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Abstract: The study analyzed the impact of the COVID-19 pandemic on the carbon dioxide emissions
from electricity generation. Additionally, monthly seasonality was taken into account. It was assumed
(research hypothesis) that both the COVID-19 pandemic (expressed in individual waves of infection
cases) and the month have a significant impact on CO2 emissions. Analysis of variance (ANOVA)
and non-parametric Kruskal–Wallis tests were used to evaluate the significance of the influence of
individual explanatory variables on the CO2 emission. The identification of the studied series (CO2

emission) was first made by means of a linear regression model with binary variables and then by the
ARMAX model. The analysis shows that in the consecutive months and periods of the COVID-19
pandemic, CO2 emissions differ significantly. The highest increase in emissions was recorded for the
second wave of the pandemic, as well as in January and February. This is due to the overlapping of
both the increase in infections (favoring stays at home) and the winter season. It can be concluded that
working plants, schools and factories had the same demand for electricity, but sources of increased
consumption were people staying at home and in hospitals as a result of deteriorated health, isolation
or quarantine.

Keywords: COVID-19 pandemic; CO2 emissions; ANOVA; Kruskal–Wallis test

1. Introduction

Carbon dioxide is an inorganic colorless gas heavier than air. It exists in trace amounts
in the atmosphere, but it has a huge impact on the greenhouse effect, which is harmful
to Earth [1,2]. Greenhouse gases become trapped in the atmosphere, forming a layer
that impedes the transfer of heat from Earth’s interior to space, consequently causing the
planet’s temperature to rise [3]. In Poland, which is the subject of this study, the dominant
source of electricity generation is still both lignite and hard coal [4]. Coal-fired power plants
provide about 70% of the installed capacity; they are characterized by low flexibility, i.e., the
ability to respond quickly to fluctuations in power demand under conditions of high energy
consumption [5]. Unfortunately, the production of electricity from this source results in
high emissions of environmentally harmful carbon dioxide, so it is an important subject of
research. There are various factors influencing electricity generation, including time of day,
season and, as observations have shown, also emergency events. An example of such a
situation is a state of pandemic. In Poland, the pandemic started in March 2020. The new
coronavirus pandemic initially paralyzed the world. The negative impact of lockdown and
other restrictions has been reported for the economy [6,7], tourism [8], culture [9], sporting
events [10,11], education [12,13] and politics [14,15]. Such a large impact of the COVID-19
pandemic on various economic or social areas is also generating interest in its impact on
the energy and environmental areas, as evidenced by numerous scientific publications
appearing in this area. The environmental sector is directly related to energy, which is a part
of the economy that should be very flexible as it is affected by many factors, such as time
of day, time of year, stock market fluctuations, politics, CO2 allowance prices and many

Energies 2022, 15, 4514. https://doi.org/10.3390/en15134514 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15134514
https://doi.org/10.3390/en15134514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5054-061X
https://orcid.org/0000-0002-7892-9640
https://doi.org/10.3390/en15134514
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15134514?type=check_update&version=1


Energies 2022, 15, 4514 2 of 15

others. Crisis situations, such as pandemics, also test its flexibility and variability. This is
discussed, among others, by M. Kędzierski et al., who in their paper [5] focus on analyzing
the relationship between relaxing and tightening restrictions using the “transformation
curve”. The authors analyzed the correlation between reproduction rate (a rate that tells
how many people one sick person can infect) and energy demand and mobility (related to
the restriction index) by comparing data for 18 European countries for the period 1 April–27
July 2020. The article mainly focuses on electricity generation itself and does not address
environmental issues.

H. L. Gabryś in his paper [16] links the dependence of electricity generation to the ex-
traction (consumption) of both lignite and hard coal in the first period of the pandemic and
the period before its onset. The author shows a clear decline in coal mining efficiency during
the pandemic period. In [17], Vinicius B.F. et al. analyzed, using stochastic simulation, the
impact of the pandemic on the electricity market from a socio-economic perspective and a
forecast for the post-pandemic period. The research focused on countries such as Germany,
USA, China, India and Italy. The authors proposed a stochastic socio-economic model of a
time series to analyze the impact of the pandemic on the electricity market. The method
described combining an optimized tariff model (a socioeconomic market model) and the
concept of random straying (a risk assessment technique). The purpose of the model is to
identify past events and forecast future ones. Ultimately, the authors suggest the validity of
using other tools, including models such as ARIMA, Holt–Winter or artificial intelligence.
On the other hand, in [18], Ahmad M. and other authors used a mathematical model to
evaluate the effects of the pandemic and curfew on average hourly electrical load. The
following conclusions were drawn from the analysis: electricity generation decreased to
about 16.4% compared to the previous year; electrical load varied depending on the time of
year; and curfew enforcement was associated with a further decrease in generation to 16.4%,
but only between 12:00 and 6:00 pm. In addition, a within-sector analysis could examine
whether policymakers can use electricity load data as a real-time indicator of factors such
as the impact of the pandemic on economic activity (e.g., a decline in commercial electricity
demand due to a recession) or people’s compliance with movement restriction orders
(e.g., whether people are complying with stay-at-home orders). Future research may also
evaluate the impact of COVID-19 mitigation measures on other important issues, e.g., fuel
supply chain, environment, economy, etc., in different contexts and settings (e.g., other
regions with different climate and energy subsidy structures).

On the other hand, E. Yukseltan et al. in their paper [19] made predictions regarding
the impact of constraints on total electricity demand in Turkey using modular Fourier
series expansion. This paper analyzes the impact of unexpected factors, in this case the
COVID-19 pandemic, on electricity generation. To analyze the impact of the pandemic on
the demand and daily electricity profile, Fourier transform was used to evaluate deviations
from normal conditions. Studies show a marked decrease in electricity consumption during
the first phase of the pandemic. The authors also analyzed the shape of the daily demand
curve to present how demand shifted from daytime to nighttime. A population-based
constraint index was proposed to analyze the relationship between the strength and extent
of constraints and total demand. The analyses conducted suggest that new approaches to
scheduling daily and weekly loads are needed to avoid future mismatches between supply
and demand.

In [20], Stephanie Halbrügge et al. performed an analysis on grid frequency and
balancing power. In particular, electricity transmission in Germany was considered. The
need to analyze the possibility of expanding the flexibility of imports and exports of
electricity during the COVID-19 pandemic was demonstrated. Such analyses could, for
example, isolate the impact of the COVID-19 pandemic by eliminating the influence of,
among others, weather conditions or fluctuations in electricity imports and exports. The
authors postulate that it is worthwhile to study in more detail the responses of power
systems in other countries, as well as the interactions and interdependencies of various
interconnected power systems such as those in Europe. Thus, prospective studies could
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also deepen the analysis of the impact of fluctuations in imports and exports on electricity
prices by examining fluctuations across countries.

As the above review demonstrates, academic publications primarily focus on ana-
lyzing and evaluating the impact of the pandemic on electricity generation, transmission
and demand. They also emphasize the relationship between energy generation and the
extraction of the main raw material for its generation, namely, coal. However, they do not
take into account the combustion of this raw material and the resulting harmful waste such
as carbon dioxide. There are many papers in the literature in the field of ecology, but these
mainly deal with the impact of the pandemic on water quality (for example the paper of E.
Cherif et al. in [21]), air (the paper of J. Berman et al. in [22]) or soil (H. Loh et al. in [23]).
Only a few papers link ecological aspects to the energy sector and show their correlation
with the COVID-19 pandemic period. For example, the work of B. Chojnacki et al. [24],
where the authors analyzed the impact of the pandemic on carbon dioxide emissions from
the largest source of these emissions in Poland—the Bełchatów power plant—claiming
that the impact of the pandemic on the decrease in emissions is only temporary and in
the long run it will increase. Therefore, it can be concluded that there is a kind of research
gap regarding the assessment of the impact of the pandemic on the ecological aspects, in
this case expressed by CO2 emissions, which are related to electricity production and the
energy sector. Therefore, the paper analyzes the impact of the pandemic on this area.

The purpose of the study presented here was to evaluate whether the COVID-19
pandemic affected CO2 emissions from electricity generation.

Three detailed objectives were formulated:

1. To fill the research gap concerning the assessment of the impact of the pandemic on
ecological aspects, expressed in this case by CO2 emissions, associated with electricity
generation and the energy sector.

2. To propose a mathematical model to assess the impact of selected factors on CO2
emissions as well as the possibility of its modification.

3. To present conclusions on the impact of emergency situations (using pandemic as
an example) on CO2 emissions from electricity production and recommendations in
this area.

The research was carried out using Poland as an example. The research hypothesis is
that the impact of the pandemic on CO2 emissions from electricity generation in Poland
varied significantly depending on the scale of the threat.

The study was conducted using selected statistical analysis and time series modeling
methods. First, a linear regression model with binary variables was proposed, followed by
an ARMAX model after evaluating its residuals.

This allowed the authors to assess the impact of the COVID-19 pandemic on CO2
emissions from electricity generation and to identify a time series of CO2 emissions using a
model that accounts for the seasonality noted, including that resulting from the impact of
individual pandemic waves on CO2 emissions. The novelty of the paper lies in presenting
the process of finding a suitable descriptive method that can be used to study the impact
of an epidemiological threat (in this case COVID-19) on CO2 emissions. The novelty of
the article, and at the same time its important contribution to the body of science, lies in
the presentation of the process of finding a suitable research method that could be used
to assess the impact of an epidemiological emergency (in this case of COVID-19) on CO2
emissions. Furthermore, an important contribution is that the authors focus not so much on
the electricity generation itself during the COVID-19 pandemic but on assessing the impact
of the emergency on CO2 emissions as a key relationship having an enormous impact on
the greenhouse effect.

2. Materials and Methods

The impact of the COVID-19 pandemic on CO2 emissions from electricity generation
was analyzed according to the following algorithm (scheme):

1. Seasonality testing, to verify if there are increased CO2 emissions in particular months;
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2. Test of the impact of specific periods of pandemic intensity (waves) on CO2 emissions;
3. Identification of CO2 emissions using a linear regression model with binary variables;
4. Model evaluation;
5. Optimization of CO2 emission identification using the ARMAX model;
6. Comparison of models.

In accordance with the above, the tested variable in each group was assessed first.
In this case, seasonality was tested in relation to consecutive months of the year and
consecutive waves of the COVID-19 pandemic. Relevant statistical tests were used for this
purpose. The decision on their selection was preceded by the assessment of the goodness
of fit of the distribution of CO2 emissions in each group and the homogeneity of variance.
A normality of distribution analysis was performed using the Shapiro–Wilk test [25]. Let
us consider an ascendingly ordered sample of n observations: x1 < x2 < ...< xn. The S-W
test statistic has the form

W =
(∑n

i=1 aixi)
2

∑n
i=1 (xi − x)2 (1)

where x = 1
n

n
∑

i=1
xi—is the known sample average; ai—tabulated coefficients (constants) of

the test for the sample size n, calculated according to the formula:

(a1, . . . , an) =
mTV−1

(mTV−1V−1m)
1/2 (2)

where m = (m1, . . . , mn)
T is a vector of expected values of ordered order statistics in a

normal distribution, mi = E
(
xi
)
; V—covariance matrix of the test statistics

The null hypothesis, H0, of the S-W test is that the sample comes from a population
with a normal distribution, while the alternative hypothesis, H1, is that the distribution
of the feature under study does not follow a normal distribution. The null hypothesis
is rejected if the test statistic W < W(α, n), where W(α, n) is the critical value at the
significance level α [25].

Equality of variance was checked using Levene’s test [26].
Let Xi1, . . . , Xini be a sample drawn from the population i with a continuous distri-

bution FXi (xi) = f
(

xi−θi
σi

)
/σi, i = 1, 2, where f () is the unknown density function of this

distribution [27]. We compare variances using the r = σ2
σ1

index. For sample i, i = 1, 2, while
the mean and standard deviation are, respectively,

Ui = ∑ni
j=1 Uij (3)

s2
i = ∑ni

j=1 (Uij −Ui)
2/(ni − 1) (4)

where Uij =
∣∣∣Xij − X̃i

∣∣∣, j = 1, . . . , ni; X̃i—is the median value of the sample Xi1, . . . , Xini .
The null hypothesis indicates equality (homogeneity) of the H0 variance, r = 1; while,

for alternative H1, r 6= 1, which considers the variances to be heterogeneous and means
that there are differences between the variances in the groups being compared. We reject
the null hypothesis if the test statistic

W =

∣∣U2 −U1
∣∣√(

1
n1

+ 1
n2

)
(n1−1)s2

1+(n2−1)s2
2

n1+n2−2

> tα/2 (5)

where tα/2 is the top α/2 percentile of the distribution t with n1 + n2− 2 degrees of freedom.
Confirmation of the above assumptions allows the use of analysis of variance (ANOVA),
which makes it possible to compare more than two study groups separated by categories of
one variable or multiple variables [28]. In the analysis of variance, the null hypothesis is
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that the variances in all groups are equal; that is, the factor being analyzed does not affect
the dependent variable:

H0 : σ1 = σ2 = · · · = σj = · · · = σk (6)

In contrast, the alternative hypothesis is that there are at least two groups for which
the variances are different:

H1 : ∃j1 j2 : σj1 6= σj2 (7)

Snedecor’s F test is used in this analysis [29]. It takes the form of the quotient of two
independently estimated variances. The numerator contains the so-called between-group
variance, denoting the variation in the dependent variable’s performance explained by
the influence of the independent variable. The denominator contains the so-called within-
group variance, which is the weighted average of the variances in individual groups. Let
σ2

1 and σ2
2 be independent mean squares from normally distributed populations. If H0

hypothesis is true, σ2
1 = σ2

2 , and then the statistic:

F =
S2

1
S2

1
(8)

where S2
1 > S2

2 has a Fisher–Snedecor’s F distribution with the numbers of degrees of
freedom u = n1 − 1 and v = n2 − 1, where u is the number of degrees of freedom for the
variance in the numerator and v is the number of degrees of freedom for the variance in the
denominator. If Fobl > Fα, u, v then we reject H0, σ2

1 = σ2
2 , at the significance level α; the

variances in the study populations are significantly different. If the above condition is not
satisfied, then we have no grounds to reject the null hypothesis.

If these assumptions are not confirmed, non-parametric tests must be used to test
concordance within groups; e.g., a Kruskal–Wallis test [30]. A working hypothesis is created
at the significance level α = 0.05:

H0. The distributions in the tested groups are equal (i.e., the analyzed factor does not affect the test
variable); and then the alternative hypothesis.

H1. There are factors for which the distributions of the studied variable differ significantly.

Let n be the sample size. Each group (k) is drawn from a different population. The
whole sample is ranked (all groups combined). Let Rij mean the rank in the sample of the
jth element from the ith group. The test statistics is described by the following formula:

T =
12

n(n + 1)

k

∑
i=0

(
Ri −

n + 1
2

)2
ni (9)

where

Ri =
1
ni

ni

∑
j=1

Rij (10)

The test statistics T is a measure of the deviation of the means of the sample ranks
from the mean value of all ranks, equal to (n + 1)/2. The statistic T is characterized by a χ2

distribution with k− 1 degrees of freedom.
Confirmation of significant differences in CO2 emissions among the study groups led

to the identification of these CO2 emissions using a linear regression model with binary
variables. Linear regression is a statistical modeling method based on linear combinations
of variables and parameters that fit the model to the data. A fitted regression line or curve
represents the estimated expected value of a variable y with specific values of another
variable or variables xk. Thus, linear regression describes the relationships that exist
between the dependent variable and the predictors [31]. An estimate of the regression
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function X in the general population Y is the regression function y relative to x in a random
sample, of the following form [32]:

ŷ = β0 + β1 x1 + β2 x2 + . . . + βk xk + εi (11)

where:
ŷ—the estimated value of the dependent variable;
xk—independent variable;
βk —model parameters;
εi = yi − ŷi—random component.
The regression coefficients β(k) describe by how much the value of the dependent

variable y will change on average if the value of the independent variable xk, to which they
relate, changes by a unit, assuming a fixed level of the other independent variables.

Improvement of the regression model was proposed by identifying the residuals using
the ARMA series. The ARMA model assumes that the value of the forecast variable at time t
is affected by both its past magnitudes and external disturbances along with the differences
between the past empirical values of the forecast variable and its values estimated from the
model [1,33]. The model ARMA is given by the following formula:

xt = α0 + α1 xt−1 + α2 xt−2 + . . . + αp xt−p + εt β0 + εt − β1 εt−1 − β2 εt−2 − . . .− βqεt−q, (12)

where {εt}t∈N is a sequence of independent random variables with distribution N
(
0, σ2).

To evaluate the quality of the models proposed in this paper, the AIC (Akaike Informa-
tion Criterion) was used. We determined the size of the AIC index from the formula [34]:

AIC = −2 ln L + 2k (13)

where k—number of parameters in the model; L—credibility function. The smaller the
value of the AIC, the better the model fit.

3. Analysis and Evaluation of CO2 Emissions

The study sample consisted of observations of CO2 emissions (Figure 1). The data
were taken from the National Centre for Balancing and Emission Management (KOBiZE)
for the period from 1 January 2020 to 30 January 2022. On their basis, a time series of CO2
emissions was identified, proposing a model that takes into account the seasonality of the
phenomenon in relation to the month of emission and the intensity of the pandemic defined
by the COVID-19 wave.
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Figure 2. Research algorithm.

Observation time was characterized by two groups: the month of the study and the
pandemic wave. The latter take into account the rapid increase in the incidence of the
disease and the introduction of lockdown restrictions, which allows to distinguish the 1st,
2nd and 3rd wave and the period of “no clear wave”—this is the transition time between
successive waves of the disease.

Details of the individual periods are presented in Table 1.

Table 1. Characteristics of individual periods of the COVID-19 pandemic [35].

Period
Name Date

Average
Number
of Cases

Average
Number

of Deaths

Maximum
Number
of Cases

Maximum
Number of

Deaths

1st wave 5 March 2020–6 June 2020 267 12 595 40

2nd wave 24 October 2020–21 May 2021 15,433 410 35,251 954

3rd wave 10 November 2022–24 April 2022 16,331 277 57,659 794

The study examined the amount of CO2 emissions in each time frame. In addition,
limitations related to the impact of other factors, such as meteorological conditions or
changes in the functioning of society due to isolation or quarantine, were assumed, since
they were somewhat taken into account in the individual waves defined in Table 1. For ex-
ample, deterioration of weather conditions (including the autumn–winter period) resulted
in an increase in the number of cases and defined the existence of a particular pandemic
wave. So did isolation and quarantine, which were imposed in particular at times of
increased numbers of cases. The inclusion of such variables in the study could result in an
interdependence of variables.

3.1. Monthly Seasonality Study

Following the algorithm presented in Section 2, the hypothesis of normal distribution
in each group was first verified using the Shapiro–Wilk normality test. The p-value was
determined for each study group independently. The results are presented in Table 2.

Table 2. Shapiro–Wilk test results.

Statistic Value Probability

January 0.982 0.225
February 0.972 0.208

March 0.959 0.036
April 0.944 0.008
May 0.979 0.368
June 0.967 0.103
July 0.938 0.004

August 0.964 0.064
September 0.963 0.066

October 0.972 0.174
November 0.981 0.465
December 0.971 0.151
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At a significance level of 0.01, for most groups there is no reason to reject the hypothesis
of a normal distribution. Only in the groups for the months of April and July a goodness
of fit was not confirmed. This was followed by a test for homogeneity of variance across
groups using Levene’s test. The test statistic was F = 1.7605, p-value = 0.057; therefore, there
is no basis to reject the null hypothesis. The variance across groups is homogeneous.

The goodness of fit of most of the empirical distributions in the groups and some
robustness of the ANOVA analysis of variance to this requirement as well as confirmation
of the homogeneity of the variances led to the decision to test the seasonality of monthly
CO2 emissions using ANOVA. The F-test statistic was 12.54 and p-value < 2.2× 10−16.

Therefore, there was no basis to accept the null hypothesis, and the difference in CO2
emissions between the months can be considered significant. This conclusion is confirmed
by the box plot of the following values showing the CO2 emissions in each of the months
analyzed (Figure 3)
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Considering the presented results of the analysis, it can be concluded that the CO2
emissions are characterized by monthly seasonality.

3.2. Examination of the Impact of Individual COVID-19 Intensity Periods

An analogous test was performed relative to the severity of the pandemic as defined
by individual waves and strolling periods (described as “no clear wave” in the table).
The goodness of fit of the empirical distributions was analyzed first. At a significance
level of 0.05, this assumption was confirmed for one distribution only. The results of the
Shapiro–Wilk test are presented in Table 3.

Table 3. The results of the goodness of fit of the empirical distribution.

Pandemic Stage Statistic Value
K-W p-Value

Before the pandemic 0.929 0.001
1st wave 0.991 0.704
2nd wave 0.887 0.004
3rd wave 0.979 0.050

no clear wave 0.991 0.006

Homogeneity (equality) of variances was then checked using Levene’s test. The test
statistics for the sample was F = 3.245 and the p-value = 0.012. The results obtained show a
lack of homogeneity of variance across groups at a significance level of 0.05, which means
that it is advisable to use the Kruskal–Wallis test. The value of calculated test statistic χ2

= 128.71, p-value < 2.2× 10−16. The null hypothesis to be accepted is that the groups are
significantly different. Confirmation of the test performed is shown in Figure 4. Thus, all
the study variables will be used in the regression model.
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4. Identification of the Time Series
4.1. Linear Regression Model

Time series identification was performed using a linear regression model with binary
variables. This study uses explanatory variables that are not quantitative but qualitative in
nature. Then, the set of discrete values they can take is finite; intermediate values make
no substantive sense and cannot be treated in the way assumed for continuous variables.
Therefore, it is necessary to re-code them into binary variables. Such a variable takes the
value of 1 when the phenomenon occurs and 0 when it does not. In this case, the application
of the least squares method is only possible if one of the variables from a given group is
omitted from the estimation. Most often the variable with the lowest or highest mean value
is selected, and then all of the other parameters are either positive or negative and refer
to the level of the omitted variable. In this analysis, for the month variable, the baseline
is May with the highest mean emission value and for the pre-pandemic wave variable,
when the mean value was lowest. The coefficient values of the linear regression model with
binary variables, estimated using the least squares method, are shown in Table 4.

Table 4. Estimated values of the parameters of the regression model.

Variable Estimated Value Error Test Statistic p-Value

Absolute term 167,537.57 9611.358 17.431 0.000
1st wave 36,407.74 8327.012 4.372 0.000
2nd wave 119,369.94 13,472.127 8.861 0.000
3rd wave 79,384.73 7968.650 9.962 0.000

No clear wave 46,782.11 7995.977 5.851 0.000
January 70,865.23 9818.130 7.217 0.000

February 73,393.75 8751.233 8.386 0.000
March 36,098.60 7559.843 4.775 0.000
April −23,823.18 9339.370 −2.551 0.011
June 23,248.41 7604.814 3.057 0.002
July 32,635.81 7542.222 4.327 0.000

August 35,399.52 7542.222 4.694 0.000
September 47,279.98 7645.214 6.184 0.000

October 28,115.14 8961.172 3.137 0.002
November 47,782.53 10,881.496 4.392 0.000
December 57,334.53 10,864.900 5.277 0.000

Model Evaluation

The model was evaluated by checking the normality of the distribution of residuals,
its stationarity and autocorrelation. Goodness of fit was checked using the Shapiro-Wilk
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test. The test result W = 0.027, and the p-value = 0.186 at the significance level α = 0.05 are
the basis for concluding that the distribution follows a normal distribution.

The stationarity of the distribution of residuals was then tested. The KPSS and ADF
test were used for this purpose. In the KPPS test, the null hypothesis is that the series
under study is stationary while in the ADF test H0 assumes that the residuals do not exhibit
stationarity. The value of the statistic for KPSS = 0.06 and p-value = 0.1, which means that
there are no grounds to reject the null hypothesis of stationarity of the series of residuals.
For the ADF test, the null hypothesis is that the distribution is stationary. The value of test
statistic ADF = −6.6912 and p = 0.01, which means that there are no grounds to reject the
null hypothesis.

Autocorrelation of residuals was tested using the Box-Ljung test for which the null
hypothesis is that the autocorrelations for all lags are zero. The test statistic was χ2 = 250.5
and p-value < 2.2× 10−16, which means that there are significant autocorrelations in the
series of residuals.

4.2. ARMAX Model

Improvement of the regression model was proposed by identifying the residuals using
ARMA series. Using Akaike’s criterion, individual model parameters were selected in such
a way so as to produce the lowest value. External regressors associated with Covid wave
and month were also included. This yielded the ARMAX (5,0,3) model whose parameters
are presented below (Table 5).

Table 5. ARMAX model coefficients.

Coefficient Estimated Value Coefficient Estimated Value

Absolute term 185,127.803 ar1 1.415
1st wave 45,728.196 ar2 −1.553
2nd wave 117,671.013 ar3 1.523
3rd wave 74,828.314 ar4 −0.832

No clear wave 38,345.929 ar5 0.321
January 43,296.255 ma1 −0.721

February 65,280.832 ma2 0.838
March 35,385.390 ma3 −0.639
April −28,355.875
May 14,075.562
June 13,756.313
July 28,329.409

August 26,769.604
September 14,932.943

October 30,743.851
November 31,273.756
December 185,127.803

As a further test, the autocorrelation of the residuals of the proposed model was again
evaluated by testing the goodness of fit, stationarity and autocorrelation.

The goodness of fit was tested using the Shapiro–Wilk test. The test result W = 0.997,
p-value = 0.192, does not warrant rejection of the null hypothesis. The distribution follows
a normal distribution.

Stationarity of the distribution of the residuals was checked using the KPSS test and
the ADF test. The value of the test statistic is for KPSS = 0.101, p = 0.1, and for the ADF
test = −7.607 and p = 0.001. The test values obtained allow us to conclude that the residues
exhibit stationarity.

The Box–Lijung test this time confirmed the absence of autocorrelation in the distri-
bution of residuals value of the test statistic χ2 = 1.339, p-value = 0.247. The model can be
considered correct.
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Finally, a comparison of the proposed models was made using forecast errors and the
Akaike criterion. The results are presented in Table 6.

Table 6. Comparison of models.

Model Type AIC MAE MPE MAPE MASE

Regression with binary
variables 18,355.4 41,548.93 −2.981 14.054 0.816

ARMAX 17,965.9 25,010.6 −1.715 10.477 0.871

From Table 6, it can be concluded that the ARMAX model shows a better fit to the
actual emission values. This is evidenced by the lower AIC. In addition, the values of the
individual prediction errors in the ARMAX model take lower values. The better fit is also
confirmed in Figure 5.
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5. Discussion of Results and Conclusions

Global CO2 emissions from energy in 2021 were the highest on record, reaching
36.3 billion metric tons, which means a 6% increase [36]. There is no doubt that the
COVID-19 pandemic contributed to this, as also confirmed by this study. It is therefore
necessary and indisputable to take corrective and preventive action to ensure that the
global increase in emissions in 2021 was a one-off and would not happen again. Therefore,
environmental issues are an integral part of the public debate, and in the face of the COVID-
19 pandemic, questions about the future of the environment started to be asked more often
and more clearly, forcing governments to develop specific ideas and solutions, including
those favoring the reduction of CO2 emissions.

Charges resulting from CO2 emissions, which are the most important tool for achiev-
ing a 55% net emissions reduction target by 2030 in the EU, of which Poland is also a
member, are to be of key importance in achieving the assumed decarbonization goals.
However, penalties alone will not be effective unless governments implement comprehen-
sive solutions to reduce CO2 emissions. The main measures should focus on increasing
energy generation from green, renewable energy sources (RES) and minimizing the use of
fossil fuels, as the energy sector is the main source of such high emissions. They should
be adapted to the possibilities of a given country and take into account its geographical
location and the possibilities of using selected energy sources. In Poland, which is discussed
in this paper, renewable energy sources account for 30.3% of the installed capacity (of 55.96
GW) (data for 2021 [37]). Alternative energy sources in Poland include mainly wind energy
(7.1 GW) and photovoltaics (7.7 GW). The current structure of the use of individual energy
sources is presented in Figure 6.
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Figure 6. Structure of electricity production in Poland in 2020 and 2021.

Although the carbon footprint of electricity production in Poland is decreasing and
the share of green energy is increasing, these changes are not satisfactory. It is estimated (on
the basis of data published by ENTSO-E [38]) that with the recent pace of transformation
towards “net zero” emissions in Poland, the climate neutrality target will be reached in
2130. The economic and environmental impacts caused by this state of affairs are worrying,
especially when viewed from the perspective of the last three years disrupted by the
pandemic, as this study also emphasizes.

This is why the right political decisions at the national, European and global level are
crucial, not only as an opportunity to reduce emissions, but also as a development impulse
for the Polish economy. These include:

- systematically connecting new RES sources and other generation sources to the grid
(increasing investments in this area and including them in long-term plans);

- leveraging the change of priorities in the European energy sector as a development
opportunity for the Polish economy;

- preparing the energy system for the operation of variable sources, so that it can operate
safely in any situation (e.g., lack of power from a given source);

- ensuring high flexibility of the energy system in order to react actively and efficiently
to changes on the supply and demand side;

- creating and developing possibilities of investment financing by entrepreneurs, legal
support regulations, administrative and procedural facilitation.

The above leads to the conclusion that research in the field of energy and related
CO2 emission is an important element in shaping policies and attitudes consistent with
sustainable development of individual states. Therefore, the assessment of factors that may
affect increased emissions is very important. It was also carried out in this paper.

The hypothesis of the presented analysis was that the COVID-19 variable affects carbon
dioxide emissions from electricity generation. Selected time series forecasting methods
were used in the model. Initially, it was a linear regression model with binary variables and
then after evaluating the residuals of the model, i.e., their normal distribution, stationarity
and presence of autocorrelation, it was decided that the ARMAX model would be used.
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The analysis showed that in successive months and periods of the COVID-19 pandemic,
the CO2 emissions varied, and the scale of changes was clearly related to the increase in
infections and disease cases, identified by the authors as successive waves of the pandemic.
It turned out that an increase in incidence resulted in higher CO2 emissions each time.

Referring to the results obtained in the literature, it can be considered that they overlap
in some areas with the analyses carried out by other authors, which indicate an increase in
CO2 emissions from traditional sources during the pandemic due to delays in renewable
energy supply chains [39], a decrease in RES investments and a shift in funding towards
pandemic-related aid activities [40].

It should be stressed, however, that, contrary to the analyzed literature [41–44], an
increase in CO2 emissions was recorded in the case of Poland, which somewhat differs
from global trends that signaled a decrease resulting from the global energy, financial and
health crises, including, inter alia, sudden stoppage of production [41], blockades related
to COVID-19 [42], economic downturn [43,44], etc. The same conclusions are also provided
by the reports, which indicate that while there was a global decrease in CO2 emissions in
the world, an increase of 17% was recorded in the European Union in the analyzed period,
mainly due to coal-fired power plants operating in Poland and Germany [45]. It should
be emphasized that the analyzed Bełchatów power plant is the largest unit generating
electricity from lignite in Poland and one of the largest in the world. The above confirms
the validity of the results obtained by the authors.

It is worth mentioning that the highest increase in CO2 emissions was recorded for
the second wave of infections. Unquestionably, this was caused by the economic recovery
after the first phase of the COVID-19 pandemic. It is also worth noting that a specific
situation occurred in Poland during the pandemic. The vast majority of citizens, as a result
of quarantine, isolation or infection (amplified in the “autumn–winter” season) or remote
work, stayed at home (generating energy needs), while workplaces functioned almost
unchanged, with virtually the same demand for electricity. Examples include universities,
where teachers were conducting classes in the form of e-learning, or factories, where mainly
administration department employees worked from home. In addition, by far the higher
consumption was recorded in hospitals, which recorded multiple increases in activity [46].
It can therefore be concluded that there was an increase in energy consumption due to
the division of labor and the increased number of isolated or sick people. Moreover, the
increase in CO2 emissions from fossil fuels was also influenced by rising gas prices. More
expensive fuel was replaced by cheaper ones [47].

The study therefore shows that the decrease in CO2 emissions due to crisis situations,
such as the pandemic analyzed here, may only be apparent. The need to diversify power
sources, the decrease in investment in renewable energy sources, remote working and
increased healthcare activities may all contribute to an increase in emissions of this harmful
compound, as this article shows. As part of further research, individual major energy
consumers can be considered in detail in order not only to identify the main source of the
problem, but also to prepare targeted solutions to reduce CO2 emissions.
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