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Abstract: Various technological fluids, such as drilling muds, drill-in fluids, fracturing fluids, spacers,
washes and cement slurries are used in the wellbore drilling process. The fundamental issue, which
needs to be addressed in order to become acquainted with the phenomena occurring during fluids
flow through a circulatory system, is to establish mutual dependencies between a stream of fluid
being pumped and flow resistances. The awareness of these dependencies enables the optimisation
of hydraulic parameters in order to minimise costs and maximise drilling works safety. This article
presents rheological models of drilling fluids and proposes the application of a new rheological model,
not used in the drilling industry so far, namely the Vom Berg model. The model has been presented
in other publications; however, there is an unsolved and unpublished problem of determining the
effect of rheological parameters of the model on the value of resistance to laminar and turbulent
flow. In this article, algorithms and Cloud-Native application enabling numerical determination of
rheological properties of the Vom Berg fluid are presented. What is more, an algorithm for calculating
pressure losses during the laminar flow of fluid in a pipe is provided. Taking an example from the
industry, a practical application of the proposed calculation methodology is presented.

Keywords: drilling; drilling fluids; rheology; rheological model; numerical methods

1. Introduction

A number of boreholes are made every year for the needs of the energy and envi-
ronmental engineering sectors. When drilling oil wells and geothermal boreholes, it is
possible to acquire fluid energy raw materials and store energy and, when using trenchless
technologies (horizontal directional drilling, microtunneling direct pipe), the underground
transport of utilities to long distances is ensured. During making boreholes, various tech-
nological fluids are used, such as drilling muds, drill-in fluids, fracturing fluids, spacers,
washes and cement slurries. The knowledge of physicochemical phenomena occurring
during drilling fluid flow enables rational designing of the technique and technology in
order to guarantee maximum works safety and minimum investment expenditures.

The fundamental issue, which needs to be solved in order to learn about the phenom-
ena occurring during drilling fluids flow through a circulatory system, is to establish mutual
dependencies between a stream of fluid being pumped and flow resistances occurring
when it is pumped.

Flow resistances in any circulatory system component depend on the following:

• The type of flowing fluid;
• Geometry and physical properties of the element in which flow takes place;
• Flow regime.

The most important factors affecting the amount of pressure losses include physical
properties and rheological parameters of the flowing fluid.

This article presents rheological models of drilling fluids and proposes the application
of a new rheological model, not used in the drilling industry so far, namely the Vom Berg
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model. The model has been presented in other publications [1,2]; however, there is an
unsolved and unpublished problem of determining the effect of rheological parameters of
the model on the value of resistance to laminar and turbulent flow. The aim of this study
was to present in detail the laminar flow of fluid described by the Vom Berg model.

2. Division of Drilling Fluids According to Rheological Properties

In most cases, fluids used in the drilling industry are Newtonian fluids, viscoplastic
(Bingham plastics) and pseudoplastic (Ostwald de Waele).

An API RP 13D (American Petroleum Institute Recommended Practice 13D) standard,
containing recommendations concerning rheological studies and hydraulic calculations of
drilling fluids, recommends using one of the three models: Bingham, Ostwald de Waele
(power law) or Herschel–Bulkley (yield power law) [3–6]. The form of models are presented
in Equations (1)–(3):

• Bingham model:

τ = τy + η ·
(
−dv

dr

)
(1)

• Ostwald de Waele model (power law):

τ = k · (−dv
dr

)
n

(2)

• Herschel–Bulkley model (yield power law):

τ = τy + k · (−dv
dr

)
n

(3)

The application of chemical agents enabling the modification of physical properties
and rheological parameters of drilling muds and cement slurries causes those fluids to
potentially demonstrate both the features of viscoelastic fluids and pseudoplastic fluids.

Thus, for this kind of fluid, other rheological models should be considered. One of the
possible ones is the Vom Berg model in the form of [1,2,7]:

τ = τy + D · sinh−1

(
−dv

dr
G

)
(4)

3. Laminar Flow of Reostable Fluids through a Pipe

Finding dependencies between a stream of flowing fluid and flow resistances is
possible after considering fluid flow in a straight horizontal pipe. From the stream of fluid,
we can distinguish (Figure 1) a part of fluid volume in the form of a cylinder with the
radius r and the length of ∆L.

Energies 2022, 15, x FOR PEER REVIEW 2 of 14 
 

 

The most important factors affecting the amount of pressure losses include physical 
properties and rheological parameters of the flowing fluid. 

This article presents rheological models of drilling fluids and proposes the 
application of a new rheological model, not used in the drilling industry so far, namely 
the Vom Berg model. The model has been presented in other publications [1,2]; however, 
there is an unsolved and unpublished problem of determining the effect of rheological 
parameters of the model on the value of resistance to laminar and turbulent flow. The aim 
of this study was to present in detail the laminar flow of fluid described by the Vom Berg 
model. 

2. Division of Drilling Fluids According to Rheological Properties 
In most cases, fluids used in the drilling industry are Newtonian fluids, viscoplastic 

(Bingham plastics) and pseudoplastic (Ostwald de Waele). 
An API RP 13D (American Petroleum Institute Recommended Practice 13D) 

standard, containing recommendations concerning rheological studies and hydraulic 
calculations of drilling fluids, recommends using one of the three models: Bingham, 
Ostwald de Waele (power law) or Herschel–Bulkley (yield power law) [3–6]. The form of 
models are presented in Equations (1)–(3): 
• Bingham model: τ = τ୷ + η ⋅ (− dvdr) (1) 

• Ostwald de Waele model (power law): τ = k ⋅ (− dvdr)୬ (2) 

• Herschel–Bulkley model (yield power law): τ = τ୷ + k ⋅ (− dvdr)୬ (3) 

The application of chemical agents enabling the modification of physical properties 
and rheological parameters of drilling muds and cement slurries causes those fluids to 
potentially demonstrate both the features of viscoelastic fluids and pseudoplastic fluids. 

Thus, for this kind of fluid, other rheological models should be considered. One of 
the possible ones is the Vom Berg model in the form of [1,2,7]: 

τ = τ୷ + D ⋅ sinhିଵ ቌ− dvdrG ቍ (4) 

3. Laminar Flow of Reostable Fluids through a Pipe 
Finding dependencies between a stream of flowing fluid and flow resistances is 

possible after considering fluid flow in a straight horizontal pipe. From the stream of fluid, 
we can distinguish (Figure 1) a part of fluid volume in the form of a cylinder with the 
radius r and the length of ΔL. 

 
Figure 1. Distribution of stresses during laminar flow of fluid through a pipe. Figure 1. Distribution of stresses during laminar flow of fluid through a pipe.

In order to obtain the condition of balance of forces applied at separate mass of fluids,
the sum of projections of external forces on the direction of the pipe axis has to equal zero.

Assuming that flow occurs to the right p1 > p2, the forces distribution is as follows:

• Pressure p1 = p acts on cross Section 1 with an area of πr2,
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• Pressure p2 acts on cross Section 2 with an area of πr2, that pressure by number equals

to pressure p reduced by pressure losses at the length ∆L: p2 =
(

p− dp
dl ∆l

)
,

• At the cylinder side with an area of 2πr∆l friction force occurs during flow, which is
caused by shear stresses τ coming from the fluid.

The equilibrium equation of forces can be thus written in the form of

pπr2 − 2πr∆lτ−
(

p− dp
dl

∆l
)
πr2 = 0 (5)

After transformation, we receive:

dp
dl

=
2
r
τ (6)

The above equation is a basic dependency enabling the establishment of correlations
between a stream of fluid flowing through a pipe (regardless of its rheological properties)
and flow resistances in the laminar regime.

The sought relationships for the Vom Berg model can be obtained by inserting to
Equation (6) rheological Equation (4):

dp
dl

=
2
r

(
τy + D · sinh−1

(
−dv

dr
G

))
(7)

From Equation (7), one can determine a shear rate gradient
.
γ =

(
−dv

dr

)
by means of

the following relationship: (
−dv

dr

)
= Gsinh

(
r

2D
dp
dl
−

τy

D

)
(8)

After variables separation in Equation (8) and integration, the following is obtained:

v = −G
2D
dp
dl

cosh
(

r
2D

dp
dl
−

τy

D

)
+C1 (9)

The constant C1 is determined from the boundary conditions. It is assumed that at the
pipe wall, for the value r = R, the fluid stream flow rate is v = 0.

C1 = G
2D
dp
dl

cosh
(

R
2D

dp
dl
−

τy

D

)
(10)

By inserting the value C1 to Equation (9), we obtain the distribution of the Vom Berg
fluid flow rate along the radius of the pipe in which flow takes place:

v = G
2D
dp
dl

[
cosh

(
R

2D
dp
dl
−

τy

D

)
− cosh

(
r

2D
dp
dl
−

τy

D

)]
(11)

The minimum speed value is zero and occurs at the pipe wall. The maximum fluid
flow rate is determined from the following condition: v′(r0) = 0 ∧ v′′ (r0) < 0. This rate
occurs at a distance r0 =

2τydl
dp from the pipe centre and is determined on the basis of the

following formula:

Vmax = G
2D
dp
dl

[
cosh

(
R

2D
dp
dl
−

τy

D

)
− 1
]

(12)
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The total stream of the Vom Berg fluid is the sum of the fluid nucleus stream Q0 (a
cylinder with the radius r0 moving with constant velocity v0 = vmax) and stream Q1 flowing
around a hollow cylinder with the internal radius r0 and the external radius R.

Q =
∫ R

0
v(r)dF =

∫ r0

0
v0dF +

∫ R

r0

v(r)dF (13)

Assuming unit cross-section dF = 2πrdr, the total stream of the Vom Berg fluid flowing
through a pipe is determined on the basis of the following dependence:

Q = Q0 + Q1 = v0πr2
0 +

∫ R

r0

v(r)dF (14)

Q = v0πr2
0 +

∫ R

r0

G
2D
dp
dl

[
cosh

(
R

2D
dp
dl
−

τy

D

)
− cosh

(
r

2D
dp
dl
−

τy

D

)]
2πrdr (15)

By determining the integral in Equation (15) and taking into account the relationship
r0 =

2τydl
dp , we obtain:

Q =
16πGD3(

dp
dl

)3

[(
R2

8D2

(
dp
dl

)2
+ 1

)
cosh

(
R

2D
dp
dl
−

τy

D

)
− R

2D
dp
dl

sinh
(

R
2D

dp
dl
−

τy

D

)
−
(
τy
)2

2D2 − 1

]
(16)

The dependence of unit pressure losses
(

dp
dl

)
on the flow stream for laminar flow (Q)

of the Vom Berg fluid is determined by means of the implicit function theorem (16).
In order to solve Equation (16), the following function is created:

g(x) =
16πGD3

(x)3

[(
R2

8D2 (x)
2 + 1

)
cosh

(
R

2D
x−

τy

D

)
− R

2D
xsinh

(
R

2D
x−

τy

D

)
−
(
τy
)2

2D2 − 1

]
−Q (17)

and next, its zero is designated. As can be seen in Figure 2, the g(x) function has two zeros.

Energies 2022, 15, x FOR PEER REVIEW 4 of 14 
 

 

The total stream of the Vom Berg fluid is the sum of the fluid nucleus stream Q0 (a 
cylinder with the radius r0 moving with constant velocity v0 = vmax.) and stream Q1 flowing 
around a hollow cylinder with the internal radius r0 and the external radius R. Q = න v(r)dFୖ

଴ = න v଴dF୰బ଴ + න v(r)dFୖ
୰బ  (13) 

Assuming unit cross-section dF = 2πrdr, the total stream of the Vom Berg fluid 
flowing through a pipe is determined on the basis of the following dependence: Q = Q଴ + Qଵ = v଴πr଴ଶ + න v(r)dFୖ

୰బ  (14) 

Q = v଴πr଴ଶ + න G 2Ddpdl ൤cosh ൬ R2D dpdl − τ୷D ൰ − cosh ൬ r2D dpdl − τ୷D ൰൨ୖ
୰బ 2πrdr (15) 

By determining the integral in Equation (15) and taking into account the relationship r଴ = ଶத౯ୢ୪ୢ୮ , we obtain: 

Q = 16πGDଷ൬dpdl ൰ଷ ൥ቆ Rଶ8Dଶ ൬dpdl ൰ଶ + 1ቇ cosh ൬ R2D dpdl − τ୷D ൰ − R2D dpdl sinh ൬ R2D dpdl − τ୷D ൰ − ൫τ୷൯ଶ2Dଶ − 1൩ (16) 

The dependence of unit pressure losses ቀୢ୮ୢ୪ ቁ on the flow stream for laminar flow (Q) 
of the Vom Berg fluid is determined by means of the implicit function theorem (16). 

In order to solve Equation (16), the following function is created: 

g(x) = 16πGDଷ(x)ଷ ൥ቆ Rଶ8Dଶ (x)ଶ + 1ቇ cosh ൬ R2D x − τ୷D ൰ − R2D x sinh ൬ R2D x − τ୷D ൰ − ൫τ୷൯ଶ2Dଶ − 1൩ − Q (17) 

and next, its zero is designated. As can be seen in Figure 2, the g(x) function has two zeros. 

 
Figure 2. g(x) function graph. 

The condition of physical interpretation of solving Equation (17) is the value of its 
zero, ቀx = ୢ୮ୢ୪ ቁ, ensuring a positive shear rate value:  ൬− dvdr൰ = G sinh ൬ r2D dpdl − τ୷D ൰ ൐ 0 (18) 

Figure 2. g(x) function graph.

The condition of physical interpretation of solving Equation (17) is the value of its
zero,

(
x =

dp
dl

)
, ensuring a positive shear rate value:(

−dv
dr

)
= Gsinh

(
r

2D
dp
dl
−

τy

D

)
> 0 (18)
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For G > 0, a physical condition is obtained, which has to meet the root of Equation (17):

x >
2τy

R
(19)

It is proposed to solve the relationship g(x) = 0 by means of numerical methods:
the bisection method, the Newton–Raphson method, the regula falsi method, combined
methods, etc. [8–10]. To this end, the Department of Drilling and Geoengineering, at the
Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Kraków,
developed a numerical program, using the bisection method. The algorithm of solving
numerical Equation (17) is presented in Figure 3.

The boundaries of the interval of the solution being sought
(

xsr =
dp
dl

)
are suggested

as follows: a =
2τy
R , b = 106, the accuracy of its estimation epsilon = 0.00001. Total pressure

losses are determined from the relationship (p = xsr·L).
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4. Determination of Rheological Parameters and Resistances of Drilling Fluid
Laminar Flow

The selection of the accurate rheological model has an impact on the accuracy of
the calculation results received. Drilling fluid rheological properties are measured by
means of rotational viscometers of the following types: Fann, Chan, Brookfield, Haake, and
Ofite [11–16]. A fluid test consists in determining shear stresses relationships (τ) in a shear
rate function

( .
γ =

(
−dv

dr

))
. Drilling fluid (Bingham, pseudoplastic and Herschel–Bulkley)

the rheological parameters are specified on the basis of standards [3,4] and the relationships
which are developed and not accounted for in the standards [6,17].

In order to determine rheological parameters for a three-parameter Vom Berg fluid
model, it is necessary to know the shear stress values for three shear rates (

.
γLOW,

.
γMID,

.
γTOP).

The basic problem is to determine a real value of fluid shear rate
( .
γMID

)
. Apart from

its rheological parameters, also flow conditions, such as a stream of flow volume and
geometry of an element in which flow takes place, have an impact on the real value of shear
rates of flowing drilling fluid. Precise values of real shear rates of fluid can be determined
from Formula (6) only after establishing fluid rheological parameters.

For the laminar flow of a Newtonian fluid through a pipe, the shear rate is determined
as follows [18]:

.
γ =

(
−dv

dr

)
=

8v
d

(20)

This value is proposed to be assumed as the starting point for establishing the actual
scope of shear rates for the Vom Berg fluid.

Therefore, it is suggested, before starting calculations, to determine the shear rate
value

( .
γ
)

from Formula (20). Next, for a given viscometer, by means of which dependences
between shear stresses and shear rate are determined, the most approximated value of

.
γMID ≈ 8v

d should be adopted. The value will define the shear rate interval, which should
be considered in calculations of drilling fluid rheological parameters

.
γMID ∈(

.
γLOW ;

.
γTOP).

The value
.
γLOW is the closest shear rate value smaller than

.
γMID recorded on a viscometer.

The value
.
γTOP is the closest shear rate value larger than

.
γMID recorded on a viscometer.

For the assumed shear rate values
( .
γLOW,

.
γMID,

.
γTOP

)
and shear stresses corresponding

to them (τLOW, τMID, τTOP), one may determine rheological parameters of fluid (τy, D and
G) described with the Vom Berg model.

For the Vom Berg fluid model, rheological parameters: τy, D and G are determined by
solving the following system of equations:

τTOP = τy + Dsinh−1
( .

γTOP
G

)
τMID = τy + Dsinh−1

( .
γMID

G

)
τLOW = τy + Dsinh−1

( .
γLOW

G

) (21)

The value of the G parameter is obtained from the numerical solution of the equation:

sinh−1
( .

γTOP
G

)
− sin h−1

( .
γMID

G

)
sinh−1

( .
γTOP

G

)
− sinh−1

( .
γLOW

G

) =
τTOP − τMID

τTOP − τLOW
(22)

In order to solve Equation (22), it is assumed that x = G and the g(x) function is created:

g(x) =
sinh−1

( .
γTOP

x

)
− sin h−1

( .
γMID

x

)
sinh−1

( .
γTOP

x

)
− sinh−1

( .
γLOW

x

) − τTOP − τMID

τTOP − τLOW
(23)

and next its zero is designated.
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The solution of the g(x) = 0 relationship is proposed by means of the numerical
methods: the bisection method, the Newton–Raphson method, the regula falsi method,
combined methods, etc. [8,9,19]. The algorithm of solving Equation (23) by means of the
secant method is presented in Figure 4.
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When analysing the existence of the solution of the Equation (23), we should analyse
the g(x) function flow. Assuming:

g(x) = f(x)−W (24)
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where:

f(x) =
sinh−1

( .
γTOP

x

)
− sin h−1

( .
γMID

x

)
sinh−1

( .
γTOP

x

)
− sinh−1

( .
γLOW

x

) , and W =
τTOP − τMID

τMID − τLOW

one should state that the g(x) function is the f(x) function shifted in relation to the axis of
dependent variables by the value W. Analysing the f(x) function flow for positive values x,
it can be stated that it is a continuous, increasing and differentiable function. It also does
not intersect the OX axis.

The smallest value is obtained for x→0: f(x)MIN = lim
x→0

f(x).

Whereas the highest value is obtained for x→∞: f(x)MAX = lim
x→∞

f(x).

The g(x) function will intersect the OX axis when W ≥ f(x)MIN and when W ≤ f(x)MAX.
Figure 5 shows the g(x) function flow depending on the W parameter value.

Energies 2022, 15, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 5. g(x) function flow depending on the W value: (a) W = 0, g(x) = f(x); (b) f(x)MIN < W < f(x)MAX; 
(c) W < f(x)MIN; (d) W > f(x)MAX. 

The g(x) function will have a root when the following condition is met: lim୶→଴f(x) < τ୘୓୔ − τ୑୍ୈτ୘୓୔ − τ୐୓୛ < lim୶→ஶf(x) (25) 

Taking into account 

f(x)୑୍୒ = lim୶→଴f(x) = lim୶→଴ sinhିଵ ቀγሶ ୘୓୔x ቁ − sinhିଵ ቀγሶ ୑୍ୈx ቁsinhିଵ ቀγሶ ୘୓୔x ቁ − sinhିଵ ቀγሶ ଶ଴଴x ቁ = lim୶→଴
ln ቆγሶ ୘୓୔ + ඥ(γሶ ୘୓୔)ଶ + xଶγሶ ୑୍ୈ + ඥ(γሶ ୑୍ୈ)ଶ + xଶቇ

ln ቆ γሶ ୘୓୔ + ඥ(γሶ ୘୓୔)ଶ + xଶγሶ ୐୓୛ + ඥ(γሶ ୐୓୛)ଶ + xଶቇ = ln ቀγሶ ୘୓୔γሶ ୑୍ୈቁln ቀ γሶ ୘୓୔γሶ ୐୓୛ቁ 

f(x)୑୅ଡ଼ = lim୶→ஶf(x) = lim୶→∝
ln ቆγሶ ୘୓୔ + ඥ(γሶ ୘୓୔)ଶ + xଶγሶ ୑୍ୈ + ඥ(γሶ ୑୍ୈ)ଶ + xଶቇ

ln ቆ γሶ ୘୓୔ + ඥ(γሶ ୘୓୔)ଶ + xଶγሶ ୐୓୛ + ඥ(γሶ ୐୓୛)ଶ + xଶቇ = lim୶→∝
ቆln ቆγሶ ୘୓୔ + ඥ(γሶ ୘୓୔)ଶ + xଶγሶ ୑୍ୈ + ඥ(γሶ ୑୍ୈ)ଶ + xଶቇቇᇱ

ቆln ቆ γሶ ୘୓୔ + ඥ(γሶ ୘୓୔)ଶ + xଶγሶ ୐୓୛ + ඥ(γሶ ୐୓୛)ଶ + xଶቇቇ ᇱ 

= lim୶→∝
ቆγሶ ୐୓୛x + ටቀγሶ ୐୓୛x ቁଶ + 1ቇ
ቆγሶ ୑୍ୈx + ටቀγሶ ୑୍ୈx ቁଶ + 1ቇ ⋅ ቆටቀγሶ ୐୓୛x ቁଶ + 1ቇ

ቆටቀγሶ ୑୍ୈx ቁଶ + 1ቇ  

γሶ ୘୓୔ ቆටቀγሶ ୘୓୔x ቁଶ + 1ቇ + ቀγሶ ୘୓୔x ቁଶ  − γሶ ୑୍ୈ ቆටቀγሶ ୑୍ୈx ቁଶ + 1ቇ − ቀγሶ ୑୍ୈx ቁଶ
γሶ ୘୓୔ ቆටቀγሶ ୘୓୔x ቁଶ + 1ቇ +  ቀγሶ ୘୓୔x ቁଶ  −  γሶ ୐୓୛ ቆටቀγሶ ୐୓୛x ቁଶ + 1ቇ  − ቀγሶ ୐୓୛x ቁଶ = γሶ ୘୓୔ − γሶ ୑୍ୈγሶ ୘୓୔ − γሶ ୐୓୛ 

the condition of occurrence of the root of the g(x) function is obtained:  ln ቀγሶ ୘୓୔γሶ ୑୍ୈቁln ቀ γሶ ୘୓୔γ୐୓୛ቁ < τ୘୓୔ − τ୑୍ୈτ୘୓୔ − τ୐୓୛ < γሶ ୘୓୔ − γሶ ୑୍ୈγሶ ୘୓୔ − γሶ ୐୓୛ (26) 

Knowing the value of the G parameter (G = x), the other rheological parameters 
should be determined from the following relationship: 

Figure 5. g(x) function flow depending on the W value: (a) W = 0, g(x) = f(x); (b) f(x)MIN < W < f(x)MAX;
(c) W < f(x)MIN; (d) W > f(x)MAX.

The g(x) function will have a root when the following condition is met:

lim
x→0

f(x) <
τTOP − τMID

τTOP − τLOW
< lim

x→∞
f(x) (25)

Taking into account
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√
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√
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x→∝

ln

(
.
γTOP+

√
(

.
γTOP)

2
+x2

.
γMID+

√
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.
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(√( .
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γTOP

x
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− .

γMID

(√( .
γMID

x

)2
+ 1

)
−
( .
γMID

x

)2

.
γTOP

(√( .
γTOP

x

)2
+ 1

)
+
( .
γTOP

x

)2
− .

γLOW

(√( .
γLOW

x

)2
+ 1

)
−
( .
γLOW

x

)2
=

.
γTOP −

.
γMID

.
γTOP −

.
γLOW

the condition of occurrence of the root of the g(x) function is obtained:

ln
( .

γTOP.
γMID

)
ln
( .

γTOP
γLOW

) <
τTOP − τMID

τTOP − τLOW
<

.
γTOP −

.
γMID

.
γTOP −

.
γLOW

(26)

Knowing the value of the G parameter (G = x), the other rheological parameters should
be determined from the following relationship:

D =
τTOP − τMID

sinh−1
( .

γTOP
G

)
− sinh−1

( .
γMID

G

) (27)

τy = τTOP −Dsinh−1
( .

γTOP
G

)
(28)

The calculated rheological parameters of the Vom Berg model (τy, D and G) enable to

determine unit flow resistances
(

dp
dl

)
of a fluid stream (Q) flowing inside a pipe with the

radius (R).
The following algorithm is suggested:

1. Measurement, by means of a viscometer, shear stress dependencies for different
drilling fluid shear rate values.

2. Estimation of the approximated shear rate value
( .
γSTART

)
(occurring when fluid

stream (Q) flows inside a pipe with the radius (R). Formula (20).
3. Determination of the most approximated shear rate value

( .
γMID ≈

.
γSTART

)
, taking

into account shear stress dependencies on shear rate, obtained from a given viscometer;
establishment of the value

( .
γLOW,

.
γTOP

)
. Determination of the measured values

(τLOW, τMID, τTOP).
4. Calculation of rheological parameters of the fluid described by the Vom Berg model.

Numerical solution of the Equation (22) and use of relationships (27) and (28).
5. Calculation of unit flow resistances

(
dp
dl

)
. Numerical solution of Equation (17).

6. Calculation of real shear rate
( .
γSTART

)
, characterising fluid flow, Equation (8).

7. Evaluation of the accuracy of the assumptions made in Item 3 of the algorithm. Check-
ing of the condition

.
γSTART ∈

( .
γLOW,

.
γTOP

)
. If this condition is met, calculations of

unit flow resistances are considered completed.

If the condition
.
γSTART ∈

( .
γLOW,

.
γTOP

)
is not met, calculations are repeated be-

ginning with Item 3, assuming the value of the real shear rate
( .
γSTART

)
determined in

Item 6.

5. Application of Derived Equations in Cloud-Hosted Computer-Aided Design
(CAD) Tool

The main purpose of the presented work was to derive and present mathematical for-
mulas of laminar flow of the Vom Berg model. In order to present the formulas application
possibilities to larger audience, the authors created a new computer-aided design tool. The
tool is called the HDD Designer, and it is available on the Internet via web browsers. The
address of the tools is www.HDDDesigner.com, accessed on 10 June 2022.

Rheology Sim is the first finished module in the HDD Designer, and it includes
following features:

• Rheological parameters calculation.

www.HDDDesigner.com
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• Rheological model specific parameters calculation for Newton, Bingham, Casson,
Ostwald De Waele, Herschel–Bulkley, Vom Berg and Eyring models.

• Regression parameters calculation.
• Graphical and tabular result presentation.

As the next step, the authors plan to develop another module for calculations of flow
resistances and pressure losses during laminar flow of fluid in a drill pipe and annulus for
various rheological models.

The graphical user interface of the tool is presented on the Figure 6. The HDD Designer
has been built with use of Angular (Graphical User Interface) and NET Core (application
programming interface), it is hosted on Microsoft Azure Cloud. As it uses the most recent
available technologies and cloud hosting, it is an easily expandable, robust, scalable and
high availability application.
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6. A practical Example of the Proposed Methodology Application

The Vom Berg model can be applied to various technological fluids, such as drilling
muds, drill-in fluids, fracturing fluids, spacers, washes and cement slurries. In order to
apply the Vom Berg model in practice, the unit flow resistances

(
dp
dl

)
were calculated for

the selected sealing slurry.
In order to exemplify the developed relationships, flow resistances of cement slurry

pumped to casing with the external diameter of 6 5/8
′′ (the radius of the pipe interior

R = 0.0736 m), with a stream of flow volume Q = 0.03 m3/s were calculated.
By means of a Fann 35 rotational viscometer (in the arrangement R1-B1 and a spring

F1), rheological properties of cement slurry to be used in a borehole [15] were measured.
The measurement results of a torsion angle of the outer cylinder (Φ), read for the specified
rotational speeds (n) and calculated shear stress values (τ) and shear rate

( .
γ
)
, occurring

during measurements, are provided in Table 1. A graphical comparison of popular rhe-
ological models’ fitness to measured values is presented on Figure 7. Table 2 shows the

www.hdddesigner.com
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tabular comparisons of statistical parameters from popular rheological models. Based on
both comparisons it is visible that the Vom Berg model achieved the highest fitness for the
analysed example.

Next, on the basis of the developed methodology, the slurry rheological parameters
and unit flow resistances were calculated, assuming the Vom Berg fluid model.

To this end, the approximated shear rate inside 6 5/8
′′ casing (

.
γSTART ≈ 96 s−1) was

estimated, using Equation (18). That value was used for estimating the value of
.
γLOW,

.
γMID

and
.
γTOP. For those values, the slurry rheological parameters and unit flow resistances were

calculated. The calculation of real shear rate
.
γSTART = 101.6 s−1 and comparing it with

its acceptable range
.
γSTART ∈

( .
γLOW,

.
γTOP

)
confirmed the accuracy of the assumptions

made. The calculation results are spresented in Table 3.

Table 1. Results of laboratory measurements and calculations of shear stresses and shear rates for
cement slurry tested on a 12 speed Fann viscometer 35A/SR-12, with the arrangement of cylinders
R1-B1 and spring F1 [15].

Laboratory Measurement

Rotational speed n,
[rot/min] 0.9 1.8 3 6 30 60 90 100 180 200 300 600

Torsion 1 2 2 4 16 28 38 48 82 91 141 237

Angle Φ, [-]

Calculated Values

Shear rate
.
γ, [s−1] 1.53 3.07 5.11 10.22 51.10 102.20 153.31 170.34 306.61 340.68 511.02 1022.04

Shear stresses τ, [Pa] 0.51 1.02 1.02 2.04 8.18 14.31 19.42 24.53 41.90 46.50 72.05 121.11
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Table 2. Tabular comparison of rheological models’ fitness to the measurement.

Model Newton Bingham Casson Ostwal De
Waele

Herschel
Bulkley Eyring Vom Berg

Pearson
Correlation Coefficient 0.9947 0.996 0.9965 0.9939 0.998 0.997 0.9985

Fisher Snedecor
Coefficient 929.58 1230.19 1425.92 805.64 2556.01 1649.97 3379.23

Sum of squares 156.17 118.31 102.19 179.9 57.18 88.39 43.29
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Table 3. Results of calculations with regard to rheological parameters of the tested cement slurry.

Approximated shear rate
.
γSTART, [s−1] 96

Shear rate
.
γ, [s−1]

.
γLOW =

.
γ30

.
γMID =

.
γ60

.
γTOP =

.
γ90

51.10 102.20 153.31

Shear stresses τ, [Pa]
τLOW = τ30 τMID = τ60 τTOP = τ90

8.18 14.31 19.42

Rheological parameters of the Vom
Berg model

τy D G
1.2448 18.3547 132.16

Unit flow resistances
dp/dl [Pa/m] 387

Real shear rate
.
γSTART, [s−1]

.
γSTART ∈

( .
γLOW,

.
γTOP

) 101.6

7. Conclusions

In the case of fluids that demonstrate features of both viscoelastic and pseudoplastic
fluids, we should consider other rheological models than those used so far in the drilling
industry. One of the possible models to be applied is the Vom Berg model.

When describing the laminar flow of Vom Berg fluids through a pipe, we should use
the relationships introduced in this article. The above-presented limitations and conditions
of obtaining an unambiguous solution of Equation (17) allow for numerical calculation of
resistances of the laminar flow of Vom Berg fluids. The proposed block diagram and the
developed HDD Designer application should be used in engineering practice.

Rheological parameters of the Vom Berg model should be determined depending
on the real shear rate, recorded during drilling fluid flow. To this end, the methodology
suggested in this article should be applied.
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Nomenclature

a, b interval boundaries in the bisection method or the regula falsi method, [-];
C1 constant;
d internal pipe diameter, [m];
D rheological parameter in the Vom Berg model, [Pa];
η plastic viscosity, [Pas];
G rheological parameter in the Vom Berg model, [s−1];
.
γ shear rate gradient, [s−1];
.
γLOW lower measured value of a shear rate gradient, [s−1];
.
γMID middle measured value of a shear rate gradient, [s−1];
.
γSTART reference shear rate gradient, [s−1];
.
γTOP upper measured value of a shear rate gradient, [s−1];
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k coefficient of drilling fluid consistency, [Pasn];
n exponential index, [-];
p pressure, [Pa];
Q flow rate, [m3/s];
R internal radius, [m];
r distance from the pipe axis, [m];
r0 distance from the axis of a pipe in which fluid flows with constant velocity v0, [m];
τ shear stress, [Pa];
τy yield point, [Pa];
τLOW lower measured value of shear stress, [Pa];
τMID middle measured value of shear stress, [Pa];
τTOP upper measured value of shear stress, [Pa];
v flow velocity, [m/s];
vmax maximum flow velocity, [m/s];
v0 constant fluid flow velocity at a distance from 0 to r0 from the pipe axis, [m/s];
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2. Wiśniowski, R.; Skrzypaszek, K.; Małachowski, T. Selection of a Suitable Rheological Model for Drilling Fluid Using Applied

Numerical Methods. Energies 2020, 13, 3192. [CrossRef]
3. API RP 13D. Rheology and Hydraulics of Oil-Well Drilling Fluids; Norm of American Petroleum Institute: Washington, DC,

USA, 2006.
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