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Abstract: E-mobility is an emerging means of transportation, mainly due to the environmental
impact of petroleum-based fuel vehicles and oil prices’ peak. However, electric vehicles face several
challenges by the nature of technology. Consequently, electric vehicles have a limited travel range
and are extremely heavy. In this research, an investigation is carried out on different measures to
reduce the DC-link capacitor size in the drive train of an electric vehicle. The investigation is based
on software simulations. The DC-link capacitor must be dimensioned with regards to relevant points
of operation, which are defined by the rotation speed and torque of the motor as well as the available
DC-link voltage. This also includes the field-oriented control (FOC). In order to optimally operate
a three-phase inverter in the electric drive train, a suitable type and sizing of the capacitor was
studied based on mathematical equations and simulations. Two measures were examined in this
study: firstly, an auxiliary passive notch filter introduced in the electric drive train circuit is explored.
Based on this measure, an advanced modulation scheme exploiting the control of individual currents
within segmented windings of the PMSM is investigated in detail. It was seen that saw-tooth carrier
modulation used in the parallel three-phase inverter is found to reduce DC-link capacitor size in the
electric drive train circuit by 70%.

Keywords: electric vehicle; DC link capacitor; field-oriented control; notch filter; modulation

1. Introduction

Reduction of carbon emission is always a challenge for researchers. According to the
union of concerned scientists’, between 1988 and 2016, more carbon dioxide emissions were
produced globally than between the dawn of the industrial revolution and the year 1988 [1].
This marks a worrying trend in the CO2-emissions with regards to climate protection. In
the late 20th century, a realization on the global scale was achieved, and initial environment-
friendly policies were set up. For this reason, the United Nations Framework Convention
on Climate Change (UNFCCC) and the European Environmental Agency (EEA) were
established to provide necessary guidelines for emission-free growth and development [2].

Under the pro-environment policies by European Union (EU-28) the carbon emissions
of industrial, energy production units, agriculture, commercial, and residential sectors have
been showing a downward trend since 1990 [3]. However, the transport sector has had
an upward carbon emission trend, which is alarming for the environment. A significant
chunk of carbon emission is produced by the transportation sector, and to achieve the
95% reduction in emissions by 2050, considerable aim was taken after the 2015 Paris climate
conference. According to the statistics collected by the EEA, road transportation generates
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the most carbon emission among other modes of transport. Among road transportation,
light vehicles are a leading contributor to carbon emissions. This sector obtains most of
its energy from the combustion of petroleum-based fuels and is currently responsible for
over half of global oil demand (IEA, 2012). Furthermore, this energy use is projected to
increase with the growth of vehicles in both developed and developing countries. As a
result, greenhouse gas emissions from transportation, mostly in the form of CO2, will likely
increase. This implies that the current transportation system is unsustainable, and tackling
this sector can lead to a significant reduction in emissions [4].

Several types of research and development projects have been initiated to develop
sustainable transport, resulting in several innovations. One of the critical innovations in the
transport sector is the introduction of electric vehicles. Although the concept of an electric
vehicle was already introduced in the early 1900s, they were reintroduced recently due to
concerns over greenhouse gas emissions from transportation and the associated climate
change. Secondly, the volatility of oil prices is causing nations to focus on alternative
sources of energy. Finally, concerns over energy independence have resulted in policies
supportive of electric vehicles.

This support has reflected an increase in funding to support the growth of technol-
ogy [5]. Since 2011, several car manufacturers have launched different variants of pure
electric vehicles in the consumer market, for example, the Tesla Model S and Nissan Leaf.
Consequently, E-mobility has seen growth, and the market share of electric vehicles is
increasing in comparison to the combustion engine vehicle, as depicted in Figure 1.
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Figure 1. Total market share of electric vehicles in the European Union [6].

An electric power train of an electric vehicle usually consists of an electric motor,
an inverter, a DC-link, and a battery [7]. The electric motor installed in a battery electric
vehicle (BEV) is usually either a synchronous or an asynchronous three-phase motor. The
electric motor has the task to transform the electric energy provided by the inverter into
mechanical energy to generate a torque that propels the vehicle [8]. The electric drive train
of EVs consists of the components shown in Figure 2. However, the focus of this study is
towards the sizing of the DC-link capacitor. To transmit the energy from the battery to the
electric motor, an inverter is needed. An inverter generates a three-phase AC-voltage from
the DC-link voltage provided by the battery. A two-level three-phase inverter consists of
three half-bridges and is therefore made up of six individually controlled power switches.
The structure of an electric drive train containing a three-phase inverter and a permanent
magnet synchronous motor (PMSM) is depicted in Figure 2.
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Between the traction battery and the inverter, a DC-link capacitor is needed to take
over the ripple currents from the battery and to provide a stable DC-link-voltage with a
small voltage ripple. The battery voltage varies between 560 and 850 V depending on the
state of charge. This leads to a variable DC-link voltage, which needs to be considered for
the PWM generation. A DC-link capacitor is an essential component within an AC-DC or a
DC-AC converter. They contribute largely to the weight, size, performance, and price of an
inverter. The demand to reduce the size of bulky components is increasing as technology is
further developing [9]. In this scenario, if an underrated capacitor is used, it would not be
able to handle a surge or a spike. Similarly, if the capacitor is oversized, it will occupy more
space, exhibit a higher weight, generate higher losses, and shorten the lifetime of the motor.
Therefore, the rating of the DC-link capacitor must be determined considering a number of
parameters. Sizing of the DC-link capacitor is investigated in this study in order to reduce
the size of the capacitor, which eventually reduces the weight of the whole power train.

Sometimes, an additional DC-DC converter can be used to connect the battery to the
DC-link [10]. A DC-DC converter would provide galvanic isolation between the battery
and the DC-link capacitor while improving the utilization of the drive train by providing a
constant voltage level in the DC-link. In contrast, if the DC-link is directly connected to
the battery, the DC-link voltage scales, with regards to the state of charge of the battery as
well as excluding the DC-DC converter, saves additional space and weight in the power
electronics module [11].

In electric vehicle (EV) applications, DC-link capacitors help offset the effects of
inductance in inverters, motor controllers, and battery systems. They also serve as filters
that protect EV subsystems from voltage spikes, surges, and electromagnetic interference
(EMI). For EV’s drive systems, sizing and selection of DC-link capacitors involve tradeoffs
among system performance, including lifetime, reliability, cost, and power density. This
study comprises of two different simulation techniques to minimize the DC-link capacitor.
Firstly, a notch filter was added and simulated, while for the second technique, change
in modulation was carried out by triangular carrier and saw-tooth carrier. Contrarily, the
passive notch filter influences the Ic,RMS effectively in the nominal operation region, but
the percentage of reduction is low in correspondence to the carrier modulation technique,
especially the saw-tooth carrier. Filter components require additional space and increase
transmission losses.
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The rest of the paper is organized as follows: Section 2 examines simulation modelling
strategy for optimal sizing capacitor and related work in depth, while Section 3 present
the results and analysis and discussion. Finally, Section 4 presents the conclusions and
future implications.

2. Simulative Modelling Strategy

The primary purpose of the DC-link capacitor is to provide a stable DC voltage [12]. A
DC-link capacitor acts as a filter that decouples the AC and DC sides of the circuit, filtering
out momentary voltage spikes, surges, and EMI. The circuit in Figure 3 shows that the
DC-link capacitor is a vital component of the electric drive train. The input is taken from
the battery VDC (DC voltages) and through the parallel capacitor, which is then inverted
by an active B6-switching scheme and supplied to the motor.

Energies 2022, 15, 4499 4 of 31 
 

 

especially the saw-tooth carrier. Filter components require additional space and increase 

transmission losses. 

The rest of the paper is organized as follows: Section 2 examines simulation model-

ling strategy for optimal sizing capacitor and related work in depth, while Section 3 pre-

sent the results and analysis and discussion. Finally, Section 4 presents the conclusions 

and future implications. 

2. Simulative Modelling Strategy 

The primary purpose of the DC-link capacitor is to provide a stable DC voltage [12]. 

A DC-link capacitor acts as a filter that decouples the AC and DC sides of the circuit, 

filtering out momentary voltage spikes, surges, and EMI. The circuit in Figure 3 shows 

that the DC-link capacitor is a vital component of the electric drive train. The input is taken 

from the battery VDC (DC voltages) and through the parallel capacitor, which is then in-

verted by an active B6-switching scheme and supplied to the motor. 

 

Figure 3. Electric vehicle drive train circuit demonstrating DC-link capacitor. 

The simulation model is built up in MATLAB Simulink and PLECS as shown in Fig-

ure 4. The electric components, such as the battery, the inverter, the DC-link capacitor, 

and the PMSM, are simulated in PLECS, while the control loop and the modulation are 

simulated in MATLAB Simulink. This approach provides a high degree of flexibility when 

different modulation schemes need to be evaluated. These schemes are shown as Scheme 

1 and Scheme 2 in Figure 4. 

  

Figure 4. Structure of simulation for study of electric drive train based on PLECS and Simulink 

interference. 

Figure 3. Electric vehicle drive train circuit demonstrating DC-link capacitor.

The simulation model is built up in MATLAB Simulink and PLECS as shown in
Figure 4. The electric components, such as the battery, the inverter, the DC-link capacitor,
and the PMSM, are simulated in PLECS, while the control loop and the modulation are
simulated in MATLAB Simulink. This approach provides a high degree of flexibility when
different modulation schemes need to be evaluated. These schemes are shown as Scheme 1
and Scheme 2 in Figure 4.
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From the literature study [13], it was found that the current entering a DC-link ca-
pacitor influences the size. A mathematical relation is used in which different parameters
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are included. The input current Iin is the sum of the inverter current Iinv and DC-link
capacitor current Icap, as shown in Figure 3. The root mean square (RMS) current of the
DC-link capacitor IC,RMS can be calculated with Equation (1) [14]. It can be observed that
the modulation index m, the power factor cos ϕ, and the inverter output current Iinv,RMS
affect the RMS current IRMS in the DC-link capacitor. In particular, the RMS current is
not dependent on the switching frequency. Increasing the switching frequency, therefore,
cannot contribute to the reduction of the RMS current through the capacitor.

IC,RMS = Iinv,RMS

√√√√[2m

{√
3

4π
+

(√
3

π
− 9M

16

)
cos ϕ2

}]
(1)

The capacitance is designed to limit the voltage ripple in the DC-link and to reduce
the ripple current in the battery. For this study, the ripple voltage must be reduced to
a peak-to-peak value of 16 V, and the battery current ripple must not exceed 10% of the
current drawn from the battery in the nominal point of operation. In the literature, different
approaches exist to determine the size of the DC-link capacitor. For example, according
to [15], the following Equation (2) can be used to calculate the minimal capacitance:

CDC−link =
Ic,RMS

VRipple2π fsw
(2)

The ripple current is also a key parameter when selecting a capacitor. In addition to
the RMS current, it also contributes to the power dissipation and the temperature increase
in the capacitor. Furthermore, the ripple current directly influences the voltage ripple in
case of a high ESR of the capacitor.

For a three-phase two-level inverter, eight possible switching states can be defined,
which are denoted V0 to V7 and summarized in Table 1. These switching states can be
visualized with space vectors that form a hexagon as depicted in Figure 5. The hexagon
is divided into six triangular sectors, each formed by two adjacent active vectors and two
zero vectors. By controlling the time period of each state, an arbitrary space vector can be
generated. The reference voltage during switching is assumed to be constant, as the time
period would be shallow. SVPWM concept is derived from the Clarke(αβ) transformation,
which will be discussed in the field-oriented control section. The three-phase sinusoidal
voltage component of the stationary reference frame va, vb, and vc is converted to the input
voltages Vα and Vβ of SVPWM as shown in Equation (3) [16].

[
Vα

Vβ

]
=

vDC
3

[
2 −1 −1
0
√

3 −
√

3

]va
vb
vc

 (3)

Table 1. Switching patterns and output vectors [17].

Voltage Vectors
Switching Vectors Line-to-Neutral Voltage Line-to-Line Voltage

TA TB TC Van Vbn Vcn Vab Vbc Vca

V0 0 0 0 0 0 0 0 0 0

V1 1 0 0 2
3 − 1

3 − 1
3 1 0 −1

V2 1 1 0 1
3

1
3 − 2

3 0 1 −1

V3 0 1 0 − 1
3

2
3 − 1

3 −1 1 0

V4 0 1 1 − 2
3

1
3

1
3 −1 0 1
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Table 1. Cont.

Voltage Vectors
Switching Vectors Line-to-Neutral Voltage Line-to-Line Voltage

TA TB TC Van Vbn Vcn Vab Vbc Vca

V5 0 0 1 − 1
3

1
3

2
3 0 −1 1

V6 1 0 1 1
3 − 2

3
1
3 1 −1 0

V7 1 1 1 0 0 0 0 0 0
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From the input voltages of SVPWM in Equation (3), the amplitude and the phase angle
of the reference voltage can be calculated:

θ = tan−1
(

Vβ

Vα

)
(4)

vre f =
√

Vα
2 + Vβ

2 (5)

A six-step switching pattern is used for three-phase legs of the inverter to generate a
complete cycle of three-phase voltages.

m =
V1,re f(

VDC
2

) (6)

V1,SVPWM =
VDC√

3
(7)

The phase legs have two states, namely 0 for OFF or 1 for ON, so there are 23 = 8
switching states for inverter (V0–V7). Out of eight, six are the active states. Each state
vector is spaced with a phase shift of 60◦ and an equal magnitude of 2

3 vDC as seen in the
hexagon. The modulation index m is defined as a ratio between the amplitude of reference
voltage vector V1,re f and half of the DC-link voltage value [18].

Using the space vector PWM, a modulation index of m =1.15 or 2√
3

can be achieved,
which leads to optimal utilization of the DC-link voltage in the inverter. A comparison in
Figure 6 is made between two types of peak fundamental voltage; SVPWM enhances the
performance with a bigger fundamental amplitude.
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When sinusoidal modulation is used, better utilization of the DC-link voltage can
be achieved by using the third-harmonic injection. Sinusoidal PWM with third-harmonic
injection is identical to the SVPWM. Adding a third harmonic to the sinusoidal voltage
waveform reduces its peak to peak value by a factor of 2√

3
, while the phase voltages and

currents in the motor windings remain unchanged. This allows the fundamental wave
component to increase the allowable peak, which can be seen in the example below in
Figure 7. This saddle-like shape increases DC bus voltage utilization and decreases the
total harmonic distortion (THD) [19].
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2.1. Mathematical Modelling

The behavior of a three-phase machine is comprehensively described by the phase
voltages, currents, and the flux linkage. The mathematical model of the motor becomes
complex, as these time-varying values are continuously changing due to the relative motion.
In order to analyze the electric machines, mathematical transformations are often used by
fixing variables to a common reference frame. Among those transformations are:

i. Clarke Transformation;
ii. Park Transformation.

2.1.1. Clarke Transformation

The Clarke transformation converts the time-domain components of the three-
phase system in a abc-reference frame to the stationary αβ0-reference frame of the two-
dimension coordinate system. The transformation is depicted in Figure 8. In an electric
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machine, this coordinate system is fixed on the stator. Therefore, it is also known as the
stator coordinate system.

[
Iα

Iβ

]
=

2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]Ia
Ib
Ic

 (8)

Here, Ia, Ib, and Ic are the three-phase quantities, whereas the corresponding Iα and Iβ are in
the stationary orthogonal reference frame to which the β-axis leads the α-axis. The counter
transformation of the αβ-reference system is known as the inverse Clarke transformation.
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2.1.2. Park Transformation

In this transformation, the two-axis orthogonal static reference frame quantities are
converted into a rotating reference frame as depicted in Figure 9. The DQ-coordinate
system rotates around the same coordinate origin. The DQ expression of space vectors
in Equation (9) is a rotation transformation from the result of the Clarke transformation.
In the orthogonal rotating reference frame, Id is at reference angle θ to the α-axis, and Iq
is perpendicular to Id along the q-axis. Similarly, the counter system for DQ reference is
called inverse park transformation.[

Id
Iq

]
=

[
cos θ sin θ
− sin θ cos θ

][
Iα

I

]
(9)
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2.2. Field-Orientation Control

This control technique allows the indirect control of the motor torque by controlling
the quadrature current iq; FOC enables independent control of the flux linkage and the
generated motor torque. This revolves around various mathematical transformations.
These domain transformations can be understood through Figure 10. From Figure 10, it
can be observed that three-phase AC values are converted to DC values id and iq, which
makes it easier for the system to control. As a result, this method gives a fast-dynamic
response and is highly efficient. Another critical benefit of FOC is that it supports low-
current and high-torque start-ups and also provides a wide speed range by introducing the
“field-weakening” concept. The operating principle of the FOC is shown in Figure 11. The
FOC scheme structure consists of a control loop where the measured quadrature current iq
and direct current id are compared to the reference values. This error gain is fed separately
to two PI controllers. The direct current component id, which controls the flux linkage, is
not useful to control the torque during the nominal operational point of motor. The direct
current id is set to zero unless the motor operates in a flux-weakening region.
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For this reason, quadrature current iq controls the motor torque. PI controllers provide
DQ-reference voltage values, which are fed to space vector modulation controller (SVPWM)
and eventually send control signals to the three-phase inverter switches. FOC also takes
feedback from sensors installed in PMSM, constantly feeding the rotation and speed of
the rotor. The field-weakening concept is used to extend the speed range capability of
the motor. The flux-weakening operation is necessary because the motor input voltage
and current rating are limited by the available DC-link voltage and current rating of a
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three-phase inverter. At the rated (base) speed and maximal current, the required input
voltage exhibits the maximal value. Beyond the rated speed nrate, the back-EMF of PMSM
exceeds the maximum input voltage, causing a decrease in the input voltage to the motor.
To overcome this limitation, back-EMF is kept less than the applied voltage by introducing
a negative component of direct current id (id < 0) [20].

2.3. Simulation Modelling
2.3.1. PLECS Model

PLECS software has a wide range of component library containing electrical, mechan-
ical, magnetic, and thermal properties during energy conversion. The main advantage
of PLECS is that it offers the electric drive train circuit, as depicted in Figure 12, that is
used in the electric vehicle. The battery is simulated by a series connection of an ideal
voltage source, an ohmic resistance, and parasitic inductance. The resistance represents the
ohmic losses in the battery. Additionally, the parasitic resistance and inductance, together
with the DC-link capacitance, build up a low-pass filter to reduce the current ripple in the
battery. The DC-link capacitor is modeled by two capacitors connected in series. For both
capacitors, the equivalent series resistance (ESR) are considered, while the equivalent series
inductances are neglected. This allows simulating the effect of different capacitor types on
DC-link voltage and battery current.
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To simulate the PMSM, a model from the PLECS library is chosen, modified, and
parametrized. The flux linkage, stator resistance, inductance, and the number of pole pairs
are parameters that are modified. A three-phase inverter is simulated using three half-
bridges, each consisting of two power MOSFETS controlled with inverse gate signals. The
PLECS simulation model is depicted in Figure 12. Mechanical components are depicted in
violet color. Mechanical sensors measure the speed, torque, and angle of the rotor and feed
them to the controller, and inverter switches receive the control signal from the controller.

2.3.2. SIMULINK Model

The control system of an electric drive train system is designed in SIMULINKMATLAB.
Although the PLECS system has built-in control for the electric drive train, an alteration
to the circuit for the desired result is not possible. It was seen that fine-tuning of the
current and speed controller is needed in the FOC scheme. Therefore, Simulink is used
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for a better adaptation of control. In this way, a change in modulation scheme is possible
for the different. The model consists of the controller and gate signal generator as shown
in Figure 13.
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The Simulink model reads measurements from PLECS model, inverter current iabc,
battery voltage vbat, reference currents idq, and the rotor angle θ from the angle sensor.
These values are fed to the respective blocks. The controller block consists of the FOC
scheme and contains PI controllers and abc/DQ transformation through which voltage
signals are sent to the “Generate_Gate_Signals” block. This block performs the space
vector PWM and sends switching signals to MOSFET switches in PLECS. The “Generate
Gate Signals” block contains further sub-blocks in which carrier modulation of PWM is
generated along with the third-harmonic injection. In total, six gate signals are generated
with the phase shift. A PLECS block set is used in Simulink, which connects both models.
Figure 12 depicts that the control scheme simultaneously takes feedbacks and feed signals
to corresponding switches.

2.3.3. Designing of Modulation Parameters

For a felicitous design of PMSM and three-phase inverter in the PLECS simulation
model, specific parameters are chosen as a constraint for the optimal operation of the
electric drive train mentioned in Table 2. Nonetheless, other parameters are calculated
through a set of derivations.

Table 2. The operating parameters of the electric drive drain circuit.

No. Parameter Notation Value

DC-link capacitor constraints

1 Battery internal voltage vbat 560–850 V
2 Battery internal resistance Rint 150 mΩ
3 Battery internal inductance Lint 5 µH

Motor constraints
1 Power factor cos ϕ 0.90
2 Pole pairs pp 3
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Table 2. Cont.

No. Parameter Notation Value

3 Nominal power Pmax 150 Kw
4 Maximum torque Mmax 240 Nm
5 Stator resistance Rs 20 mΩ
6 Rated rotation speed nbase 6000 rpm
7 Extended rotation speed nre f 12,000 rpm
8 Estimated motor and inverter efficiency η 0.96

3-Phase inverter constraints
1 Switching frequency fsw 20 KHz

2 The maximal modulation index of the
three-phase inverter m 1.15

For this reason, flux linkage ψPM and stator inductance Ls (Ls = Lq = Ld) is calculated,
in particular flux linkage ψPM, which is an important parameter, as it enables the optimal
utilization of DC-link voltage by limiting the back-EMF. From Figure 14, it can be seen that
battery is used as a voltage source; however, interconnections of various cells and power
cables within the battery pack affix internal resistance Rint and inductance Lint.

vDC−link = vbat − Iin,maxRint (10)

vDC−link =
Pmax

η Iin,max
(11)
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Putting (10) in Equation (11),

I2
in,max −

vbat
Rint

Iin,max +
Pmax

ηRint
= 0 (12)

Applying the quadratic equation to determine the inverter input current Iin,max,

Iin,max =
vbat

2Rint
− 1

2

√√√√[( vbat
Rint

)2
− 4Pmax

ηRint

]
(13)

Similarly, phase voltage vs is calculated:

vs,max =
m vDC−link

2
(14)

From Figure 15, a relationship between stator and flux linkage is drawn:

Rsiq + ωelψPM = vs cos ϕ (15)
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Using the motor torque and power relation and also the PMSM torque,

P = Mωmech (16)

M =
3
2

ppiqψPM (17)

and
ωmech =

ωel
pp

(18)

P =
3
2

ppiqψPM

(
ωel
pp

)
(19)

Putting (19) in Equation (15),

3Rsi2q − 3vs cos ϕiq + 2P = 0 (20)

Applying the quadratic equation to determine the inverter input current iq,

iq =
3vs cos ϕ−

√[
(3vs cos ϕ)2 − 24PRs

]
6Rs

(21)

Since iq is known, flux linkage ψPM can be calculated:

ψPM =
2P

3ωel iq
(22)

ωel =
2πnre f pp

60
(23)

Similarly, stator inductance Ls can also be determined by using the vector diagram.

Ls =
vs sin(cos−1(PF))

iqωel
(24)

The values calculated through the derivation can be verified in the simulation. The
values calculated in Table 3 and graphically depicted in Figure 15 at a maximum rotation
speed nbase of 6000 rpm when id = 0. Figure 16 provides the graphical verification between
theoretical calculation and simultaneous PLECS simulation measurements. Phase current
and voltage are depicted in the three-phase current and voltage, respectively. Likewise, the
average DC-link voltage is measured, which endorses the analytically calculated parameter.
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Table 3. Parameters’ summaries obtained through the set of relationships.

No. Parameter Notation Value

1 Max input phase current Iin,max 303.73 A

2 DC-link capacitor voltage vDC−link 514.45 V

3 Max phase voltage amplitude vs,max 295.80 V

4 Quadrature current iq 386.87 A

5 Flux linkage ψPM 0.1371 Vs

6 Stator inductance Ls 176.81 µH
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The peak-to-peak value of the phase voltages is only slightly smaller than the available
DC-link voltage. Consequently, it can be stated that the motor flux linkage ψPM is optimally
calculated to utilize the available DC-link voltage efficiently. Additionally, the simulative
results in the nominal point of operation confirm the desired power factor of cos ϕ = 0.9.

2.4. Simulation Modelling

For this study, two different techniques were considering for simulation to reduce
DC link capacitor. In the first technique, there is an additional passive notch filter used
in parallel to the DC-link capacitor. The idea is to tune the passive filter to cancel out the
dominant harmonics of the current in the DC-link capacitor. In the second technique, a
modification is performed in the modulation strategy by controlling the currents in the
parallel windings of the PMSM individually.

2.4.1. Passive Notch Filter

The passive notch filter is also known as a band-stop filter or a band-elimination filter.
The filter allows most of the frequency components unaltered but attenuates components in
a specific frequency range. It is formed by the combination of a high-pass and low-pass filter
connected in parallel, consisting of two cut-off frequencies, which are determined by the
circuit design. This filter consists of a resistor, an inductor, and a capacitor, where output is
taken from a filter capacitor and inductor that are connected in series as shown in Figure 17.
This RLC circuit acts as an open circuit at very high and very low frequency, attenuating
the dominant harmonic, whereas the filter acts as a short circuit for mid frequencies [21].
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The cut-off frequency depends upon the passive component values. These component
values are calculated by the transfer function of the circuit, as shown in Equation (25):

(s) =
Vout

Vin
=

s2 + 1
LC

s2 + R
L s + 1

LC
(25)

From the transfer function, other parameters such as damping factor ζ and resonance
frequency ωn can be determined:

ζ =
R
L

(26)

ωn =
1√
LC

(27)

These parameters can be depicted on the bode diagram as shown in Figure 18, where
it is used as a verification tool to verify whether particular component values are able to
filter out the dominate frequency harmonics [22].
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With the parameters CFilter = 10 µF, RFilter = 5, 8.33, 15 mΩ, and LFilter = 1.58 µH,
a notch and phase shift can be noted at 251 Krad/s or 40 kHz in magnitude and phase
graph, respectively. Resistor values are varied in the plot, which implies that increasing
resistance increases the bandwidth of the notch but also increases the ohmic losses. The
notch appears at the double switching frequency fsw = 20 kHz, enabling the RLC circuit
to attenuate the second domain harmonic that can also be seen in the current spectrum,
which is later discussed in the results. The filter components are tuned to filter out the
second harmonic since it is a dominant harmonic in most points of operation. Adding more
passive filters enables the circuit to attenuate the fourth- and sixth-dominant harmonics.
However, adding additional passive filters to the circuit increases the losses and reduces
the efficiency of the power train.

The simulation structure used for the notch filter is similar to Figure 17. The PLECS
model includes an additional passive filter circuit, which is added between the DC-link
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capacitor and the three-phase inverter, as shown in Figure 19. The gate signals to switches
are provided by the Simulink model of FOC as described earlier.
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In order to analyze the overall system, the results obtained from simulating the electric
drive train circuit must be verified analytically. This approach evaluates the precision of
the system and its corresponding parameters. Each point of operation in the I-quadrant
operation matrix can be verified through a set of derivations in MATLAB. According to
several scientific sources [23], the DC-link capacitor is designed from Equation (2), and
RMS capacitor current Ic,RMS in Equation (2) is calculated by

IC,RMS = Iph,RMS

√√√√[2m

{√
3

4π
+

(√
3

π
− 9M

16

)
cos ϕ2

}]
(28)

Furthermore, the inverter output phase RMS current Iph,RMS, power factor cos ϕ, and
modulation index m are unknown parameters and can be derived from the steady-state
equivalent circuit model as depicted in Figure 20. The inverter RMS current Iinv,RMS can be
determined by inverter current Iph [24]. Therefore,

Iph =
√

i2d + i2q (29)

Iph,RMS =
Iph√

2
(30)

Using torque equation for quadrature current,

M =
3
2

ppψPMiq (31)

iq =
2M

3ppψPM
(32)
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Figure 20. Equivalent circuit of a PMSM in DQ coordinates, where d-axis is at left, and q-axis
at right [25].

Earlier, it was learned that id is zero in the nominal operation region because the
induced back-EMF voltage is smaller than the induced back-EMF voltage in the nominal
region ωel < ωel,re f . However, in the flux-weakening region, the induced back-EMF is
higher than the induced back EMF at the rated speed. To make sure that the voltage
limit is not exceeded, a negative flux component is added, which is produced by the id,
ωel > ωel,re f . The vector diagram depicted on the right of Figure 21. shows the voltages
and currents of the motor in the field-weakening region. From this vector diagram, the
following equations can be derived. It should be noted that Rs ∼= 0 is neglected along with
Ld = Lq = Ls.
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∆ωelψPM = −ωel Lsid (33)

(ωel −ωel,re f )ψPM = −ωel Lsid (34)

id = −
(ωel,re f −ωel)ψPM

ωel,re f Ld
(35)

As already mentioned in Equation (18),

ωel =
2πppn

60
(36)

Which leads to

id =
(nrate − nre f )ψPM

nre f Ld
(37)

Thus, putting (37) and (32) in Equation (29) enables to calculate Iph. Now, considering
the DQ-axis stator voltages vq and vd in the rotating reference frame, for modulation
index m,

vd = Rsid −ωel Lsiq (38)

vq = ωel(ψPM + Lsid) (39)

Calculating phase voltage vs from the voltage vectors of the DQ-axis thus produces

vs =
√

v2
d + v2

q (40)
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m =
2vs

vDC−link
(41)

vDC−link can be calculated by using Equation (11). Similarly, from vector diagram Figure 21,
the stator power factor angle can be calculated.

θs = θv − θi (42)

cos ϕ = cos
(

tan−1
(

vq

vd

)
− tan−1

(
iq
id

))
(43)

2.4.2. Change in Modulation

In contrast to the technique mentioned previously in which the additional passive filter
was used to reduce the voltage ripple over the DC-link, this technique presents a measure
that modifies the modulation strategy by controlling the currents in the parallel windings
of the PMSM individually. The idea is to separate the windings within the PMSM into two
groups of parallel windings and then to connect the parallel winding to the individual
half-bridges of the inverter. In the scope of this research, a PMSM exhibiting this attribute
is assumed, and the simulative models are adjusted. If windings of a three-phase motor
are separated into two parallel units as depicted in Figure 22, a total of six individually
controlled half-bridges in the inverter are needed. Utilizing parallel winding of the PMSM
enables to control the input current of the inverter more efficiently. The duty cycles of the
corresponding switches in the two independent drive units are controlled by interleaved
carrier-based space vector PWM.
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Figure 22. Comparison between the traction drive system (left) and equivalent arrangement with
two parallel three-phase inverters (right) Re-printed [26].

High ripple currents are smoothed out due to interleaving, and Figure 23 shows
the principle of the interleaved PWM. A sinusoidal reference voltage va is compared to
two triangular carriers vag1 and vag2 that are phase shifted. This allows generating two
different PWM signals representing the same reference voltage. By adjusting the phase
shift between the carriers, the current at the input of the inverter can be manipulated.
Various different modulation techniques were already investigated and presented in the
literature [27]. For this study, the most promising modulation techniques are applied to the
simulated drive train and investigated in detail. The carrier waveform and the phase shift
between the carriers are considered degrees of freedom in the simulative investigation.
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A triangular carrier modulation with a 90◦ phase shift is compared to a saw-tooth
carrier modulation with a 180◦ phase shift. These control signals that are generated during
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the simulation are depicted in Figure 24, where blue is for the first inverter signal and red
for the second inverter, which is phase-shifted.
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Figure 24. PWM modulation signals triangular (left) and saw-tooth (right) along with a phase shift
in the second carrier.

A three-phase inverter that is operating with high currents and power levels usually
has the attribute that several power switches are connected in parallel within one phase leg.
This measure is needed since most commercially available power switches are not designed
to lead current in the range of several hundred amps. To utilize the modulation with
interleaved PWM, these parallel switches have to be separated into two groups. Therefore,
the two-carrier modulation does not require any additional power switches. The number
of drivers, on the other hand, needs to be increased from 6 to 12. To simplify the analysis,
the inverter can be imaginarily separated into two individual three-phase inverters. The
inverter input currents iinv1 and iinv2 are not available in the real application, but they prove
to be very helpful for understanding and analyzing the double-carrier modulation. To keep
it simple, the adjusted inverter is simulated by two three-phase inverters, which do not
affect the operation or the simulation results. The MOSFET switches in the two inverters
are separately controlled through the two separate controllers in Simulink MATLAB as
depicted in Figure 25.
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Both controller blocks are identical to each other except for a phase shift in the sec-
ond inverter controller, which is provided to the wave-generator element of the “Gen-
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erate_Gate_Signals2” sub-block, and with the minimum alteration in the control block,
interleaving of PWM signals is generated. Battery voltage vdc, reference currents idq, and
the rotor angle θ are fed to both controllers. However, current values iA,abc and iB,abc are
separately measured from both inverters A and B and output and are fed to the belonging
controller. Figure 26 shows the PLECS model of the electric drive train compromising of
two parallel three-phase inverters, A and B, which are separately connected to the windings
of PMSM.
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3. Results, Analysis, and Discussion
3.1. Passive Notch Filter

Analytical values that are calculated for each point of operation were similar to the
result measured for each point of operation in the simulative investigation. A deviation of
the results is measured between analytical and simulative Ic,RMS by taking their actucal
differences and relative fractional difference percentage in Figure 27. Except for a few
operating points, it can be observed that most of the operating points deviated less than
1 A, which is a relatively 1% difference. The variables that influence RMS capacitor current
Ic,RMS are essential to calibrate. Therefore, secondary parameters modulation index, power
factor, etc., indirectly influence the DC-link capacitor, and for optimum design of the
DC-link capacitor, calibration of variables is vital.

After introducing a passive notch filter in the electric drive train circuit, a results
comparison of RMS capacitor current Ic,RMS between unfiltered and additionally filtered
DC-link capacitor in Figure 28 was performed. It can be observed that significant RMS
current of DC-link capacitor Ic,RMS is reduced at the different point of operations. It can
also be depicted that there is a particular pattern in the decrease of Ic,RMS. These points
of operation are investigated one by one, which can identify the critical parameters in
the formation of a particular pattern and also those that influence the capacitor current.
Simulations are carried out with the following parameters (shown in Table 4), which are
kept constant in different simulations.



Energies 2022, 15, 4499 21 of 31Energies 2022, 15, 4499 21 of 31 
 

 

 

Figure 27. Ampere variations and relative fractional difference percentage between 𝐼𝑐,𝑅𝑀𝑆 analyti-

cally calculated and 𝐼𝑐,𝑅𝑀𝑆 measured by simulation (a) Analytical 𝐼𝑐,𝑅𝑀𝑆 of DC-link capacitor; (b) 

Simulative 𝐼𝑐,𝑅𝑀𝑆 of DC-link capacitor; (c) Variation between Analytical and Simulative 𝐼𝑐,𝑅𝑀𝑆; (d) 

Relative difference between Analytical and Simulative 𝐼𝑐,𝑅𝑀𝑆. 

After introducing a passive notch filter in the electric drive train circuit, a results 

comparison of RMS capacitor current 𝐼𝑐,𝑅𝑀𝑆 between unfiltered and additionally filtered 

DC-link capacitor in Figure 28 was performed. It can be observed that significant RMS 

current of DC-link capacitor 𝐼𝑐,𝑅𝑀𝑆 is reduced at the different point of operations. It can 

also be depicted that there is a particular pattern in the decrease of 𝐼𝑐,𝑅𝑀𝑆. These points of 

operation are investigated one by one, which can identify the critical parameters in the 

formation of a particular pattern and also those that influence the capacitor current. Sim-

ulations are carried out with the following parameters (shown in Table 4), which are kept 

constant in different simulations. 

 

Figure 28. Simulative result comparison of 𝐼𝑐,𝑅𝑀𝑆 in I-quadrant operation matrix of PMSM without 

additional filter (left) and with passive notch filter (right). Here, 𝐶𝐷𝐶−𝑙𝑖𝑛𝑘 = 150 μF; 𝐿𝑖𝑛𝑡 = 5 𝛍H; 

𝑅𝑖𝑛𝑡 = 150 m𝛀; 𝑣𝑏𝑎𝑡 = 560 V. 

Figure 27. Ampere variations and relative fractional difference percentage between Ic,RMS ana-
lytically calculated and Ic,RMS measured by simulation (a) Analytical Ic,RMS of DC-link capacitor;
(b) Simulative Ic,RMS of DC-link capacitor; (c) Variation between Analytical and Simulative Ic,RMS;
(d) Relative difference between Analytical and Simulative Ic,RMS.
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Figure 28. Simulative result comparison of Ic,RMS in I-quadrant operation matrix of PMSM without
additional filter (left) and with passive notch filter (right). Here, CDC−link = 150 µF; Lint = 5 µH;
Rint = 150 mΩ; vbat = 560 V.

Table 4. Electric drive train passive components essential values used in simulations.

Parameters Values

CDC–link 150 µF
Lint 5 µH
Rint 150 mΩ
vbat 560 V

The maximal value of the RMS capacitor current Ic,RMS is 170 A, which occurs for an
operational point of n = 4000 rpm and M = 240 Nm. Adding an additional passive notch
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filter tuned to cancel out the second harmonic, the RMS current in the DC-link capacitor
can be reduced to 90 A for this point of operation. The new maximal current occurs deep in
the field-weakening region at n = 12,000 rpm and M = 40 Nm as shown in Figure 28 (right).

Analysis of the four individual points of operation marked red in Figure 28 can help
in elaborating the functionality of a passive notch filter. A summary of data extracted from
the Ic,RMS and Vpp matrix is presented in Table 5. Figure 29 further shows DC-link capacitor
current spectrum with dominant harmonics at different four points as marked in Figure 28.

Table 5. Summary of important operation points.

Operation
Point No.

Torque M
(Nm)

Rotation
Speed n (RPM)

Unfiltered
DC-Link Capacitor

Passive Filtered
DC-link Capacitor

Ic,RMS
(A)

Vpp
(V)

Ic,RMS
(A)

Vpp
(V)

1 240 4000 176 18.9 94.9 9.48
2 240 6000 123.8 20.1 83.7 14.5
3 40 12,000 153.3 29 135.8 26.6
4 120 12,000 148.6 26.4 118.4 23.7
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In Figure 30, a result comparison of the peak to peak voltage Vpp is depicted between
the unfiltered DC-link capacitor (standard electric drive train operation matrix) and passive
filtered (right). Vpp is reduced in the passive notch filter at different points of operation. The
maximum Vpp of 18.22 V is reduced to 17.10 V, and the Vpp reduction is smaller compared
to the significant decrease in Ic,RMS by the passive notch filter. The Vpp remains mostly
unaffected in the flux-weakening region B. Analysis of the individual points of operation
can provide the reason for a better current reduction in the nominal operation region A as
compared to the flux-weakening region B.
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Figure 30. Simulative result comparison of Vpp in I-quadrant operation matrix of PMSM without
additional filter (left) and with passive notch filter (right). Here, CDC−link = 150 µF; Lint = 5 µH;
Rint = 150 mΩ; vbat = 560 V.

In the simulative investigation, the filter current is also measured, and it is depicted
in Figure 31. The I f ilter,RMS matrix illustrates the amount of current that passes through
the filter capacitor in the passive notch filter. According to Figure 31, a large amount of
current passes through the filter capacitor between the speed range of 3000 to 5500 rpm;
this significantly reduces the Ic,RMS in these peak operation points.
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Figure 31. Simulative result of I f ilter,RMS for the filter capacitor used in the passive notch filter. Here,
CDC−link = 150 µF; Lint = 5 µH; Rint 150 mΩ; vbat 560 V.

3.2. Change in Modulation

For this technique, two carrier-modulation schemes are used along with phase shift
given to the second parallel three-phase inverter. Results are analyzed from the triangular
carrier with 90◦ and saw-tooth carrier with 180◦ phase shift. Unmodulated results for
Ic,RMS and Vpp are shown in Figure 32a. The Ic,RMS matrix for both carrier schemes
is compared in Figure 32b. A significant Ic,RMS reduction can be observed in both the
matrixes when compared to the standard electric drive train operation matrix of Ic,RMS
in Figure 32a. Figure 32c depicts the Vpp matrix of both carrier-modulation schemes.
In comparison to the standard electric drive train operation matrix of Vpp depicted in
Figure 32a, the minimization of the current occurs in both regions of nominal operation
and flux-weakening. Peak operation points at 4000 rpm in the standard electric drive train
matrix are among the most beneficial when simulated. Simulations are carried out by
keeping parameters constant in different simulations.
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Figure 32. (a) Unmodulated/filtered Ic,RMS and Vpp of power train; (b) simulative comparison of
Ic,RMS; (c) simulative comparison of Vpp (in operation matrix of the standard electric drive train (i)
triangular and (ii) saw-tooth carrier modulation; here, CDC−link = 150 µF; Lint = 5 µH; Rint = 150 mΩ;
vbat = 560 V).

Analysis of the three individual operation points marked red in Figure 32b can help in
elaborating on the functionality of a parallel inverter scheme. A summary of data extracted
from the Ic,RMS and Vpp matrix of change in modulation scheme is shown in Table 6.

Table 6. Summary of the vital point of operations.

Operation
Point No.

Torque M
(Nm)

Rotation
Speed n (RPM)

Triangular Carrier
with 90◦ Ph. Shift

Saw-Tooth Carrier
with 180◦ Ph. Shift

Ic,RMS,T
(A)

Vpp
(V)

Ic,RMS,S
(A)

Vpp
(V)

1 240 4000 71.8 6.43 65.8 8.87
2 240 6000 80.3 11.9 70.9 9.53
3 40 12,000 105.5 18.3 73.6 13.2
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The current at the input of the inverter is not continuous but pulsed as illustrated in
Figure 33. Due to the three-phase topology of the inverter, the input current is periodic
with T/6, where T denotes one electric period of the motor and is reversely proportional to
the rotation speed. A single segment among the six segments in one electrical time period
is identical to one another. If the equivalent series resistance (ESR) of the DC-link capacitor
is neglected, the voltage waveform over the capacitor can be calculated by integrating the
AC-component of the inverter current over time. The resulting voltage over the DC-link
capacitor is, therefore, also periodic with T/6 as shown in Figure 33d. The height of each
voltage ripple is dependent on the charge transferred into the capacitor and drawn from
the capacitor with each inverter current pulse. Therefore, the voltage ripple is proportional
to the amplitude and the length of each current pulse. This correlation can be drawn from
Figures 33 and 34. In Figure 33, it is shown that both currents from the inverters are without
any carrier phase shift. Consequently, the interleaving current depicted in Figure 33c has
more prominent and lengthier pulses that resulted in higher ripple voltage.
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Figure 33. One electric rotation waveform consisting of six identical segments (carrier modulation
without pulse shift; n = 4000 rpm, torque = 240 Nm). (a) Inverter ‘A’ Current; (b) Inverter ‘B’ Current;
(c) Interleaved Current; (d) DC-link voltage.

In contrast, a carrier phase shift is introduced in the inverter B, as seen in Figure 34b.
The interleaving of current becomes effective to reduce RMS capacitor current Ic,RMS by
attenuating the current pulses as shown in Figure 34c. In some of the specific duty cycles
of a segment, the current pulses are significantly reduced. Therefore, the corresponding
voltage ripples are also minimum as shown in Figure 34d. The in-depth analysis of a
single segment is presented in the next sections. As seen from Figure 34, each operation
point has different output results. Correspondingly, the analysis of each operation point is
further split into two modulation modes. The first mode discusses the triangular carrier
modulation, and another mode refers to saw-tooth carrier modulation. Results of voltage
and current due to these modes are further shown in Figure 35 based on the three different
targeted points mentioned in Figure 32b.
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3.3. Optimization of DC-Link Capacitor

The conclusion for passive notch filter can be drawn from the Ic,RMS and Vpp matrix
of the filter capacitor. The minimization of Ic,RMS and Vpp at each operating point is high-
lighted in the percentage reduction matrix depicted in Figure 36. The peak operation points
for the filtered DC-link capacitor are visible by a bright-yellow highlighted pattern similar
to the Ic,RMS matrix of unfiltered DC-link capacitor in Figure 28. However, in Figure 36, the
bright-yellow color in the matrix corresponds to the most minimized operation point.
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The dominant harmonics at these peak operation point are completely damped as
elaborated in the operation point 1. These operation points are the most efficient points
of operation, where high Ic,RMS RMS current is reduced. The filter capacitor is partially
able to reduce Ic,RMS in the flux-weakening region because several dominate harmonics
were left unattenuated except for the second harmonic, which can be seen in the capacitor
current spectrum of operation points 3 and 4.

In order to remove the fourth- and sixth-dominant harmonic in the DC-link capacitor,
more notch filters can be added in series. In correlation of both carrier modulations, the
saw-tooth carrier with 180◦ phase shift leads to better minimization of Ic,RMS and Vpp. A
reduction percentage matrix for each operating point depicted in Figure 37 makes it clear
that the modulation scheme minimizes key parameters effectively.
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The Vpp and Ibat,PP constraints were already defined, where Vpp is limited to 16 V and
Ibat,pp to 10% of battery current and where Ibat,pp can be calculated:

Ibat,max =
Pmax

Vbatη
(44)

Ibat,pp < 10%.Ibat,max = 27.9 A (45)

The standard drive train operational matrix with classical SVPWM without any auxil-
iary additional circuit is shown in Figure 38a. It is carried out with standard size CDC−link
of 500 µF, which also signifies higher Vpp in the DC-link capacitor. Subsequently, Figure 38b
shows the parallel inverter saw-tooth carrier modulation, which is carried out with smaller
CDC−link of 150 µF, and it can be noticed that corresponding parameters are well within the
boundary conditions.
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4. Conclusions

Additional passive notch filters help in significantly reducing RMS current in com-
parison to peak-to-peak voltage with less efficiency in the flux-weakening region. It also
helps in reducing the RMS capacitor current. However, there is always a trade-off because
passive components used in an electric vehicle are very bulky and big in size; this adds
more weight and occupies more volume. During additional circuit operation, factors such
as heat dissipation, leakage current, and the energy storage loss, with respect to time,
increase. The drawbacks of using passive filters are faced in terms of space, weight, and ad-
ditional conduction losses. It is important to remember that the aim of an auxiliary passive
filter is to reduce the combined occupancy volume of the DC-link capacitor along with the
introduced auxiliary components. From Ic,RMS, the Vpp matrix of triangular and saw-tooth
carrier modulation, along with the comprehensive analysis of the parallel inverter, it can be
concluded that these methods significantly assist in reducing the DC-link capacitor. The
change of the modulation does not require additional power switches since, for high-power
applications, several switches are used in parallel within one phase leg in order to carry
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the current. For the segmented modulation, the switches only need to be arranged in two
groups and controlled with separate PWM signals.

However, the change in modulation requires additional drivers. For a three-phase
two-level inverter, the number of drivers must be increased from 6 to 12. Additionally, the
parallel windings of the motor must be connected to the six-phase legs of the inverter, which
is only possible for application where the motor and the inverter are designed as a unit. In
correlation of both carrier modulations, the saw-tooth carrier with 180◦ phase shift leads to
better minimization of Ic,RMS and Vpp. The saw-tooth carrier gives a homogenous response
on I-quadrant operation matrix, in which saw-tooth reduces Ic,RMS and Vpp overall as well
as in the flux-weakening region. Peak operating points of Ic,RMS and Vpp are reduced to 45%
and 55%, respectively, when compared to standard electric drive train operation matrix.

In a comparison of both measures investigated in this topic, it can be concluded that
among all the methods, the saw-tooth carrier modulation method used in the parallel
three-phase inverter is found to be the most effective method to reduce DC-link capacitor
size in the electric drive train circuit by 70%. The DC-link capacitor relationship makes it
clear that Ic,RMS is remarkably reduced in nominal and flux-weakening regions by using
the saw-tooth carrier technique. Correspondingly, a vital feature of this technique is that
the saw-tooth carrier requires fewer physical changes in the electric drive framework.
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List of Abbreviations and Notations

FOC Field-oriented control
DC Direct Current
AC Alternating Current
PMSM Permanent magnetic synchronous motor
EV Electric vehicle
RMS Root mean square
PWM Pulse Width Modulation
ESR Equivalent series resistance
THD Total harmonic distortion
SVPWM Space vector pulse width modulation
DQ Direct axis and quadrature axis
vbat Battery internal voltage
Rint Battery internal resistance
Lint Battery internal inductance
cos ϕ Power factor
pp Pole pairs
Pmax Nominal power
Mmax Maximum torque
Rs Stator resistance
nbase Rated rotation speed
nre f Extended rotation speed
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η Estimated motor and inverter efficiency
fsw Switching frequency
m The maximal modulation index of the three-phase inverter
Iin,max Maximum input phase current
vDC−link DC-link capacitor voltage
vs,max Maximum phase voltage amplitude
iq Quadrature current
ψPM Flux linkage
Ls Stator inductance
IC,RMS Root mean square of DC-link capacitor current
m Modulation index
Icap DC-link capacitor current
Iinv,RMS Inverter output current
θ Rotor angle
ζ Damping factor
ωn Resonance frequency
fsw Switching frequency
vDC−link Voltage on DC-link capacitor
ψPM Flux linkage by permanent magnets
ωel Motor electric angular frequency
id/iq Direct current/quadrature current
M Torque
Ls Stator inductance
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