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Abstract: The transition towards more sustainable energy management can be supported by the
diffusion of energy communities, i.e., coalitions of prosumers that are willing to exchange the energy
produced locally. The optimization of energy management requires the solution of a prosumer
problem that can become impractical when the number of users increases. This paper presents a
parallel approach, based on an edge computing architecture, which is suitable for large communities.
The users are partitioned into groups whose proportions, in terms of producers and consumers,
mirror the composition of the whole community. The prosumer problems for the different groups
are first solved separately and in parallel by local edge nodes. Then, the solutions are combined by
a central entity to redistribute the energy among the groups and minimize the exchange of energy
with the external grid. A set of experiments show that the parallel approach, when compared with
an approach that solves the optimization problem in a single stage, leads to a notable reduction of
computing resources, and becomes feasible in large communities for which the single-stage approach
is impossible. Moreover, the achieved solution is close to the optimal solution in terms of energy costs.

Keywords: energy communities; parallel computing; edge computing; renewable energy sources;
energy sharing

1. Introduction

By exploiting the opportunities offered by new technologies, citizens around the world
are gaining relevance in the energy sector, through direct actions that aim to build a more
sustainable society. This trend is growing, given the reduction of carbon emissions in
the electricity sector expected by 2050 [1], it is estimated that 264 million citizens of the
European Union will join the energy market as prosumers, generating up to 45% of the total
amount of renewable energy. Innovative forms of prosumption (prosumption involves both
production and consumption rather than focusing on one or the other) can be implemented
in energy communities; that is, coalitions of users who, through voluntary adherence to
a contract, collaborate to produce, consume, and manage the energy of one or more local
energy plants [2]. Decentralization and localization of energy production are the principles
on which an energy community is founded [3].

To address these issues, the European Commission has published a Clean Energy
Package: the objective is to offer clean energy to all Europeans through a proposal of an
internal market for electricity by revising electricity regulations. The concept of a “local
energy community” is defined in Article 16 [4], and it is considered an efficient way to
manage energy at the community level. Market participants can profit from advantageous
local market prices, and prosumers can generate additional revenue by selling their energy
directly to individual consumers [5,6].

The management of energy, and the related costs, can be optimized by solving the
prosumer problem, which, given the requirements of users, the availability of energy, and
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the trend of the energy market aims to determine: (i) the optimal scheduling of loads, (ii)
the usage of energy storage systems, and (iii) the exchange of energy among the prosumers
of the community. There are numerous approaches to achieving these objectives, mainly
based on the solution of a Mixed Integer Linear Programming (MILP) problem, where
the objective is the minimization of a cost function (it can be the monetary cost or the
total energy consumption), and the constraints are given by the balances of energy on the
prosumers and by their requirements. The main limitation of the existing MILP models,
for example, those proposed in [7–13], is that they are not fully scalable. The amount of
memory required to solve the prosumer problem increases quadratically with the number
of prosumers, since the problem is represented by a matrix in which the rows are the
constraints and the columns are the involved variables, and both increase linearly. Moreover,
the expected value of the computing time grows as a polynomial function [14], but in the
worst case, the computing time increases exponentially, since the optimization of the cost
function has NP-hard complexity [15]. Depending on the constraints and requirements—for
example, the availability of memory and the time constraints, especially with real-time
execution—the solution to the problem can soon become impractical in large communities.

To tackle the scalability issue, in this paper, we present a novel Parallel approach. In a
large community, instead of solving a single big optimization problem, the approach divides
the users into sub-groups, and the optimization problems are solved for the different groups
in parallel. The approach is designed over a smart grid architecture based on the Edge
Computing paradigm [16–18]. Edge Computing brings the computation towards the edge
of the network, and close to the users, offering several advantages, among which are low
latency, fast response, and strong location awareness. Edge nodes are used as a gateway
between the user smart meters and the control center, enabling the energy community to
dynamically acquire the overall electricity usage, adjust the electricity price, provide extra
electricity if requested by prosumers, and assist the sharing of energy among the prosumers.
As a result, a three-level hierarchy is deployed, in which: (i) each user is equipped with
a smart meter that collects data about the user’s energy consumption, (ii) at each group,
an edge node, equipped with a smart energy-box, coordinates the users of the group and is
able to solve the prosumer problem for these users, and (iii) a control center, or aggregator,
coordinates the entire energy community and determines the exchange of energy among
the groups.

Each prosumer problem involves a reduced number of users and variables, only
those regarding a single group, and therefore a limited amount of memory and a reduced
computing time. More in detail, the Parallel approach is organized into a preliminary step
and two stages. The preliminary step is devoted to the composition of the sub-groups. We
have found that the best strategy is to compose each group so that the fraction of producers
and consumers mirrors the overall fractions observed in the whole community. In the first
stage, the edge node of each group solves a preliminary prosumer problem and schedules
the production, consumption, and usage of storage of the local users. This is conducted in
parallel with all other groups. The solution quantifies the amount of energy that needs to
be retrieved from the external grid or that results in excess and can be provided to the other
groups. In the second stage, the solution is refined with the help of the aggregator, which
determines the surplus hours at which the overall amount of energy produced within the
community is larger than the energy needs of the consumers. The objective of the second
stage is to redistribute the energy among the groups of the community. The prosumer
problem is again solved in parallel for each group, and the solution takes into account the
availability of the prosumers to acquire the surplus energy computed by the aggregator.

The Parallel approach is applicable to any energy community, properly organized into
groups, without any limitation on the number of users. We performed a set of experiments
to quantify the costs/revenues achieved when using the Parallel approach, both at the end
of the first stage and after the second stage, and the computing time. The experiments
were performed for two cases, the first in which the community is composed of groups
with similar consumption and production profiles, and the second in which the profiles
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differ from group to group. We assessed how the cost and execution time are affected when
varying the size of the group and the number of users, up to 1000 users. Results show that
the Parallel approach leads to large advantages in terms of computing time and amount
of needed memory, at the cost of a very small increase in energy costs, compared to the
approach that considers all the users in the same MILP problem.

The paper is organized as follows: Section 2 discusses some relevant related works;
Section 3 describes the architecture on which the Parallel approach is founded and the
algorithm exploited for the solution of the prosumer problem; Section 4 provides the
details on the optimization model; Section 5 illustrates the two case studies used to test
the Parallel approach; Section 6 reports the results obtained in a wide set of experiments;
finally, Section 7 concludes the paper and mentions some avenues for future work.

2. Related Work

The efficient exploitation of prosumer communities, which leverage smart-grids to
improve electrical energy production and consumption patterns, requires the adoption
of complex involved technologies and innovative energy management frameworks. Cur-
rently, in many countries around the globe, various collective self-consumption and energy
community initiatives involve hundreds or thousands of members. As an example, the Ew-
erk Prad Cooperative located in Italy manages 17 renewable energy plants and counts
1350 members, while the Morbegno Electric Company produces electricity through 8 hy-
droelectric plants and supplies 13,000 users [19].

Energy communities can be classified into three categories, depending on their struc-
ture [20]. In centralized communities, a central entity participates in the energy market
and controls all the electrical devices [21,22]. The development of this kind of structure
is largely limited, due to the need for energy management systems (EMSs) having high
computation capabilities and dense communication networks, whose complexity continues
to grow as the penetration of renewable generation increases [23,24]. In decentralized com-
munities, each user is equipped with low-performance local controllers that determine the
operating conditions of distributed generators and controllable loads, independently from
the rest of the community [25–28]. This approach does not exploit the sharing of energy
among the users of a community, thus leading to a poor global solution. To overcome the
disadvantages presented by centralized and decentralized approaches, a third model has
been proposed, i.e., the hybrid community [29,30]. In the hybrid structure, local controllers
perform local energy management and optimization at the user level and inform a central
controller of the total amount of energy surplus or deficit. The central controller coordinates
the community by ensuring that the energy needs and productions can compensate, thus
achieving an efficient global optimal management of energy [31,32]. The EMS is based on
low-performance controllers hosted by local users, which are boosted by the computational
power of the central controller. The hybrid structure has the advantages of flexibility,
high processing power, and low operation costs, and is becoming popular in large energy
communities [29,33,34]. A hybrid three-layered architecture is proposed in [35], with an
“extreme edge” layer, equipped with sensors, smart meters, and other monitoring devices;
a “suburbs” layer, which monitors the power consumption of a specific area and enables
the cold spinning reserve; and an energy layer that coordinates the whole system.

In this paper, we propose a hybrid structure, organized on a three-level hierarchy,
which exploits the capabilities provided by the Edge Computing technology. In particular,
Edge Computing brings the computation toward the edge of the network, and close to
the users, thus reducing the latency and the data transmission burden, and improving the
location awareness [16–18,36].

The majority of the approaches implemented by the EMSs of energy communities are
based on the solution of MILP problems. In this context, MILP problems aim to minimize
a cost, which can be a monetary cost or the total energy consumption, while addressing
a number of constraints defined over real, integer, and binary variables. For example,
in [7], the problem of coordinating a community of prosumers that can collaboratively
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share electricity is modeled as an MILP with coupling constraints. The problem is de-
composed and solved using the Lagrangian duality and limited information exchange.
In [37], an MILP approach for renewable energy communities is applied to a real energy
community test-bed that considers a single group of nine energy community members,
and involves distributed photovoltaic systems, energy storage systems, different electricity
tariff scenarios, and market signals. In [7], the authors implement a decentralized approach
for the coordination of a community with a distributed MILP, and assess it in a realistic
community composed of up to 200 householders. In [8], Li et al. present a probabilistic
solution for isolated micro-grids using chance constraint programming. The problem
is converted into an MILP-based model and solved with a General Algebraic Modeling
Language (GAMS) using a CPLEX solver.

A day-ahead scheduling of micro-grid resources, where the objective is to minimize
the operational cost and the peak load, is presented in [9]. The proposed MILP model is
solved using the CPLEX solver in a mathematical programming language platform. In [10],
the authors propose an MILP optimization approach to determine the best allocation
and dispatch of distributed energy resources for an energy community, while respecting
electrical grid operational constraints. In [12,13], the authors present an optimization
model for the energy management in a prosumer community, referred to as Unified model.
The Unified model exploits an MILP problem, solved with the Branch and Bound algorithm,
which takes into account the energy needs of all the prosumers and optimizes energy
sharing at the community level. On the other hand, with the Separated model, proposed
in [38,39], each prosumer is modeled separately, while with the Cascade model, discussed
in [40], the overall solution is obtained by iterating a number of MILP problems, solved in
a sequential fashion.

The main limitation of the mentioned approaches is that an MILP problem is not fully
scalable for large communities: an MILP problem is at least as complex as an Integer Linear
Programming (ILP) problem that, in turn, is at least as complex as a 0–1 integer program.
The last problem is convertible to the SAT optimization problem, whose time complexity is
NP-hard [15]. As a consequence of this chain, an MILP problem is also NP-hard and requires
EMSs with computational resources and time that can become unacceptable as the size of
the problem grows. As explained in detail in [14,41,42], MILP algorithms can be solved in
a computing time whose average can be expressed as a polynomial function of the instance
size, while the worst-case time complexity (in particular for two common algorithms,
the Cutting Plane, and the Branch and Bound) is exponential. Furthermore, the memory
increases quadratically. Therefore, the computational burden increases significantly with
the scale of the problem and, depending on the number of constraints and on the number of
available resources, the time and/or space complexity can make the approach impractical
for large communities.

The Parallel approach, presented here, helps to overcome the scalability issue, since
the optimization problems of the sub-groups are solved in parallel. This strategy enables a
significant reduction of memory and computing time, as shown in Section 6.

3. Architecture and Algorithm of the Parallel Approach

This section describes the Parallel approach, firstly focusing on the architecture,
based on the Edge Computing paradigm, then on the algorithm for the solution of the
prosumer problem.

3.1. Architecture

The Parallel approach, presented in this paper, adopts a smart grid infrastructure
managed through an Edge Computing architecture. The prosumers are divided into a set
of groups acting separately and interacting with a central entity called the aggregator. Each
group contains a set of simple users and one super-user. The super-user assumes the role
of coordinator of the group and manages the data exchange among the simple users and
the aggregator.
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Figure 1 shows the equipment of simple users and super-users. Each simple user is
equipped with the following local controllers:

• The nano-grid system, which manages and quantifies the energy exchanges among the
prosumers, the distribution grid, the local generation plants, and the storage systems;

• The home automation system, which manages the activation/deactivation of the
electrical loads, such as the home appliances and the lighting system.

On the other hand, the super-user hosts the energy box, which manages the local con-
trollers of the simple users of the group and the interactions among the group and aggregator.

Figure 1. Equipment of simple users and super-users.

In this context, the aggregator of the community, the super-users, and the simple users
take the roles, respectively, of the control center, edge nodes, and smart meters, as shown
in Figure 2. In detail:

• The aggregator operates as the control center: it receives, aggregates, and manages the
electricity data of the entire community;

• The super-users are used as edge nodes and, through their energy-boxes, collect and
aggregate electricity data of the different groups;

• The simple users, through their nano-grids, act as smart meters: they measure local
electricity data and send it to the super-user of the local group.

Figure 2. Edge computing architecture of the energy community.

The proposed approach is capable of virtually aggregating prosumers into different
groups. The edge nodes use the data collected by the energy meters to monitor and classify
the users as producers or consumers, and each edge node is associated with a group of
users. The users are chosen according to the criteria defined by the aggregator of the energy
community. In general, it is preferable to group users that are physically close to each other,
but also remote users can be grouped together, for example, to achieve a given proportion
of producers and consumers. Smart grids and intelligent distribution networks ensure
the physical connections among the users, and enable the exchange of the energy surplus
produced by distributed generation systems.
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According to the roles defined before, the energy boxes determine how to manage
the local energy systems of the groups, based on the daily information exchanged with
the aggregator. In detail, every day the aggregator supplies the following information to
the groups:

• The prediction of the energy production and energy consumption, which in turn are
based on the weather forecast and on the characteristics and statistics of the generation
plants and the electrical loads [43];

• The energy prices, as determined by the energy market (more details are given in
Section 5);

• Information about the possible energy surplus: based on the amount of energy pro-
duced and consumed inside the community, the aggregator determines if and at
which hours a surplus of energy is available, and tries to redistribute this energy to
the prosumer groups, as detailed in Section 3.2.

The aggregator computes this information every day for the following day. Based
on this information, each energy box determines a working plan for the local nano-grid
and home automation system. The objective is to foster the exchange of energy among the
prosumers, both belonging to the same group and to different groups, and, in this way,
improve energy management and minimize costs.

3.2. Algorithm

In this section, we describe the algorithm exploited by the Parallel approach for the
energy management of a large energy community. The aim is to achieve an optimal or
suboptimal solution without incurring the complexity issue, both in terms of computing
time and amount of memory. Indeed, the solution becomes quicker—because the prosumer
problems are executed in parallel on several user groups—and requires less memory,
because the amount of memory is determined by the number of users included in a
single group.

The Parallel approach is implemented through a preliminary step and two stages,
whose chronological flow is described in Figure 3. The example reported in the figure
refers to a community of ten users organized into two groups. In the preliminary step,
the aggregator divides the energy community into groups (1). We have found that the
best strategy is to ensure that in each group the fraction of producers and consumers
mirrors the overall proportions observed in the whole community, as will be discussed
in Section 6. After the preliminary step, the aggregator delivers to all the super-users the
energy prices determined by the energy market and the predictions of energy production
and consumption for the next day (2), as computed by the forecast services, which in
turn are based on the weather forecast and historical data. Each energy-box receives
from the simple users the preferences regarding the scheduling of the electrical loads (3),
combine these preferences with the information received from the aggregator, and solves
the first stage prosumer problem (4), in order to determine the optimal management of
energy for the following day. In this phase, each solution is restricted to the users of the
group, and consists of the optimal scheduling concerning the activation/deactivation of
the electrical loads, the charging/discharging of the electrical storage systems, the internal
energy exchanges between the users of the same group, and the energy exchanges with
the outside. At the end of the first stage, all the groups deliver the respective solutions to
the aggregator (5), which computes (6) the global energy profile, i.e., the amount of energy
produced and consumed for the whole energy community. The aggregator is now able to
identify if, and at which hours, the local plants produce more energy than is needed by the
prosumers of the community. The aggregator sends this information to the super-users (7),
which will use it in the second stage.
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Figure 3. The chronological flow of the Parallel approach algorithm. In the figure, the cloud represents
the aggregator, and the big and small houses represent, respectively, the super-users and the simple
users.

The objective of the second stage is to redistribute the energy surplus among the
groups. In particular, each energy box solves the second stage prosumer problem, intending
to assess: (i) the economical benefit that can derive from the use of the energy surplus with
respect to the cost of purchasing the same energy from the grid; and (ii) the benefit that
the local producers can obtain by selling the energy surplus within the community rather
than to the external grid. Both of these benefits are related to the efficient exchange of
energy with the community, as better clarified in Section 5. The second stage is composed
of a Request phase and a Grant phase. In the Request phase (8), each prosumer takes into
account the amount of surplus energy made available by the other groups and offered at a
lower price. The solution to each prosumer problem includes a set of hourly-based energy
surplus requests that are collected by the aggregator (9). The aggregator decides which
requests can be granted, totally or partially, and which must be rejected (10), and sends
the corresponding information to the energy boxes (11). At this point, the energy boxes
of the super-users solve the so-called Grant phase optimization model (12). Meanwhile,
in the Request phase, each prosumer is free to request any amount of energy surplus
that minimizes its objective function; in the Grant phase it can use a fixed amount of
energy surplus, that is, the amount granted by the aggregator at each hour. The solution
determined at the end of the second stage is sent to the simple users (13), which, in the
successive day, will actuate the scheduling using their nano-grids and home automation
systems (14). The mathematical models of the first and second stage prosumer problems
are detailed in the following Section 4.

4. Optimization Model of the Prosumer Problem

This section provides details on the optimization model that solves the prosumer
problems for the different groups of an energy community in a parallel fashion. The op-
timization problems are modeled as MILP problems, where both binary and real-valued
variables are used. The MILP solvers use the Branch and Bound algorithm [44].

In the first stage, the model takes as input the user needs, the energy tariffs, and the
energy forecasts related to the following day, and solves the first stage prosumer problem
at each group g ∈ G.

In the second stage, the model, starting from the global energy profile resulting from
the first stage, identifies the surplus hours and tries to reallocate the surplus energy within
the community. The second stage is composed of two phases. In the first phase, named
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Request phase, the model collects a set of energy surplus requests made by the local users;
then, based on the availability of surplus, the model decides which requests can be granted,
totally or partially, and which must be rejected. In the second phase, named Grant phase,
on the basis of the granted energy surplus requests, the model determines the complete
solution of the prosumer problem.

Tables 1–3 report, respectively, the sets, variables, and constants used in the optimiza-
tion model.

Table 1. Sets of the optimization model.

H set of the hours of a day
H∗ set of surplus hours
U number of users; a single user is denoted with the integer u, 1 ≤ u ≤ U
G number of groups; each group is denoted with the integer g, 1 ≤ g ≤ G
Ug set of users that belong to the group g;
Au set of schedulable loads of user u ∈ Ug
Bu set of non-schedulable loads of user u ∈ Ug

Table 2. Variables of the optimization model.

Eh,u
imp electrical energy imported from the group g at hour h ∈ H by user u ∈ Ug

Eh,u
exp electrical energy exported to the group g at hour h ∈ H by user u ∈ Ug

Eh,u
impG electrical energy imported from the grid at hour h ∈ H by user u ∈ Ug

Eh,u
expG electrical energy exported to the grid at hour h ∈ H by user u ∈ Ug

Eh,u
cha electrical energy stored in batteries during hour h ∈ H by user u ∈ Ug

Eh,u
dis electrical energy drawn from batteries during hour h ∈ H by user u ∈ Ug

yh,u
a status of the schedulable load a ∈ Au at hour h ∈ H by user u ∈ Ug (1 = on; 0 = off)

zh,u
a auxiliary variable set to 1 if the schedulable load a ∈ Au is activated at hour

h ∈ H by user u ∈ Ug, 0 elsewhere
Eh,u

req electrical surplus energy requested at hour h ∈ H∗ by user u ∈ Ug

Table 3. Constants of the optimization model.

αu
a , βu

a start and end time range for scheduling the load a ∈ A of user u ∈ Ug
θu

a duration of the working time of the schedulable load a ∈ A of user u ∈ Ug

Eh,u
a rated hourly power of the load a ∈ A of user u ∈ Ug

xh,u
b consumption forecast for non-schedulable load b ∈ B at hour h ∈ H

of user u ∈ Ug

Eh,u
PV production forecast for PV plants at hour h ∈ H of user u ∈ Ug

Eu
maxGrid maximum operation power that can be imported from the grid

ηu
cha,

ηu
dis

charging/discharging efficiency factors of the electrical storage system

of user u ∈ Ug
SOCu

max maximum percentage of the state of charge of the electrical storage system
of user u ∈ Ug

SOCu
min minimum percentage of the state of charge of the electrical storage system

of user u ∈ Ug
Eu

maxCha maximum charging power of the electrical storage system of user u ∈ Ug
Eu

maxDis aximum discharging power of the electrical storage system of user u ∈ Ug
Cu

max maximum capacity of the electrical storage system of user u ∈ Ug
Eu

STO residual energy of the day before stored in the electrical storage system
of user u ∈ Ug

ch, ph buying/selling tariffs applied when importing/exporting energy
inside the community

ch
s cost to import an electrical kWh of surplus energy at hour h ∈ H∗

PUNh buying cost applied when importing energy from the external grid
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Table 3. Cont.

PZh selling price applied when exporting energy to the external grid
Eh,u

expFS electrical energy exported into the grid in the first stage at hour h ∈ H∗

by user u ∈ Ug

Eh,u
acc amount of energy surplus granted at hour h ∈ H∗ to user u ∈ Ug

4.1. First Stage

The optimization model described in this section is implemented in a parallel fashion
at each group g ∈ G of the community.

The objective function of the optimization model aims to minimize the global energy
cost obtained by summing the energy costs (positive values) and the revenues (negative
values) of the community users, computed starting from the electrical energy tariffs defined
by the daily trend of the energy market (see Section 5).

min ∑
u∈Ug

∑
h∈H

(ch ∗ Eh,u
imp − ph ∗ Eh,u

exp+PUNh ∗ Eh,u
impG − PZh ∗ Eh,u

expG) (1)

The expression in Equation (1) is defined as the sum for each user u ∈ Ug of four
quantities: the cost incurred by user u at hour h to import energy from the prosumers
belong to the same group (ch ∗ Eh,u

imp); the revenue obtained by user u at hour h by selling

energy to the users of the same group (ph ∗ Eh,u
exp); the cost incurred by user u at hour h to

import energy from the external grid ( PUNh ∗ Eh,u
impG); the revenue obtained by user u at

hour h by selling energy to the external grid (PZh ∗ Eh,u
expG).

The main constraints of the optimization model are discussed in the following. The
temporal granularity for all the quantities is the hour, e.g., the power consumed by the
loads as well as the power produced by the plants or exchanged with the storage systems
at a given hour (say, 9:00) are assumed to be constant within an hour interval (between 9:00
and 10:00), consequently, the power values expressed as energy/hour, can be considered as
an amount of energy. In detail, Equation (2) describes the energy balancing for each user
u ∈ Ug and at each hour h ∈ H:

Eh,u
imp + Eh,u

impG − Eh,u
exp − Eh,u

expG + ηu
dis · E

h,u
dis −

1
ηu

cha
· Eh,u

cha −∑a∈Au yh,u
a · Eh,u

a

= ∑b∈Bu xh,u
b − Eh,u

PV ∀h ∈ H, ∀u ∈ Ug
(2)

In the balance, the following energy components related to user u ∈ Ug, are considered:
the energy supplied by the users of the group g (Eh,u

imp); the energy imported from the grid

(Eh,u
impG); the energy supplied to the users of the group g (Eh,u

exp); the energy injected to the

grid (Eh,u
expG); the energy supplied by the storage system (ηu

dis · E
h,u
dis ); the energy charged in

the storage system ( 1
ηu

cha
· Eh,u

cha); the sum of the energy amount consumed by the schedulable

loads a ∈ Au (yh,u
a · Eu

a ) computed as the products of the variables yh,u
a and the rated powers

Eu
a ; the sum of the forecast energy quantities consumed by non-schedulable loads b ∈ Bu

(xh,u
b ); and the forecast energy produced by the local PV generators (Eh,u

PV).
Equation (3) balances the energy flows exchanged among users of the group g:

∑
u∈Ug

(Eh,u
imp − Eh,u

exp) = 0 ∀h ∈ H (3)

The inequality (4) forces the total amount of imported energy, i.e., from the group
(Eh,u

imp) or from the external grid (Eh,u
impG), not to exceed the maximum operation power of

the Point Of Delivery, Eu
maxGrid.
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Eh,u
imp + Eh,u

impG ≤ Eu
maxGrid ∀h ∈ H, ∀u ∈ Ug (4)

Equations (5) and (6) force the activation of load a to occur at a single hour
h ∈ [αu

a , βu
a − θu

a + 1]. The upper bound of the latter interval is set to βu
a − θu

a + 1, instead of
βu

a , to ensure that the working time of the load a ends before βu
a .

βu
a−θu

a +1

∑
h=αu

a

zh,u
a = 1 ∀a ∈ Au, ∀u ∈ Ug (5)

zh,u
a = 0 ∀h ∈ H \ [αa, βa − θa + 1], ∀a ∈ Au, ∀u ∈ Ug (6)

Equation (7) ensures that the load a of user u is activated exactly for θu
a hours inside

the [αu
a , βu

a ] preference interval.

βu
a

∑
h=αu

a

yh,u
a = θu

a ∀a ∈ Au, ∀u ∈ Ug (7)

Inequality (8) forces every schedulable load a ∈ Au to operate during its working time,
without interruptions. Enabling or disabling this facility depends on the user’s request.

yh,u
a ≥ zh,u

a , yh+1,u
a ≥ zh,u

a , . . . , yh+θa−1,u
a ≥ zh,u

a ∀h ∈ [αa, βa], ∀a ∈ Au, ∀u ∈ Ug (8)

with reference to users that hold electric storage systems, inequalities (9) and (10) express the
fact that the total stored energy at each hour h ∈ H is within the allowed minimum and
maximum states of charge (SOCu

min and SOCu
max). As introduced, Ei,u

cha is the stored energy
and Ei,u

dis is the energy supplied by the storage system of user u during the hour h.

Eu
STO +

h

∑
i=0

Ei,u
cha −

h

∑
i=0

Ei,u
dis ≥ SOCu

min ∗ Cu
max ∀h ∈ H, ∀u ∈ Ug (9)

Eu
STO +

h

∑
i=0

Ei,u
cha −

h

∑
i=0

Ei,u
dis ≤ SOCu

max ∗ Cu
max ∀h ∈ H, ∀u ∈ Ug (10)

The constraints related to the maximum amounts of energy drawn and stored by the
electrical storage systems are expressed by inequalities (11) and (12):

0 ≤ Eh,u
cha ≤ Eu

maxCha ∀h ∈ H, ∀u ∈ Ug (11)

0 ≤ Eh,u
dis ≤ Eu

maxDis ∀h ∈ H, ∀u ∈ Ug (12)

Inequalities (13) and (14) force the hourly energy exported by user u to the group
(Eh,u

exp) and to the grid (Eh,u
expG) to be positive values:

0 ≤ Eh,u
exp ∀h ∈ H, ∀u ∈ Ug (13)

0 ≤ Eh,u
expG ∀h ∈ H, ∀u ∈ Ug (14)

Inequalities (15) and (16) force the hourly energy imported by user u from the group
(Eh,u

imp) and from the grid (Eh,u
impG) to be positive values, lower than or equal to the maximum

operation power (Eu
maxGrid):

0 ≤ Eh,u
imp ≤ Eu

maxGrid ∀h ∈ H, ∀u ∈ Ug (15)

0 ≤ Eh,u
impG ≤ Eu

maxGrid ∀h ∈ H, ∀u ∈ Ug (16)
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4.2. Second Stage

This section describes the second stage of the parallel optimization model, composed
of the Request phase and the Grant phase.

4.2.1. Request Phase

The model for the request phase of the second stage uses the same variables as the first
stage model plus another set of variables, Eh

req, u, which are the amounts of energy surplus
that the prosumer will request. The same constraints and upper/lower bounds as the first
stage model are also adopted, with the differences and the additions that are specified in
the following.

The objective function—see expression (1)—and the electrical balance constraint—see
Equation (2)—of the first stage model are substituted with the expression (1) and the
Equation (18), in which the new variables Eh

req are now considered.

min ∑
u∈Ug

∑
h∈H

(ch
s ∗ Eh,u

req + ch ∗ Eh,u
imp − ph ∗ Eh,u

exp+PUNh ∗ Eh,u
impG − PZh ∗ Eh,u

expG) (17)

Eh,u
req + Eh,u

imp + Eh,u
impG − Eh,u

exp − Eh,u
expG + ηu

dis · E
h,u
dis −

1
ηu

cha
· Eh,u

cha −∑a∈Au yh,u
a · Eh,u

a

= ∑b∈Bu xh,u
b − Eh,u

PV ∀h ∈ H, ∀u ∈ Ug

(18)

The hour-by-hour electrical energy exported with the grid, as resulting from the
solution to the first stage model, is introduced in the request phase of the second stage
model as constants Eh

expFS. Indeed, if the amount of exchanged energy were modified at the
second stage, the surplus energy could be no longer available, thus making the execution
of the second stage not consistent with the solution to the first stage. Therefore, the amount
of energy exported at the normal price during the surplus hours by each prosumer in
the second stage must be equal to the corresponding amount of the first stage, which is
guaranteed by Equation (19).

Eh,u
exp = Eh,u

expFS ∀h ∈ H∗, ∀u ∈ Ug (19)

Inequalities (20)–(22) determine the admissible range of values for Eh
req. In particular, in-

equality (20) substitutes the analogous inequality in the first stage model, i.e., inequality (4).
Expressions (21) and (22) specify that Eh

req can be greater than 0 only in the surplus hours,
while in the remaining hours, it is equal to zero.

Eh,u
req + Eh,u

imp + Eh,u
impG ≤ Eu

maxGrid ∀h ∈ H, ∀u ∈ Ug (20)

Eh,u
req ≥ 0 ∀h ∈ H, ∀u ∈ Ug (21)

Eh,u
req = 0 ∀h ∈ H \ H∗, ∀u ∈ Ug (22)

4.2.2. Grant Phase

The model for the grant phase uses the same variables, constants, and constraints as
the first-stage model, with the differences specified in the following. The quantities ch

s , H∗,
Eh

expFS have the same meaning as in the request phase. New constants Eh
acc are introduced,

which represent the amount of energy surplus requested by the prosumer and granted by
the aggregator.

The objective function, electric balance constraint, and the constraint on the maxi-
mum amount of energy that can be imported from the grid are modified accordingly, see
expression (23), Equation (24), and inequality (25).

min ∑
u∈Ug

∑
h∈H

(ch
s ∗ Eh,u

acc + ch ∗ Eh,u
imp − ph ∗ Eh,u

exp+PUNh ∗ Eh,u
impG − PZh ∗ Eh,u

expG) (23)
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Eh,u
acc + Eh,u

imp + Eh,u
impG − Eh,u

exp − Eh,u
expG + ηu

dis · E
h,u
dis −

1
ηu

cha
· Eh,u

cha −∑a∈Au yh,u
a · Eh,u

a

= ∑b∈Bu xh,u
b − Eh,u

PV ∀h ∈ H, ∀u ∈ Ug

(24)

Eh,u
acc + Eh,u

imp + Eh,u
impG ≤ Eu

maxGrid ∀h ∈ H, ∀u ∈ Ug (25)

Similar to what was said for the request phase, in the grant phase, the amount of
energy exported to the grid during the surplus hours is set to be equal to the amount
computed after the first stage, see Equation (19).

5. Energy Tariffs and Case Studies

The prosumers obtain benefits to join an energy community for two main reasons:
(i) the community, through the aggregator, can negotiate directly with the energy provider
that applies wholesaler energy prices; (ii) the energy exchange inside the community and
between the community and the energy provider can be optimized. The tariffs of electrical
energy are determined daily by the energy market. In our scenario, the Italian energy
market defines the wholesaler energy prices: the zone price (PZh) and the single national
price (PUNh), which correspond, respectively, to the selling price and the basic buying cost
applied at hour h when importing/exporting energy from/to the external grid. Conversely,
the selling price and the buying cost applied to the exchange of energy inside a community
are denoted, respectively, by ch and ph. The users are encouraged to share energy among
them if it holds that:

PUNh ≥ ch ≥ ph ≥ PZh (26)

As discussed in Section 3.2, in the second stage the aggregator, starting from the
solutions of the prosumer problems of the first stage, determines the surplus hours, i.e., the
hours at which the energy produced by the whole community exceeds the overall energy
demand. The goal of the second stage is to redistribute this energy surplus to the prosumers.
To this end, the aggregator puts this energy surplus on sale at a price ch

s , which is more
convenient than the purchase prices reserved at the first stage, i.e., PUNh and ch. This price
is the same for all the prosumers of the community.

The price ch
s must be greater than PZh, i.e., the price at which the users sell energy to

the grid, otherwise it would be more convenient for the users to sell the energy surplus to
the grid rather than distributing it within the community, and there would be no benefit
for the whole community. Using these considerations, the inequalities (26) are updated by
including the price ch

s , which leads to the inequalities:

PUNh ≥ ch ≥ {ch
s , ph} ≥ PZh (27)

The curly brackets in expression (27) indicate that there is no particular order relation-
ship between the values of ch

s and ph.
To evaluate the performance of the Parallel approach, a set of simulation experiments

has been carried out. The experiments were performed to determine the optimal schedule
for 20 February 2021. The national selling and buying energy prices for the considered
day, PZh and PUNh, were retrieved from the GME, the Italian energy market manager
(http://www.mercatoelettrico.org, accessed on 23 May 2022) . The prices ch, ph, and ch

s
were established to be compliant to the inequalities (27). Figure 4 shows the trends of these
prices and costs for the mentioned day.

In this paper, we present the results achieved when the percentage of prosumers,
i.e., of users that are both consumers and producers, is set to 40%, while the remaining 60%
are simple consumers. The groups are composed, respecting the proportion of prosumers
and simple consumers within each group. We found that this choice prevents an imbalance
among groups, and maximizes the efficiency of energy exchange and redistribution.

http://www.mercatoelettrico.org
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Figure 4. Example of daily trends for the costs and prices of electrical energy.

We performed several experiments for an energy community of 100 users, partitioned
into groups each with 10 users, which helped to understand the involved energy exchanges,
and other experiments, with up to 1000 users, to assess the scalability of the approach.
We considered two different case studies: Case A, in which all prosumers have similar
production and consumption profiles, and all consumers have similar consumption profiles;
and Case B, in which both prosumers and consumers are partitioned into two different
categories, characterized by different profiles.

More specifically, in Case A, we considered users with the following characteristics (the
parameter values listed here have been extracted from uniform probability distributions,
whose extremes are taken from a set of real users at the University of Calabria campus,
Italy):

• The number of schedulable loads is between 0 and 4; each schedulable load has a
rated power between 0.5 kW and 3.0 kW; the working time of each schedulable load
varies from 1 to 5 h, and the load is scheduled casually within 24 h; the schedulable
loads are interruptible with a 50% probability;

• Each user has a non-schedulable load profile with a power that can vary during the
day from 0.1 kW to 0.3 kW;

• The maximum operation power is set to 3 kW, 4.5 kW, 6 kW, or 9 kW;
• For producers: the installed power of PV plants, equipped with storage systems, can

vary between 3 kW and 9 kW, and must be a multiple of 0.5 kW.

In Case B, we partitioned the users into two categories, in order to assess the perfor-
mance of the Parallel approach when the user profiles are differentiated. The users of the
first category have higher loads and smaller PV plants (if they are producers); therefore,
they are more energy-intensive and participate with higher probability to the redistribution
of the energy surplus during the second stage. Conversely, the users of the second category
have lower loads and larger PV plants, so these users tend to share energy with the users
of the first category. In detail, for the users of the first category, the number of schedulable
loads was set between 2 and 4, the rated power between 1.0 kW and 3.0 kW, the working
time between 2 and 5 h, and the installed power of PV plants between 3 kW and 6 kW. For
the users of the second category, the number of schedulable loads was set between 0 and
2, the rated power between 0 and 1.5 kW, the working time between 1 and 3 h, and the
installed power of PV plants between 6 kW and 9 kW.

6. Results and Discussion

In this section, we examine the performance of the Parallel model, in terms of: (i)
the costs/revenues incurred by the community and (ii) the computing resources (time
and memory) needed to obtain the solution of the prosumer problem. The experiments
were performed for the two cases, Case A and Case B, described in the previous section.
For each of the two cases, we first assess the effect of the energy redistribution in the
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second stage. Then, we compare the results with those achieved with two other approaches:
the Separated approach, where no energy community is formed and each user solves
the prosumer problem separately, and the Unified approach, where a unique prosumer
approach is solved for all users. Subsequently, we assess how the revenues/costs and the
computing time are affected when varying the number of users, up to 1000 users, and the
size of the groups. A proper comparison among the three approaches must take into
account the trade-off between the costs/revenues and the computing resources. Indeed,
the Unified approach leads to the optimal solution in terms of costs, but using an amount
of resources that is not scalable, and therefore becomes excessive when the size of the
community increases. On the other hand, the Separated approach uses a small number
of resources but leads to a poor solution in terms of costs. Therefore, the objective of the
experiments is to assess whether the Parallel approach is able to achieve a good solution
in terms of costs, i.e., close to the optimal one, using a reasonable and scalable amount of
resources.

The energy box of each super-user is equipped with a CompuLab Fitlet2 (https:
//fit-iot.com/web/products/fitlet2/, accessed on 23 May 2022), a low-cost mini-computer
designed for IoT applications. It uses an Intel Atom Apollo Lake processor and can
integrate up to 16 GB of RAM memory. The optimization models are solved by using
the Java programming language and the CPLEX library (the CPLEX library is available at
https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex, accessed on 23 May 2022).

6.1. Homogeneous User Groups

In Case A, all prosumers and consumers belong to a single category, and the values
of loads and PV plants are extracted from the same probability distribution, as explained
in the previous section. As a result, the energy profiles of the groups are all similar to
each other. Figure 5 shows the aggregate profile of an energy community of 100 users,
computed at the end of the first and second stages. The users are partitioned into groups of
10 users each. The main difference between the two profiles is noticed between 13:00 and
16:00—the energy surplus is redistributed in the second stage and therefore is not injected
to the grid. Conversely, the energy surplus between 11:00 and 12:00 is not redistributed,
and the profiles of the two stages are comparable. Overall, the second stage does not enable
a complete energy sharing within the community during the considered day. This is due
to the homogeneity of the groups: none of the groups produces/requires an amount of
energy which is remarkably higher than other groups.

Figure 6 shows the amount of energy surplus computed after the first stage and the
redistribution of this surplus to other groups. In particular, between 11:00 and 12:00, Group
6 and Group 9 acquire a fraction of the available energy surplus, while, between 13:00 and
16:00, the amount of surplus energy is almost completely redistributed, and assigned to the
groups specified in the figure.

Table 4 reports the daily costs incurred by the different groups and the whole com-
munity after the two stages, when considering the energy exchanged with the external
grid. The cost for the entire community reduces from EUR 85.24 (1° stage) to EUR 81.03
(2° stage), with a savings of about 4.94%.

Table 5 reports the time needed to execute the first and second stages in all groups.
Since the groups execute, in parallel, the time to complete each of the two stages is given
by the maximum computing time experienced by the groups, in this case, Group 1 for the
first stage and Group 10 for the second stage. The overall computing time is the sum of
these maximum times.

https://fit-iot.com/web/products/fitlet2/
https://fit-iot.com/web/products/fitlet2/
https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
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Figure 5. Aggregate profile of the energy community, computed at the end of the first and second
stages when using the Parallel approach. Positive (negative) values correspond to energy injected to
(absorbed from) the grid.
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Figure 6. Amount of energy surplus computed by the first stage and amount of energy surplus
redistributed to the groups by the second stage.

Table 4. Energy cost incurred by the single groups and the community, after the first and second
stages, when considering the energy exchanged with the external grid.

Stage First Second

Pa
rt

ia
lc

os
t[

€]
pa

id
by

Group 1 8.903 8.218

Group 2 5.913 5.884

Group 3 7.512 7.512

Group 4 4.727 4.405

Group 5 12.729 12.700

Group 6 7.917 6.526

Group 7 5.895 5.895

Group 8 12.829 12.829

Group 9 8.958 7.254

Group 10 9.803 9.803

Community cost [€] 85.239 81.025
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Table 5. Computing time to perform the first and second stages.

Stage First Second

Ex
ec

ut
io

n
ti

m
e

[m
s]

Group 1 854 994

Group 2 702 963

Group 3 664 957

Group 4 594 905

Group 5 657 657

Group 6 606 895

Group 7 607 919

Group 8 646 1040

Group 9 711 1000

Group 10 694 1090

Max time [ms] 854 1090

Figure 7 shows the hourly cost afforded by the community when using the three
approaches considering the energy exchanged with the external grid, while Table 6 reports
the total cost for the day (in all results concerning cost, positive values are actual costs while
negative values are revenues). The lowest cost is ensured by the Unified approach, which
optimizes the scheduling plans of all users. The Parallel approach presents a small increase
in costs concerning the Unified approach, about 7%, and a large reduction concerning the
Separated approach, about 37%. Table 6 also compares the overall computing times of the
three approaches. We see that the computing time of the Parallel approach, i.e., 1944 ms,
is larger than the time spent by the Separated approach and much shorter than the time
needed by the Unified approach.
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Figure 7. Daily cost profile of the community considering the energy exchanged with the external
grid. Comparison among the Separated, the Unified, and the Parallel approach.

Table 6. The daily cost and execution time for a community of 100 users.

Separated Unified Parallel

daily cost EUR 129.128 EUR 75.339 EUR 81.025

execution time 123 ms 16,034 ms 1687 ms

This result is confirmed by Figure 8, which compares the three approaches when
varying the number of users between 10 and 250, with the group size set to 10. The figure
shows that the computing time of the Unified approach increases with the number of users
since the prosumer problem needs to consider all the users. With more than 100 users,
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the slope becomes nearly constant, which means that the increase is nearly exponential since
the graph is logarithmic. In large communities, the computing time is much longer than
the time needed by the Parallel approach, which is nearly constant, since all the prosumer
problems involve 10 users. The times experienced by the Parallel and Unified approaches
with 10 and 20 users are comparable for two different reasons: with 10 users and a single
group both approaches solve a single-stage problem. With 20 users, the Unified approach
executes a single-stage problem with 20 users, while the Parallel approach executes two
stages and, at each stage, it solves, in parallel, two prosumer problems with 10 users. The
Separated approach is the fastest one since all the users execute it in autonomy, and each
user needs to solve a problem with a limited number of variables and constraints. We have
seen before, however (Figure 7 and Table 6), that this approach leads to a poor solution in
terms of costs.
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Figure 8. Computing time needed to solve the prosumer problem versus the number of users.
Comparison among the Separated, Unified, and Parallel approach. The group size of the Parallel
approach is set to 10.

With the Parallel approach, the amount of memory depends on the size of a single
group and does not increase with the size of the community as with the Unified approach.
Figure 9 shows the amount of memory needed by the Unified approach, which scales
quadratically since the problem matrix contains a number of rows (variables) and columns
(constraints) that increase linearly with the number of users. This means that the available
memory (16 GB) is filled up when increasing the size of the community, which makes the
solution unfeasible for more than 250 users.
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Figure 9. Amount of memory needed to solve the prosumer problem using the Unified approach,
versus the number of users.

We can conclude that the Parallel approach reaches the goal for which it has been
devised: it finds a solution that is very close to the optimal one (achieved with the Unified
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approach) in terms of costs/revenues, but with an amount of time and memory that is
much lower and, which is crucial for large communities, almost constant with respect to the
number of users. On the other hand, the Separated approach is not demanding in terms of
computing resources but does not exploit the benefits deriving from energy communities,
and leads to a very poor solution in terms of energy costs.

6.2. Heterogeneous User Groups

In Case B, the users are partitioned into two categories, as explained in Section 5.
In this scenario, the second stage of the Parallel approach enables a notable reduction of
the energy costs concerning the first stage. The reason is that the presence of users with
different characteristics gives more possibilities to redistribute the energy surplus observed
in the first stage. Figure 10 shows the aggregate daily profile of an energy community
of 100 users, observed for Case B. As in Case A, at the end of the first stage, there is a
surplus of energy in two-time bands, between 10:00 and 12:00 and between 15:00 and
16:00. Meanwhile, between 12:00 and 15:00, an amount of energy is absorbed from the grid
because some consumers schedule their loads in those hours when the energy cost has
a local minimum (see Figure 4). In the second stage, the consumers reschedule some of
their loads in the surplus hours, and in this way, they exploit the energy produced locally.
Indeed, a large fraction of the surplus is efficiently redistributed, and the amount of energy
exchanged with the grid is greatly reduced. This is confirmed in Figure 11, which shows
that practically all the available surplus is redistributed to the single groups.
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Figure 10. Case B. Aggregate profile of the energy community, computed at the end of the first and
second stages when using the Parallel approach. Positive (negative) values correspond to the energy
injected to (absorbed from) the grid.

Table 7 reports the detailed values of the daily energy costs incurred by the entire
community after the execution of the two stages. It can be seen that the groups that are
granted a significant amount of energy surplus are those that experience a significant cost
saving at the second stage. The daily energy cost decreases from EUR 65.98 (first stage) to
EUR 52.20 (second stage), with a savings equal to about 21%.

The computing times experienced with the Parallel, Separated, and Unified approaches
are very similar to those obtained for Case A, and are not reported here. Indeed, though the
users have different characteristics, the prosumer problems have the same size as in Case
A. The main conclusion is therefore the same—the Parallel approach enables a notable
reduction of the computing time with respect to the Unified approach.
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Figure 11. Case B. Amount of energy surplus computed by the first stage and amount of energy
surplus redistributed to the groups by the second stage.

Table 7. Case B. Energy cost incurred by the single groups and the community, after the first and
second stage.

Stage First Second

Pa
rt

ia
lc

os
t[

EU
R

]p
ai

d
by

Group 1 12.646 6.019

Group 2 12.138 5.836

Group 3 1.652 1.652

Group 4 3.057 3.057

Group 5 6.699 5.942

Group 6 9.142 9.048

Group 7 6.028 6.028

Group 8 6.718 6.718

Group 9 2.495 2.495

Group 10 5.403 5.403

Community cost [EUR] 65.979 52.198

Figure 12 shows the hourly cost afforded by a community of 100 users when using
the three approaches. We see that the Unified approach brings the energy costs, and the
energy exchanges with the external grid to zero in a long time interval between 10:00 and
20:00, while some energy exchanges with the grid are required with the Parallel approach.
With the latter approach, time intervals alternate in which the energy costs are negative
(corresponding to revenues) and positive (actual costs). Overall, the daily cost of the
Parallel approach is slightly higher, as shown in Table 8.

When compared to Case A (see Figure 7), the difference between the Parallel and the
Unified approach is higher—it is about 13% in Case B while it was 7% in Case A. This
difference comes from the heterogeneity of the groups in Case B, which is handled more
efficiently when all the users are taken into account by a single prosumer problem. It
is confirmed that the Separated approach leads to a much larger cost, since there is no
opportunity of sharing the energy among the users of the community.
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Figure 12. Case B. Daily cost profile of the community, considering the energy exchanged with the
external grid. Comparison among the Separated, Unified, and Parallel approaches.

Table 8. Case B. The daily cost for a community of 100 users.

Separated Unified Parallel

112.230 € 45.504 € 52.198 €

As a conclusive comment for this set of experiments, we have found that the Parallel
approach enables a significant saving in terms of computing time with respect to the Unified
approach, at the cost of the slightly lower efficiency of energy sharing. Indeed, the Unified
approach allows sharing of energy among all the users, while, with the Parallel approach,
the sharing can only occur among different groups, through the redistribution of the energy
surplus in the second stage. Moreover, the efficiency of the Parallel approach, in terms of
energy cost, is higher when the profiles of users are homogeneous Case A. The solution
provided by the Separated approach is very poor, which confirms that the presence of an
energy community is highly beneficial.

6.3. Results for Large Communities

The biggest advantage of the Parallel approach is that it enables the solution of the
prosumer problem for communities with very large numbers of users, which is impractica-
ble with the Unified approach. We have seen that the hardware equipment of energy-boxes
does not allow handling more than 250 users (Figure 9). To assess the scalability of the
Parallel approach, we performed a number of experiments with up to 1000 users, when
varying the size of the groups in which the users are partitioned. The characteristics of
the users are modeled as in Case A. Figure 13 reports the computing time. We see that
it increases with the group size; indeed, the prosumer problems related to the different
groups are solved in parallel, and the time to solve a single problem increases with the
number of users in a group. On the other hand, for a given group size, the time is nearly
independent of the overall number of users, which confirms that the Parallel approach is
highly scalable.

Figure 14 reports the results in terms of the overall cost. As expected, the cost is
proportional to the total number of users. Conversely, the cost slightly decreases when
increasing the group size, because the prosumer problem becomes more efficient when it
can consider the requirements of a larger number of users in the same group.
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Figure 13. Computing time versus group size, for different values of the number of users in the com-
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Figure 14. The daily cost profile of the community versus the group size, for different values of the
number of users in the community.

7. Conclusions

In this paper, we have presented a Parallel computing strategy for the management of
energy in large communities. The approach consists of organizing the users into groups
and solving the prosumer problems for the different groups in parallel. An edge computing
architecture is exploited, where the single users, the super-users that coordinate the groups,
and the central energy aggregator, are associated, respectively, with smart meters, edge
nodes equipped with energy boxes and a control center.

A set of experiments were performed for two scenarios: in the first, the prosumers
are homogeneous; in the second, they belong to two different categories with different
requirements and equipment. The results show three important outcomes: (i) the Parallel
approach enables a significant redistribution of energy among the groups, thus exploiting
the advantages offered by the energy community; (ii) the requirements in terms of comput-
ing time and memory are much lower than those experienced with the Unified approach,
which solves a single big optimization problem, and the solution in terms of energy cost is
close to the optimum; (iii) the Parallel approach is highly scalable and can be used for very
large communities, since the computing requirements are given by the size of the single
groups, not by the size of the entire community.

Future Work

The main limitation of the approach is the management effort that is needed to
organize the groups and equip each super-user with adequate plug-and-play devices, user
interfaces, and software tools. However, given the increasing worldwide success of energy
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communities, and the urgent need for reducing the consumption of energy, very likely, this
possible limitation will be overcome soon. A promising avenue for future work concerns
the real-time management of energy management. The objective is to handle the real-time
deviations of load and production profiles with respect to those predicted or declared by
the users, in order to prevent any significant reduction in the savings and/or revenues
expected by the prosumers and by the system. This opportunity can be fostered by the
use, on edge nodes, of hardware acceleration platforms specialized for the training and
execution of artificial intelligence algorithms, for example, based on the reinforcement
learning paradigm [45]. Furthermore, the parallel computing approach presented in this
paper can enable and speed up the deployment of an energy market infrastructure [35],
where multiple aggregators can buy, sell energy, and offer ancillary services that support
the continuous flow of electricity.
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