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Abstract: An LLC resonant converter has the advantages of simple structure and soft switching. It
can enable bidirectional power transmission, but it is difficult to realize a normalized gain greater
than one under backward mode (backward step-up mode). Cascaded dc/dc converters or topological
changes can solve this problem, but additional switches and components are required and losses are
added. Without changing the LLC resonant converter’s basic topology, this paper proposes a variable
duty-cycle control strategy of primary side switches for backward step-up mode. Using variable
duty-cycle control, the LC resonant tank can be charged, and then the backward step-up mode can be
realized. Soft switching characteristics of some primary side switches and all secondary side switches
are guaranteed. In this study, the working principle of an LLC resonant converter under bidirectional
control strategy was analyzed, and the backward step-up control was analyzed in detail. The voltage
gain and the boundary of continuous conduction mode (CCM) and discontinuous conduction mode
(DCM) were derived. A synchronous rectification method related to the backward step-up control is
proposed. The control strategy was verified by experiments.

Keywords: LLC resonant converter; backward step-up mode; control strategy; voltage gain; syn-
chronous rectification

1. Introduction

With the development of distributed generation (DG) and electric vehicle (EV) tech-
nologies, many energy storage systems have been introduced to reduce the fluctuation of
distributed energy and supply power to EVs. The bidirectional isolated dc/dc converter,
which has served as a key device to interface with energy storage systems, has been a hot
research topic recently, and is widely used in low voltage dc power systems with DG and
battery storage in buildings. Due to its high efficiency, wide range of zero voltage switching
(ZVS), zero current switching (ZCS), and electrical isolation, an LLC resonant converter is a
typical isolated dc/dc converter and is widely used in energy storage systems [1], EVs [2],
and solid-state transformers [3].

When the power flows in the forward direction, the LLC resonant converter can
realize a forward normalized gain greater than one (forward step-up mode) or less than
one (forward step-down mode) by using frequency conversion and phase-shifting control
strategies for the primary switch. However, when the power flows in the backward
direction, because the excitation inductance is clamped by the voltage on the secondary
side, the resonant tank changes from LLC type to LC type [4]. By frequency modulation and
phase shift of the secondary side switch, only a backward normalized gain less than one
(backward step-down mode) can be achieved [5,6]. Therefore, the general LLC resonant
converter is usually used in the unidirectional occasion of voltage regulation [7] or the
bidirectional occasion without voltage regulation [8].

To enable bidirectional wide-range voltage regulation in an LLC resonant converter, a
cascade topology or change of the resonant tank is generally adopted.
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Taking advantage of the high bidirectional power transmission efficiency of an LLC
resonant converter at a resonant frequency, the cascade topology of an LLC resonant
converter and wide-gain range converter [8,9] is used to realize a wide gain range and
high-efficiency bidirectional power transmission. However, this topology requires that an
additional converter be added, which increases topology complexity and loss. In [10,11],
a dual active bridge (DAB) converter and an LLC resonant converter were used in series
input and parallel output (ISOP) structure, so most of the power could flow through the
LLC converter, and the DAB converter regulated the output voltage.

The CLLC resonant converter can enable bidirectional energy transmission by adding
a resonant capacitor on the secondary side, but its parameter design and control strategy are
complex [12,13]. The symmetrical CLLLC converters have secondary side LC resonant tank
components equal to the primary LC components after reflection, but they are not suitable
for an application with different forward and backward voltage gains, and accuracy of the
resonance parameters is required [14–16]. By paralleling the auxiliary inductor on the input
side of the resonant tank, a resonant tank with bidirectional symmetry can be constructed,
and that can also enable bidirectional energy transmission, but the volume and loss of the
auxiliary inductor are large [17–19]. In [20], a bidirectional dc/dc converter using SLLC
resonant tank was proposed; it uses two auxiliary inductors connected in parallel on the
secondary side to achieve bidirectional wide-range voltage regulation.

In addition, some studies have used switches to change the resonant tank to achieve
bidirectional wide-range voltage regulation. In [21], a bidirectional three-level LLC res-
onant converter with a novel pulse width and amplitude modulation control method
was proposed. It can achieve a wide voltage gain range by using extra six switches and
three capacitors to change the midpoint voltage of the bridge circuit. In [22], capacitors
and auxiliary switches were added in parallel with the low-voltage side power metal–
oxide–semiconductor field-effect transistors (MOSFETs) to change the resonant tank in the
backward mode.

Through the above methods, efficient backward voltage regulation can be realized;
however, the efficiency of the forward mode is affected by the addition of components,
and the converter parameter design becomes more difficult. Without changing the basic
topology of the LLC resonant converter, in [23], a step-up control method was proposed to
solve the problem of the normalized voltage gain being less than one when the bidirectional
LLC resonant converter works in backward mode. This step-up control method turns
on rectifier switches to help resonant components recover their energy and improves the
normalized voltage gain to two. However, its backward normalized gain at the resonant
frequency is two, which is not suitable for mode switching from backward step-down
mode to backward step-up mode. At the same time, when the load is light, the switching
frequency required to achieve a backward normalized gain close to one is too high, and the
switching loss is too large.

To sum up, there is much research on bidirectional wide-range voltage regulation,
which shows this research is valuable, but most of it is based on cascade topology or
changing the topology, which increases the numbers of additional switches and components
required, system loss, parameter design difficulty, and control complexity. There are
relatively few studies on realizing bidirectional wide gain range without changing the
topology. The only control methods in the literature cannot switch smoothly with the
traditional control methods, and the control effect is poor under light loads. Achieving
bidirectional wide gain range without changing the topology is more conducive to the
low-cost improvement of existing LLC converters, such as transforming an EV with a
single-stage LLC charging converter into an EV that can be used for vehicle to grid (V2G)
applications.

This paper proposes a backward step-up control strategy that does not require chang-
ing the basic topology of the LLC resonant converter. Under the condition of sacrificing
only the soft switching characteristics of a pair of switches under heavy load, the gain
of backward step-up is achieved by changing the driving signal of switches in the LLC
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converter only, which provides better control without load restriction and enables smooth
switching with the existing traditional control.

This paper first analyzes the control strategy of bidirectional step-down and step-up,
and focuses on the backward step-up control. In the backward step-up mode, the LC
resonant tank was charged by adjusting the duty cycle of switches on the primary side,
and then the backward step-up was realized. Then, by using time domain analysis, the
backward step-up control mode was analyzed, the voltage gain expression and the bound-
ary of continuous conduction mode (CCM) and discontinuous conduction mode (DCM)
were deduced, and the synchronous rectification method for backward step-up control was
proposed and verified by experiments. Through the control strategy of bidirectional step-
down and step-up, the backward step-up mode can realize the normalized gain varying
between 1 and 2 at the resonant frequency. Some switches on the primary side can realize
ZCS, and those on the secondary side can realize ZVS. At the same time, the backward
step-up mode and backward step-down mode can be switched smoothly, and the control is
simpler.

2. Analysis of Operational Characteristics of the Bidirectional LLC Converter
2.1. Bidirectional Mode Analysis

Taking the topology of a full bridge LLC resonant converter (Figure 1) as an example,
this paper analyzes various modes of a bidirectional LLC resonant converter.
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Figure 1. Topology of an LLC resonant converter. 

According to the power flow direction and normalized gain, LLC resonant converter 
can be divided into four modes: forward step-up, forward step-down, backward step-up 
and backward step-down. Among them, there are mature control methods for forward 
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For the backward step-up mode, the driving signal under the fixed resonant fre-
quency is used for the secondary side switches (S5–S8). The primary switches S2 and S4 are 
used as the active switches, and S1 and S3 are used as the passive switches. The antiparallel 
freewheeling diodes of the passive switches or synchronous rectification control can be 
used for rectification. The driving signals of S2 and S6 are consistent. The variable duty 
cycle control is used for a driving signal of S4, and the duty cycle d changes between 50% 
and 100%. 

When the d of the S4 drive signal is 50% or 100%, the LLC resonant converter is equiv-
alent to working in one of two common working conditions—full bridge or half bridge—

Figure 1. Topology of an LLC resonant converter.

S1–S4 are primary switches, S5–S8 are secondary side switches, Cr is resonant capaci-
tance, Lr is resonant inductance, Lm is transformer excitation inductance, the transformer
turn ratio is K:1, C1 is primary filter capacitance, and C2 is secondary side filter capacitance.
V1 is the primary input voltage, V2 is the secondary side output voltage, VC is the voltage
on the resonant capacitor, Ir is the current flowing through the resonant inductor, and I1
and I2 are the primary side inflow current and secondary side outflow current, respectively.

According to the power flow direction and normalized gain, LLC resonant converter
can be divided into four modes: forward step-up, forward step-down, backward step-up
and backward step-down. Among them, there are mature control methods for forward
step-up, forward step-down, and backward step-down.

For the backward step-up mode, the driving signal under the fixed resonant frequency
is used for the secondary side switches (S5–S8). The primary switches S2 and S4 are used
as the active switches, and S1 and S3 are used as the passive switches. The antiparallel
freewheeling diodes of the passive switches or synchronous rectification control can be
used for rectification. The driving signals of S2 and S6 are consistent. The variable duty
cycle control is used for a driving signal of S4, and the duty cycle d changes between 50%
and 100%.

When the d of the S4 drive signal is 50% or 100%, the LLC resonant converter is equiva-
lent to working in one of two common working conditions—full bridge or half bridge—and
its backward normalized gain is 1 or 2, respectively. By changing the duty cycle d of the S4
drive signal, the converter can switch smoothly between these two working conditions.

For d of 50% and 100%, the waveform characteristics are slightly different. The typical
waveforms under the conditions d = 62.5%, 75%, and 87.5% are shown in Figure 2a–c below.
The typical waveform under a light load with d = 75% is shown in Figure 2d.
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In Figure 2, VAB and VCD represent the voltages between A and B, and C and D,
respectively, in Figure 1; Is1–Is8 represents the forward current passing through S1–S8; and
the equivalent circuit change moments are defined as t0–t5.

Figure 2a–c shows that, when the d of S4 gradually increases, the current passing
through S3 gradually decreases, the current passing through S4 gradually increases, and
the dc bias voltage appears in the resonant capacitor.

This process will lead to uneven heating of S3 and S4, so the backward step-up mode
is not suitable for long-term operation, but it has little impact when the load power is small
or during short-term operation.

In the backward step-up mode, when the load is heavier, the LLC resonant converter
will work in CCM. When the load is lighter, the LLC resonant converter will work in DCM.
During t1–t2 time period, Ir is constant at 0 in DCM. Typical DCM waveforms are shown in
Figure 2d. Under this working condition, Is3 is constant at 0.
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2.2. Analysis of Backward Step-Up Mode

Figure 2 shows that, when d and load change, the typical waveforms are slightly
different, but they can be divided into six modes. The equivalent circuits of six modes are
shown in Figure 3 and analyzed below.

Energies 2022, 15, x FOR PEER REVIEW 5 of 16 
 

 

In the backward step-up mode, when the load is heavier, the LLC resonant converter 
will work in CCM. When the load is lighter, the LLC resonant converter will work in 
DCM. During t1–t2 time period, Ir is constant at 0 in DCM. Typical DCM waveforms are 
shown in Figure 2d. Under this working condition, Is3 is constant at 0. 

2.2. Analysis of Backward Step-Up Mode 
Figure 2 shows that, when d and load change, the typical waveforms are slightly dif-

ferent, but they can be divided into six modes. The equivalent circuits of six modes are 
shown in Figure 3 and analyzed below. 

+

−

S1

S2

S3

S4

C1V1 Cr

Lr

Lm

K:1 S5

S6

S7

S8

C2 V2

A

B

C

D

+

−
 

+

−

+

−

S1

S2

S3

S4

C1V1 Cr

Lr

Lm

K:1 S5

S6

S7

S8

C2 V2

A

B

C

D

 
(a) (b) 

+

−

S1

S2

S3

S4

C1V1 Cr

Lr

Lm

K:1 S5

S6

S7

S8

C2 V2

A

B

C

D

+

−

+

−

+

−

S1

S2

S3

S4

C1V1 Cr

Lr

Lm

K:1 S5

S6

S7

S8

C2 V2

A

B

C

D

(c) (d) 

+

−

+

−

S1

S2

S3

S4

C1V1 Cr

Lr

Lm

K:1 S5

S6

S7

S8

C2 V2

A

B

C

D

 

+

−

+

−

S1

S2

S3

S4

C1V1 Cr

Lr

Lm

K:1 S5

S6

S7

S8

C2 V2

A

B

C

D

 
(e) (f) 

Figure 3. Equivalent circuit under different modes. (a) t0–t1, (b) t1–t2 (CCM), (c) t1–t2 (DCM), (d) t2–
t3, (e) t3–t4, (f) t4–t5. 
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t0–t1:
The equivalent circuit in this mode is shown in Figure 3a. At time t0, S4, S5, and S8

are turned off, and the VCD changes from KV2 to −KV2. This time period is the dead
time of the secondary side switch’s drive signal, and Is6 and Is7 are negative, the junction
capacitance of S6 and S7 can be discharged, and the ZVS on of S6 and S7 can be realized by
setting an appropriate dead time. According to the equivalent circuit, the voltage of Lr is
(V1 + KV2 − Vc), and it can be seen in the waveform that when Vc is close to its minimum
value, then Ir will increase rapidly and cross zero naturally at t1, making S1 and S4 achieve
a ZCS turn off.

t1–t2:
This mode can be divided into two equivalent circuits according to the load. It can

be equivalent to Figure 3b under CCM and Figure 3c under DCM. At t1, according to the
equivalent circuit, when (KV2 − Vc) ≥ V1, antiparallel freewheeling diodes of S2 and S3 are
on, and VAB is −V1. When the load is light and Vc at t1 cannot meet the above conditions,
S2 and S3 cannot be turned on. At this time, VAB is (Vc − KV2). Although the driving signal
of S2 will change in this time period, it does not affect the equivalent circuit in this mode.

t2–t3:
The equivalent circuit in this mode is shown in Figure 3d. At t2, S4 is hard switched

on under CCM and ZVS turn-on in DCM. After S4 is turned on, VAB is forced to change
to 0, and the antiparallel freewheeling diode of S3 is turned off. During this time period,
energy flows from the secondary side into the resonant tank to charge Lr and Cr.
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t3–t4:
The equivalent circuit in this mode is shown in Figure 3e. At t3, S6, and S7 are hard

switched off, and the VCD changes from −KV2 to KV2. The S2 drive signal becomes 0,
but because Is2 is negative and flows through the antiparallel freewheeling diode of S2,
similarly to t0–t1, S5 and S8 have ZVS turn-on. At t3, the voltage of Lr is (−Vc − KV2), and
it can be seen in the waveform that Vc is close to its maximum value, so Ir will decrease
rapidly and cross zero naturally at t4. Although the driving signals of S5 and S8 change
during this time period, they do not affect the equivalent circuit in this mode.

t4–t5:
The equivalent circuit in this mode is shown in Figure 3f. At t4, S1 realizes ZCS turn-on.
The soft switch characteristics of each switch can be obtained by summarizing the soft

switch correlation analysis in the mode analysis, as shown in Table 1. Compared with the
forward step-up mode, the backward step-up mode only increases the hard switch loss of
S3 and S4 in CCM.

Table 1. The soft switching characteristics of switches.

Switch Name Turn-On Turn-Off

S1 ZCS ZCS
S2 ZCS ZCS

S3 ZCS Hard switch in CCM
ZCS in DCM

S4
Hard switch in CCM

ZCS in DCM ZCS

S5 and S8 ZVS Hard switch
S6 and S7 ZVS Hard switch

3. Backward Step-Up Voltage Gain

To control the backward output voltage easily, the voltage gain characteristics in the
backward step-up mode need to be analyzed. As the typical waveform in the backward
step-up mode differs greatly from the sine wave, it is not suitable to use the traditional
fundamental harmonic analysis method. We used the time domain analysis method to
analyze the control in the backward step-up mode.

3.1. Voltage Gain in CCM

According to the modal analysis in Section 2.2, the equivalent circuit in Figure 3 can
be changed into a unified equivalent circuit, as shown in Figure 4.
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The time domain equation of each time period can be expressed as:

Vcx = Irx−1Zr sin(ωrtx−ωrtx−1)+ (Vcx−1−VABx +VCDx) cos(ωrtx−ωrtx−1)+VABx−VCDx (1)

IrxZr = Irx−1Zr cos(ωrtx −ωrtx−1)− (Vcx−1 −VABx + VCDx) sin(ωrtx −ωrtx−1) (2)

where, x can be 1, 2, 3, 4, or 5; Vcx and Irx represent Vc and Ir at tx, respectively; VAbx
and VCDx are VAB and VCD in the tx−1–tx time period; and Zr and ωr are the resonant
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impedance and resonant angular frequency, respectively, which can be expressed by the
following equation: Zr =

√
Lr
Cr

ωr =
1√

LrCr

(3)

For the t1–t2 time period, VAB is −V1 and Ir is not 0 in CCM, and VAB is (Vc − KV2)
and Ir is 0 in DCM, but it does not affect the unified equivalent circuit.

Ignoring the influence of dead time, if the duty cycle of S4 is defined as d, then the
following equation exists:

d =
t5 − t2

2π
√

LrCr
(4)

For the convenience of analysis, the time variable is converted into an angle, as shown
in the following formula: 

θ = 2π(d− 0.5)
α = ωr(t1 − t0)
β = ωr(t4 − t3)

(5)

In CCM, take KV2 as the voltage reference value and (KV2/Zr) as the current reference
value, and normalize Equations (1) and (2). Vcxn and Irxn are the unit values of Vcx and Irx,
respectively, and G is the backward normalized voltage gain, i.e., G = V1/KV2.

According to the modal analysis in Section 2.2, both Ir1n and Ir4n are 0, Vc0n and
Vc5n are equal, and Ir0n and Ir5n are equal. Based on the analysis above, the following
approximate assumptions can be made: sin α ≈ 0, cos α ≈ 1, sin β ≈ β, cos β ≈ 1, and
(α + θ) ≈ θ. Then, normalized equations can be simplified.

For the unified equivalent circuit of Figure 4, in the steady state, the energy input on
the right side in a switching cycle is equal to the energy output on the primary side, so the
following energy conservation equation can be obtained:∫ t5

t0

VCD Irdt = −V1 I1Tr (6)

By simplifying the integral of the resonant inductance current with the value of the
resonant capacitance voltage in Equation (6), the following results can be obtained:

Vc0n −Vc3n = Gπ I1n (7)

where I1n is the per unit value of I1.
By solving simplified normalized equations and the above equations simultaneously,

β and G can be obtained:

β =
2G sin θ

4− (1 + cos θ + π I1n)G
(8)

G =
8

4 + π I1n + 2 cos θ +
√
(π I1n − 2)2 − 8 sin2 θ

(9)

Equation (9) is a more accurate voltage gain, but the calculation is more complex. On
the basis of (8), by setting β equal to 0, an approximate expression for the calculation can
be obtained, as follows:

G =
4

3 + cos θ
(10)



Energies 2022, 15, 4471 8 of 15

3.2. Voltage Gain in DCM

In DCM, according to the modal analysis, when Ir is constant 0 and Vr does not change
between t1 and t2, Ir2n is 0 and Vc2n and Vc1n are equal. Using an analysis method similar
to CCM, the following equation can be obtained:

k3G2 + k4G + k5 = 0 (11)

where the coefficients k3, k4, and k5 can be expressed by the following equation:
k3 = π I1n+cos θ(2 cos θ−2+π I1n)

(cos θ−1)2

k4 = − 4
π I1n
− 6− 8

cos θ−1
k5 = 8

π I1n

(12)

G in DCM can be solved by using the standard quadratic-root formula, but the gain
expression is too complex. At the same time, in DCM conditions, the burst control is often
used, so the gain expression in DCM is not detailed in this paper.

3.3. Boundary of CCM and DCM

In Section 2.2, it is known that the boundary of CCM and DCM is dependent on
whether the antiparallel freewheeling diode of S3 at time t1 is conductive or not; i.e., the
following inequality needs to be satisfied:

KV2 −Vc1 ≥ V1 (13)

After normalization, the following inequality is obtained:

Vc1n + G− 1 ≤ 0 (14)

Vc1n can be obtained by combining Equations (7) and (9):

Vc1n = 1 +
4(π I1n − cos θ − 1)

4 + π I1n + 2 cos θ +
√
(π I1n − 2)2 − 8 sin2 θ

(15)

Therefore, the boundaries of CCM and DCM are as follows:

I1n ≤
cos θ − 1

π
(16)

4. Backward Step-Up Control
4.1. Synchronous Rectification Control

S1 and S3 are passive switches, and their current mainly flows through their diodes,
which can greatly reduce the on-state loss when synchronous rectification control is used.
For bidirectional LLC resonant converters, all switches have driver circuits, so it is easy
to achieve synchronous rectification control; that is, S1 and S3 need to be turned on in a
specific time period.

According to Figure 2, the turn-on time periods of S1 should be set to t0–t1 and
t4–t5, which have a lot of overlap with the complementary driving signal of S2. The
complementary driving signal of S2 can be used for S1, and the dead time tdead between S1
and S2 should be set to (t4–t3).

There is a link between (t4–t3) and β. Thus, tdead between S1 and S2 can be obtained
as follows:

tdead =
4 sin θ

√
LrCr

2− π I1n +
√
(π I1n − 2)2 − 8 sin2 θ

(17)
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The ideal synchronous rectification effect can be obtained by dynamically adjusting
the dead time according to d and I1n. To reduce the control difficulty, tdead can be set to a
fixed value, but too much dead time will cause a worse synchronous rectification effect,
and too little dead time will cause a hard switch. It can be seen in the characteristics of (17):
when I1n is fixed and θ = 0.5π, tdead is the maximum value, and the smaller the fixed value
I1n, the larger the maximum value of tdead will be. Therefore, tdead under rated load and
θ = 0.5π can be used for the ideal synchronous rectification effect in the full gain range.

For S3, it can use the complementary driving signal of S4 in CCM, but cannot be turned
on in DCM, so (16) can be used as a criterion to determine the driving signal of S3.

4.2. Smooth Transition between Backward Step-Up Mode and Backward Step-Down Mode

The backward step-up mode with synchronous rectification control can make the LLC
converter enter the fixed frequency operation mode by adjusting the duty cycle d to 50%.
Then, the driving signals of the secondary side switches can be shifted to make the LLC
converter switch smoothly into backward step-down mode using phase-shift control. The
switching process is shown in Figure 5.
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Synchronous rectification control is not used for the backward step-down mode in
Figure 5, so S1–S4 have no driving signal after entering the backward step-down mode. A
synchronous rectifier controller can be used in the backward step-down mode to reduce
the loss of the antiparallel diodes, but it is not the focus of this paper, so it is not described
in detail.

Similarly, in the backward step-down mode, the phase shift angle is gradually adjusted
to 0, the LLC converter enters the fixed frequency mode, and the duty cycle of S4 is gradually
increased to make the LLC converter switch smoothly into the backward step-up mode.

5. Comparison with Previous Studies

In order to highlight the advantages of the method proposed in this paper, it is
compared with the previous studies in many aspects. The proposed method, the method
with changing topology, and the method in [23] are compared and analyzed in Table 2. The
method with changing topology takes a CLLLC converter as an example.

Table 2. The comparison between the proposed method and other methods.

The Proposed Method The Method with
Changing Topology The Method in [23]

Additional components No Yes No

Efficiency in forward mode No influence Some influence No influence

Efficiency in backward mode Slightly lower High Low

Parameter design difficulty Low High Low

Control difficulty Low High High

Smooth Transition between
different modes Yes Yes No

Ripple characteristics Slightly high Low Slightly high
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Through the simulations under the same operating conditions with the same resonance
parameters, the following conclusions were obtained.

The proposed method does not need to change the LLC topology, so it does not affect
the efficiency of the converter in forward mode. The steady-state characteristics of the
proposed control strategy are slightly worse than those of the CLLLC resonant converter,
but its structure is simple and it is easy to implement at low cost. At the same time, it has
obvious advantages in the loss compared with the method in [23].

This method cannot improve the efficiency and ripple characteristics, and is not
suitable for steady-state operation, but it is more suitable for temporary conditions or low-
power conditions in backward step-up mode, such as temporary outward power scenarios
for electric vehicle batteries.

6. Experimental Verification

To verify the validity of the control strategy proposed in this paper, a full-bridge LLC
resonant converter was built with C3M0025065D silicon carbide (SiC) MOSFETs. One side
of it was connected with a 50-volt (V) DC voltage source, and the other side was connected
to a load R (Figure 6).
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The actual experimental platform is shown in the Figure 7. The experimental platform
used DSP as the controller, the upper computer for communication, and a Tektronix
oscilloscope to observe the waveform.
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The actual experimental platform is shown in the Figure 7. The experimental 
platform used DSP as the controller, the upper computer for communication, and a 
Tektronix oscilloscope to observe the waveform. 
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Figure 7. Actual experimental platform.

Table 3 shows the related parameters of the LLC resonant converter. The dead time of
S1 and S2 was 547 nanoseconds (ns), which was estimated from (17), and was set to 550 ns
in the experiment.
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Table 3. The design parameters of the prototype.

Parameter Name Value

Resonance frequency f r/kHz 207
Transformer turn ratio 1

Resonance inductance Lr/µH 4
Resonance capacitor Cr/nF 142

Excitation inductance Lm/µH 19.45
Secondary side voltage V2/V 50
Primary side rated load R/Ω 15

6.1. Backward Step-Up Mode Analysis Verification

Simulations and experiments were conducted at different duty cycles to verify the
validity of the backward step-up mode analysis in Section 2.1. They were conducted with
V2 = 50 V, R = 15 Ω at d = 62.5%, 75%, and 87.5%; and V2 = 50 V and R = 35 Ω in DCM at
d = 75%. The waveforms of Vc, Ir, VAB, and VCD are shown in Figures 8 and 9.
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It can be seen in Figures 8 and 9 that the experimental waveforms with different duty
cycles are basically the same as the simulation waveforms. There are some differences in
amplitude between the experimental waveforms and the simulation waveforms that were
affected by some unsatisfactory factors in the experiment, but they are basically consistent
with the theoretical modal analysis. The feasibility of the backward step-up mode and the
validity of the modal analysis were verified.

For the DCM waveforms in Figure 9d, Ir appears close to discontinuity. Due to the
existence of distribution parameters in the circuit, Ir oscillates to a certain extent near 0 and
causes a large fluctuation of VAB, but it has little influence on the mode analysis.
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6.2. Verification of Soft Switch Characteristics and Synchronous Rectification Control

To verify the soft switch characteristics, the Vds and Vgs of the switches were observed
under the condition of rated load and 75% duty cycle, and Ir was used as the reference line,
as shown in Figure 10.

Figure 10a,b shows that S1 and S2 both produced a diode conduction voltage drop after
ZCS by Ir zero-crossing; then, synchronous rectification was achieved under the influence
of the driving signal, without affecting the soft switch effect.

Similarly, S3 achieved ZCS turn-on and S4 achieved ZCS turn-off, but the drive signal
of S4 made S4 hard switch on, and S3 was forcibly hard switched off.

The waveforms of S5 and S6 are the same as those of S8 and S7, respectively. It can be
seen in Figure 10e,f that S5–S8 achieved ZVS turn-on, but no ZVS turn-off. The soft switch
effects of the switches were in concordance with the theoretical analysis, which further
verifies the correctness of the theoretical analysis.

At the same time, it can be seen in Figure 10a that the time at which Ir began to
decrease after S1 was turned on was about 500 ns, which is close to the estimated 547 ns.
The synchronous rectification effect of S1 is ideal. In Figure 10c, it can be seen that S3
achieved an ideal synchronous rectification effect by using a driver signal complementary
to S4. Therefore, the validity of synchronous rectification control was verified.
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6.3. Verification of Voltage Gain

We measured the voltage gain curves of simulation and experiment under rated load
and compared them with the theoretical gain curve. The results are shown in Figure 11.
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The theoretical gain in Figure 11 was approximately the same as the simulated gain, 
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From Figure 11, it can be seen that the trends of theoretical, simulation, and experi-
mental gain curves with d are approximately the same, which verifies the rationality of the
backward step-up normalized gain expression.

The theoretical gain in Figure 11 was approximately the same as the simulated gain,
but there was still a small error due to the use of some approximate assumptions in
the derivation of the theoretical gain. As the duty cycle increased, the error between
experimental gain and theoretical gain increased, with a maximum relative error of 6.5%
relative to theoretical gain. Except for errors caused by approximate assumptions, the
main cause of error was that with the increase in the backward gain, the output power
increased by a square factor while the load resistance remained unchanged, and the loss on
the switches and the magnetic element also increased, so the error increased.

As shown in the voltage gain curve in Figure 11, the backward normalized step-up
gain near 2 can be achieved by adjusting the duty cycle.

7. Conclusions

This paper presented a bidirectional control strategy that functions without changing
the topology of the LLC resonant converter. In backward step-up mode, the variable duty
cycle control with the drive signal of the primary side switches was proposed and used.
The traditional control was used for forward step-down mode, forward step-up mode,
and backward step-down mode. The backward step-up normalized gain can vary from
one to two at the resonant frequency, and the smooth transition between the backward
step-up mode and the backward step-down mode can be achieved. At the same time, the
expression of voltage gain under backward step-up control was deduced, the boundaries
of CCM and DCM were given, and the corresponding synchronous rectification method
was given, which can enable the soft switching of most switches.
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