Curie
	
	
	
	
	
	
	
	



	Simulation Time (s)
	10.29
	14.35
	15.75
	15.98
	11.63
	16.89
	16.02
	14.87



	HPC2N
	
	
	
	
	
	
	
	



	Simulation Time (s)
	14.24
	21.58
	26.32
	27.01
	15.97
	25.31
	18.91
	15.59







Bold values are better.



















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
= woA

Makespan Results

-wise

d-

CEA-Curie Workl

30,000
25,000
0,000






media/file4.png
11,850

11,800

(B
[T
~
U
o

’

~
o
o

’

Makespan (s)
—_
[

11,650
11,600

11,550

Makespan tor CEA-Curie Workload

(a)

6300

6250 -

6200

6150

6100

Energy Consumption (W)

6050

6000

Energy Consumption for CEA-Curie Workload






media/file30.png
Fitness waue

BE00

Convergence invesigaton

......... —+—N-DEWOA,
RROD —+—BOA 5
FHHEHHHEHH - - s e e e e e 3¢ MDGS
G400 e S INCERRERES MOPSO ]
_ —— MFO)
6200 —% —BLEMO I
; gy — W= —
a0 [ s CSDED
SE00 feeos!
SRE00 |
5400 |
5200 |
5000 | -
dEDD | | | | | | | | |
0 10 o0 30 M &0 G0 70 80 90 100

Mumber of gQeneraions





media/file18.png
mWOA

= GCWOAS2
® h-DEWOA

HPC2N Workload-wise Makespan Results

40,000

35,000

30,000

25,000 -
20,000
15,000
10,000
5,000

(s) uedsaye

1SI0M\
g 1A\v/
1s99

WL19

1SI0M\
g 1A\v/
1s99

WL18

1SJIOM\

1599

WL17

1SI0M\
g 1A\v/
1s99

WL16

1SI0M\
g 1A\v/
1s99

WL15

1SI0M\
- A\v/
INES

WL14

1SI0M\
g 1A\v/
1s99

WL13

1SI0M\
g 1A\v/
1s99

WL12

1SI0M\
g 1A\v/
1s99

WL11

1SI0M\
g 1A\v/
1s99

WL10

o






media/file35.jpg
40000

30000

20000

10000

HPC2N - Makespan (in seconds)

MOPSO BLEMO MOCS CSDEO BOA  MFO  h-DEWOA






media/file21.jpg
CEA-Curie Makespan (in seconds)

25000 _— T _'_ _

15000 . : i

- . .

5000 i H i i 1

WOA IWOA HSWOA  GCWOAS2  h-DEWOA





media/file26.png
HPC2N - Makespan (in seconds)

I
o
=
-
Lo
(8]

30000 -

25000 -

20000 -

15000 -

10000 -

5000 -

IWOA HSWOA GCWOAS2 h-DEWOA

WOA





media/file27.jpg
25000

20000

15000

10000

5000

HPC2N - Energy Consumption (in Watt)

HSWOA

GCWOAS2





media/file3.jpg
11,850

Makespan for CEA-Curie Workload

11,800

Zn,750

£ 11700
]

£ 11650

11,600
11,550

A ESSSS SEPE

@

Energy Consumption for

E

3

B

Enerty Consumption (W)

]

yff&fjff AP

(b)





media/file22.png
CEA-Curie Makespan (in seconds)

l
-
-
-
L0
od

20000 -

15000 -

10000 —

5000 -

IWOA HSWOA GCWOAS2 h-DEWOA

WOA





media/file19.jpg
EWOA

=1woA

= HSWOA

= GCWORS? |
DEWOA

wits

HPC2N Workload-wise Energy Consumption Results

wus | wits | wus | wis | wu | wus

wio | wun | wuz





media/file7.jpg
Real-value Solution X

X X
AJ v
Realvalue BoT-order solution® Reak-value Alocation solution X interms of
Availability Matrix
] ]
Apply SPV rule on X°to obtain Apply Allocation Heuristic on X *and X"to

Discrete-value BoT-Order X"*

obtain Discrete-value allocation vector X

X

A J

Obtain Discrete-value solution

xR






media/file28.png
25000 -

20000 -

15000

10000 -

5000 —

HPC2N - Energy Consumption (in Watt)

WOA IWOA HSWOA GCWOAS2 h-DEWOA





media/file10.png
<" W!m

o X

Real value BoT vector

______ Indexofxe | 1 | 2 | 3 | 4 | 5 | 6
Xo° 0.21 | 0.73 [-1.21 | 0.53 |-0.89] 0.87
<=
Sorted X° |-1.21 |-0.89 | 0.21 | 0.53 | 0.73 | 0.87
T3 T5 T1 T4 T2 T6
E T31 T32 E E T51 T52 E T11 T12 E T41 T42 E T21 T22 T23 i T61 T62
Discrete-value Bo'II‘ execution vector
(a)
E PE1 PE5S E E PE1 PE2 E PE4 PES E PE2 PE6 E PE1 PE7 PES E

PE4 PES |

(b)






media/file33.jpg
CEA-Curie Energy Consumption (in Watt)
20000

15000

10000 -
5000

MOPSO BLEMO MOCS CSDEO BOA  MFO h-DEWOA






media/file32.png
CEA-Curie Makespan (in seconds)

25000 -

20000 -

15000 -

10000 -

5000 -

h-DEWOA

CSDEO BOA MFO

MOCS

MOPSO BLEMO





media/file14.png
CEA-Curie Workload-wise Makespan Results

® h-DEWOA

= HSWOA

30,000

25,000

o
S
<
o
N

15,000
10,000

(s) uedsaye

1SI0M\
g 1A\v/
1s99

WL9

1SI0M\
g 1A\v/
1s99

WLS

1SI0M\
g 1A\v/
1s99

WL7/

1SI0M\
- A\v/
INES

WL6

1SI0M\
g 1A\v/
1s99

WL5

1SI0M\
g 1A\v/
1s99

WL4

1SI0M\
g 1A\v/
1s99

WL3

1SI0M\
g 1A\v/
1s99

WL2

1SI0M\
g 1A\v/
1s99

WL1

1SI0M\
g 1A\v/
1s99

WLO






media/file11.jpg
6400

Convergence investigation

6200

6000

5800

Fitness vaue
8
2
g8

5400

5200

5000

—+—h-DEWOA
———WOA
—+—IWOA
—*—HSWOA
GCWOAS2

4800
0

10

20

30

0 s 60
Nurmiber of generatons

70 B0 90

100





media/file6.png
X0 0.21 | 0.73 | -1.21 | 0.53 | -0.89 | 0.87
h
I
_ Application Allocation
Solution X | 5rder dimension dimension
(X°) X%
VM Classes
CIL €2 C3  C4
1| 02 | 04 | 05 | 03
T2 0.3 0.6 0.0 0.8
BoT T3/ 01 050602 .,
Applications T4 | 0.8 0.0 0.1 0.0
TS | 07 | 02 | 02 | 05
T6 | 06 | 02 | 05 | 0.0
XA, Availability Matrix (AM)






media/file36.png
HPC2N - Makespan (in seconds)

|
o
-
-
o
=t

30000 -

20000 -

10000 -

BOA

MOCS

MOPSO BLEMO

h-DEWOA

MFO

CSDEO





media/file15.jpg
CEA-Curie Workload-wise Energy Consumption Results

N
g
csdfs = G
HEEHE . — e
S v 3

wu | we

wio






media/file37.jpg
30000

25000

20000

15000

10000

5000

HPC2N - Energy Consumption (in Watt)

MOPSO

MFO

h-DEWOA





nav.xhtml


  energies-15-04571


  
    		
      energies-15-04571
    


  




  





media/file16.png
CEA-Curie Workload-wise Energy Consumption Results

= GCWOAS2
m h-DEWOA

m WOA
m IWOA
= HSWOA

20,000

15,000
10,000
5,000

(m) uondwnsuo) ASiau3

MMMMM

1SIOM
g-7\v/
1seg

WL9

1SIOM
g-7\v/
1seg

WLS

1SIOM
g-7\v/
1seg

WL7/

1SIOM
g-7\v/
1seg

WL6

1SIOM
g-7\v/
1seg

WL5

1SIOM
g-7\v/
1seg

WL4

1SIOM
g-7\v/
1seg

WL3

1SIOM
g-7\v/
1seg

WL2

1SIOM
g-7\v/
1seg

WL1

1SIOM
g-7\v/
1seg

WLO

0






media/file2.png
BoT
applications
arrivals
at time t

Objectives

e Makespan
e Energy
Consumption

v

Weighted-sum Fitness
Function

User 1 User 2 00@® | UserN
BoT BoT BoT
application1 application 2 application N
Y
v Cloud Resources
Batch of BoTs Datacenter
-Physical machines
¢ -Virtual machines
Cloud broker ¢
Proposed Scheduler Cloud resource

- BoT Application Ordering

- Resource Allocation

manager






media/file20.png
30,000

HPC2N Workload-wise Energy Consumption Results
__ 25,000 ' S WOA
S
= = IWOA
© 20,000
2 = HSWOA
2 15,000 = GCWOASZ |
S ® h-DEWOA
> 10,000
o
c
Ll

5,000

Avg.

Best
Worst

WL14

Avg.

Best
Worst

WL15

Best
Avg.
Worst

WL16

Best
Avg.
Worst

WL17

Avg.

Best
Worst

WL18

Avg.

Best
Worst

WL19






media/file23.jpg
CEA-Curie Energy Consumption (in Watt)

15000

10000

5000

WOA IWOA HSWOA  GCWOAS2  h-DEWOA





media/file5.jpg
X0 021 | 073 |-1.21| 0.53 | -0.89 | 0.87
3
[
. Application Allocation -
Solution X | grder dimension dimension
%) &M
VM Classes
c1 c2 c3 c4
71/ 02 [04 [05] 03
T2 | 03 | 06 | 0.0 | 08
BoT T3 [ 01 [ 05 | 06 | 02 XA
Applications T4 | 08 | 0.0 | 0.1 | 0.0
T5]1 07 | 02 | 02 | 05
T6 [ 06 | 02 | 05 | 00

XA, Availability Matrix (AM)






media/file24.png
CEA-Curie Energy Consumption (in Watt)

_
o
o
o
(Tg)
1

10000 -

5000 -

IWOA HSWOA GCWOAS2 h-DEWOA

WOA





media/file29.jpg
Convergence investigation

6800
—+—NhDEWOA
6600 —+—BOA
——Mocs
400} MOPSO
—&—MFO
L —+—BLEMO
— -~ CSDEO

0 10 20 30 40 50 6 70 80 9 100
Number of generaions

4800 T e






media/file1.jpg
User1 User2 UserN
BoT BoT BoT
Plicaions application 1 application2  application N
attimet
Objectives, Cloud Resources
i o Batch of BoTs Datacenter
e Physical machines
i 1 Virtual machines
2 Cloud broker 7
Weighted-sum Fitness Proposed Scheduler e
Function [ | >

[BoT Application Ordering|

|- Resource Allocation

‘manager






media/file31.jpg
30000

25000

20000

15000

10000

5000

CEA-Curle Makespan (in seconds)

MOPSO BLEMO  MOCS

CSDEO

BOA

MFO

h-DEWOA





media/file25.jpg
35000

30000

25000

20000

15000

10000

5000

HPC2N - Makespan (in seconds)

HSWOA

GCWOAS2






media/file12.png
Fitness vaLUe

B400

Convergencs investigaton

G200 posss

BOO0

SE00

5600

5400

5200

S000

4500
I

—4—h-DEWOA
— — —WOA
— WA
——HSWOA
......... GDWD.’E\SE

| |
40 50 Al

Mumber of generaions





media/file9.jpg
<o

mec®

XA

Real value BoT vector

Index of x* | 3| 4|
X | 021073 [-1.21 | 0.53
SortedX° -1.21-0.89 | 0.21 | 0.53 | 0.73 | 0.87
<4
T3 TS T1 T4 T2 T6
o wom mme | wowe | mmm e
Discrete-value BoT exceution vector
@
v s

PEL PE2 PEAPES  PE2 PG PELPE7 PES  PE4PES

)






media/file0.png





media/file38.png
HPC2N - Energy Consumption (in Watt)

30000 -

25000 -

20000 -

15000 -

10000 -

5000

1
|
B ———— L R |

MOPSO BLEMO MOCS  CSDEO BOA MFO  h-DEWOA





media/file8.png
o O+A
Real-value Solution X°°

. ]

. . A .
Real-value Allocation solution X" in terms of

Real-value BoT-order solution X°
Availability Matrix

v v

Apply Allocation Heuristic on X ®and X*to
obtain Discrete-value allocation vector X *

Apply SPV rule on X° to obtain
Discrete-value BoT-Order X °

.

i

Obtain Discrete-value solution X

*O+A






media/file34.png
CEA-Curie Energy Consumption (in Watt)

20000

15000

10000

5000 -

CSDEO

MOCS

MOPSO BLEMO

MFO  h-DEWOA

BOA





media/file17.jpg
HPC2N Workload-wise Makespan Results

WO






