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Abstract: Under the background of renewable-dominated electric power system construction, the
penetration rate of low-carbon and renewable distributed generation (DG) in distribution network
is increasing, which has changed the form and operation mode of the distribution network. To
deal with the output fluctuation of high penetration DG in the distribution network operations, it is
necessary to evaluate the acceptance capacity of DG. The correct evaluation can realize the secure,
economic and low-carbon configuration of DG. In this paper, an evaluation method of acceptance
capacity of DG in the distribution network considering the carbon emission is proposed. Firstly, a
multi-objective evaluation model of acceptance capacity of DG is constructed with the objectives of
minimizing carbon emission in the full life cycle, minimizing node voltage deviation and maximizing
line capacity margin. Secondly, the improved non-dominated sorting genetic algorithm II (NSGA-II)
is employed to solve the model to determine the Pareto optimal solutions of DG configuration. Then,
the comprehensive index of acceptance capacity evaluation is obtained based on entropy weight
method to decide the optimal compromise solution. Finally, an actual 55-bus distribution network
in China is used to verify the effectiveness of the proposed method. The simulation results show
that the proposed evaluation method can comprehensively obtain the optimal compromise solution
considering the reliability, economy and carbon emission benefits of distribution network operation,
which guides the DG configuration in the distribution network.

Keywords: acceptance capacity evaluation; carbon emission; distributed generation; improved
non-dominated sorting genetic algorithm II; multi-objective optimization

1. Introduction

With the increase of carbon dioxide emissions, the earth’s average temperature is
rising and the environment is deteriorating. In order to curb climate deterioration, it
is urgent for all countries to alleviate the greenhouse effect by reducing carbon dioxide
emissions [1]. In 2019, China’s carbon emission is 11.3 billion tons, 86.7% of which came
from the energy sector. The carbon emission of the power industry is 4.2 billion tons,
accounting for 37.2% of the national carbon emission. At the Climate Ambition Summit
on 12 December 2020, China proposed to achieve the goal of carbon peaking by 2030 and
carbon neutrality by 2060, which further promotes China’s carbon emission reduction [2].
The low-carbon transformation of the power industry has provided an important force for
the completion of the carbon peak and carbon neutrality revolution.

The traditional power system development mainly considers the two dimensions of
security and economy [3,4]. Under the requirements of the carbon emission reduction,
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the construction of renewable-dominated electric power systems needs to take low car-
bon emission into account in each key link [5]. The power system should change from a
high-carbon one to a low-carbon or even a zero-carbon one on the premise of meeting the
requirements of economic development. At present, many research works have combined
the construction of renewable-dominated electric power systems with carbon emission
evaluation [6], carbon trading market [7], carbon footprint [8] and other research to promote
the low-carbon level in all links of the power system. In [9], the impacts of carbon tax on
the demand side and supply side participants of the power system are analyzed, which
provides guidance for the formulation of carbon emission policy. In [10], four specific indi-
cators based on the concept of carbon emission flow are proposed to realize the quantitative
analysis of carbon emission in the process of power transmission. In [11], a low-carbon eco-
nomic dispatching model considering power to gas (P2G) and carbon capture technology
is presented, which effectively reduces the carbon emission of the distribution network.
In [12], the carbon emission cost of the substation is introduced into the objective function
of a two-stage stochastic expansion planning model for the distribution network, which
decides the configuration scheme of line, substation, DG and electric vehicle charging
stations. The above research provides important references for research on low-carbon
planning of power systems. However, references [6–12] mainly focus on the carbon emis-
sion of the power system in the operation stage and do not consider the comprehensive
carbon emission of power equipment in the full life cycle of manufacturing, installation,
production, operation, maintenance and recycling [13]. To solve this problem, [14] repre-
sents the evaluation method of carbon emission benefits of wind power generation and
energy storage systems (ESS) in the full life cycle and analyzes the impacts of wind power
generation and ESS on the low-carbon planning of distribution network. Nevertheless,
ref. [14] only discusses wind power generation without considering photovoltaics in the
distribution network. In [15], an evaluation method of carbon emission flow in the full life
cycle of the distribution network considering network loss is proposed, and the directed
graph of carbon emission footprint is drawn for a more intuitive display. However, ref. [15]
only considers the evaluation of carbon emission, while the application of carbon emission
in distribution network planning is not presented.

Renewable energy, such as solar energy and wind energy, is a kind of environment-
friendly energy that can support social and economic development [16,17]. By the end
of 2020, the total installed capacity of renewable energy power generation in China has
reached 930 million kW, accounting for 42.4% of the total installed capacity of power
generation [18]. In the future, renewable energy will replace traditional fossil energy to
provide basic power and promote the low-carbon process of the power industry. Renew-
able energy is mainly connected to the distribution network in the form of distributed
photovoltaic generation and distributed wind generation. Before planning, it is necessary
to evaluate the acceptance capacity of the regional distribution network for distributed
photovoltaic generation and distributed wind generation, which provides guidance for
the access of DG in the distribution network. References [19,20] analyze the acceptance
capacity of DG in the active distribution network under DG output scenarios with different
probability distributions based on the Monte Carlo simulation method. In [21], the point
estimation method and inverse Nataf transformation are used to investigate the impact
of correlated uncertainties of wind speeds and load on the acceptance capacity of DG.
In [22], an evaluation model of acceptance capacity of DG in the distribution network
considering the active adjustment through a static VAr compensator (SVC) and on-load
tap changer (OLTC) is proposed. In [23], the acceptance capacity of DG in the distribution
network is calculated, considering the phase mutual inductance and the line losses, which
avoids steady-state voltage and current violations. In [24], a robust optimization model
of acceptance capacity evaluation of DG is proposed, considering three-phase power flow
in the distribution network. The maximum penetration level and the planning scheme of
DG is obtained through solving the robust model with a three-step optimization algorithm,
which enhances the accuracy of DG capacity assessment results. The models proposed in
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references [19–24] are optimization models with the maximum DG acceptance capacity
as the objective function. The voltage deviation, voltage fluctuation and other operation
requirements of the distribution network are reflected in the constraints of the models.
Aimed at minimizing network loss, minimizing voltage deviation and maximizing voltage
stability index [25,26], respectively, use I-DBEA and an improved Harris Hawks algorithm
to solve the multi-objective planning model to evaluate the acceptance capacity of DG. The
studies [19–26] mainly focus on the acceptance capacity evaluation of DG, while the impact
of distributed photovoltaic generation and distributed wind generation on the carbon
emission of the distribution network is not discussed.

In order to promote the low-carbon transformation, an evaluation method of accep-
tance capacity of DG in the distribution network considering carbon emission is presented
in this paper. Firstly, a multi-objective evaluation model of the acceptance capacity of DG is
built. Secondly, the model is solved with the improved NSGA-II and the CPLEX Optimizer.
The improved NSGA-II is used to find the Pareto frontier solution set of the maximum
DG access scheme. The CPLEX Optimizer is used to solve the optimal power flow (OPF)
problems under each operation scenario for calculating the particle fitness. Then, based on
the distribution of Pareto frontier solutions, the weight of each sub-objective function is
obtained through the entropy weight method. By calculating the comprehensive index of
acceptance capacity evaluation, the optimal DG configuration scheme and the maximum
acceptance capacity of the distribution network are decided. Finally, the proposed method
is demonstrated in an actual 55-bus system. The main contributions of this paper are
as follows:

(1) The carbon emission is innovatively quantified as one of the sub-objectives of the
acceptance capacity evaluation model of DG. The proposed model aims to minimize
the carbon emission in the full life cycle, minimize the node voltage deviation and
maximize the line capacity margin, which comprehensively considers the reliable,
economic and low-carbon operation requirements of the distribution network with
high penetration renewable energy access.

(2) An improved NSGA-II is used to solve the proposed multi-objective optimization
model. By selecting the compromise optimal solution from the Pareto optimal solution
set, the compromise optimal solution, including the location and capacity decisions of
the candidate DG, obtained better performance.

2. Multi-Objective Evaluation Model of Acceptance Capacity of DG in Distribution
Network Considering Carbon Emission
2.1. Objective Function

Since the randomness and volatility of DG output increase as the capacity increases, the
operation scenarios of distribution networks tend to be diversified, which directly affects the
evaluation results [27]. As the traditional capacity evaluation for power system generation
only considers the peak scenario in one year and the security and stability of distribution
network operation [28], it is necessary to take the multi-type scenarios, which are based
on the uncertain load curves and generation output curves into consideration in DG
planning [29]. On the one hand, DG access should meet the power quality requirements of
the distribution network. Problems, such as harmonic injection, voltage deviation, voltage
imbalance, voltage fluctuation and voltage flicker, can be prevented after large-scale DGs
are connected to the distribution network [30]. On the other hand, the DG access scheme
needs to make sure that the target distribution network has flexible transfer capacity, which
means that the distribution network can optimize the operation mode according to the
operation demand at any time. In addition, in order to promote the full consumption and
efficient utilization of DG, the effect of distributed photovoltaic generation and distributed
wind generation access to the distribution network on the low-carbon transformation
should be discussed. It is necessary to analyze the carbon emission of the distribution
network throughout the full life cycle, which can be reflected in the objective function of
the evaluation model.
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In this paper, a multi-objective evaluation model of the acceptance capacity of DG in
the distribution network is established, aiming at minimizing carbon emissions throughout
the full life cycle, minimizing node voltage deviation and maximizing line capacity margins.
The operation problems in the distribution network with DG under different operation
scenarios are analyzed through optimal power flow (OPF) calculation. The operation
problem is solved with CPLEX Optimizer considering the power flow constraints, node
voltage constraints, line transmission capacity constraints, DG output constraints and load
loss constraints.

2.1.1. Minimizing Carbon Emission in the Full Life Cycle

Compared with fossil fuel power generation, wind power and photovoltaic generation
are not supposed to produce carbon emissions in the process of operation. However,
they still produce non-negligible carbon emissions in the process of manufacturing and
production. Based on the carbon emission coefficient of wind power, photovoltaic and coal-
fired power generation, the objective function f 1 of carbon emission of power generation in
full life cycle is expressed as:

min f1 = ∑
s∈Ωs

ps ∑
t∈T

(
∑

m∈ΩWT

RWT PWT
m,t,s∆t + ∑

n∈ΩPV

RPV PPV
n,t,s∆t +

NG

∑
i∈ΩG

RGPG
i,t,s∆t

)
(1)

where Ωs, T, ΩWT, ΩPV and ΩG are the sets of operation scenario, daily scheduling period,
distributed photovoltaic generation, distributed wind generation and power source of the
superior power grid, respectively. ps is the probability of the scenario s. RWT, RPV and
RG are carbon emission coefficients in the full life cycle of distributed wind generation,
distributed photovoltaic generation and coal-fired power generation, respectively. PWT

m,t,s,
PPV

m,t,s and PG
m,t,s are the output active power of distributed wind generation, distributed

photovoltaic generation and power source of the superior power grid in the scheduling
period t of node m under scenario s, respectively. ∆t is the length of unit scheduling period.

2.1.2. Minimizing Node Voltage Deviation

After the DG is connected to the distribution network, the traditional distribution
network with passive and unidirectional power flow becomes the new distribution net-
work with active and bidirectional power flow. When the output of DG increases, the
transmission power decreases. If the access capacity of DG is too large, the power reverse
transmission may even occur, and the increase of node voltage will cause overvoltage
problems and reduce power quality. Therefore, the objective function f 2 of node voltage
deviation is expressed as:

min f2 = ∑
s∈Ωs

ps ∑
t∈T

∑
m∈Ωnode

(
Pnode

m,t,s − PWT
m,t,s − PPV

m,t,s

I2
mn,t,s

−U2
m,0

)
(2)

where Ωnode is the set of nodes. Um,0 is the rated voltage of node m. Imn,t,s is the current
flowing through line mn in scheduling period t under scenario s.

2.1.3. Maximizing Line Capacity Margin

Due to the large-scale access of DG to the distribution network and the rapid growth of
load, the peak valley difference of the distribution network load increases gradually, which
obviously may change the operation mode. It is necessary to ensure that the distribution
network has good adaptability in order to meet the flexibility requirements by leaving a
certain line capacity margin. Therefore, the objective function f 3 of line capacity margin is
expressed as:

max f3 = ∑
s∈Ωs

ps ∑
t∈T

∑
(m,n)∈Ωnode

(
Imn,max − Imn,t,s

Imn,max

)
(3)
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where Imn,max is the maximum allowable transmission current of line mn.

2.2. Constraints

The constraints of the proposed multi-objective evaluation model include power flow
constraints, node voltage constraints, line transmission capacity constraints, DG output
constraints and load loss constraints.

2.2.1. Power Flow Constraints

The AC power flow constraints of distribution network with DG are expressed
as follows:

Pm,t,s = Um,t,s ∑
n∈Ωnode

m

Un,t,s(Gmn cos θmn + Bmn sin θmn) ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (4)

Pm,t,s = PG
m,t,s + PWT

m,t,s + PPV
m,t,s + Ploss

m,t,s − Pnode
m,t,s ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (5)

Qm,t,s = Um,t,s ∑
n∈Ωnode

m

Un,t,s(Gmn cos θmn − Bmn sin θmn) ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (6)

Qm,t,s = QG
m,t,s + QWT

m,t,s + QPV
m,t,s + Qloss

m,t,s −Qnode
m,t,s ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (7)

where Ωnode
m is the node set connected to node m. Pnode

m,t,s and Ploss
m,t,s are the active power of

load and energy not supply at node m in scheduling period t, respectively. QWT
m,t,s, QPV

m,t,s,
QG

m,t,s, Qnode
m,t,s and Qloss

m,t,s are the reactive power of distributed wind generation, distributed
photovoltaic generation, power source of the superior power grid, load and energy not
supplied in the scheduling period t of node m under scenario s, respectively. Um,t,s and Un,t,s
are the voltage of node m and n in scheduling period t under scenario s, respectively. Gmn
and Bmn are the conductance and susceptance of line mn, respectively. θmn is the voltage
phase difference between node m and node n.

2.2.2. Node Voltage Constraints

The node voltage amplitude at any time should meet the constraints of upper and
lower voltage limits for the secure operation, which is expressed as:

Um,min ≤ Um,t,s ≤ Um,max ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (8)

where Um,max and Um,min are the upper and lower voltage limits of node n, respectively.

2.2.3. Line Transmission Capacity Constraints

In order to avoid line overload, the active power flowing through the line should not
exceed the transmission capacity of the line, which is represented as:

Pmin
mn,t,s ≤ Pmn,t,s ≤ Pmax

mn,t,s ∀m ∈ Ωnode, n ∈ Ωnode
m , ∀t ∈ T, ∀s ∈ Ωs (9)

where Pmin
mn,t,s and Pmax

mn,t,s are the upper and lower limits of the active power flowing through
line mn in the scheduling period t under scenario s, respectively.

2.2.4. DG Output Constraints

The actual output of DG is constrained by the installed capacity and the maximum
allowable wind power and photovoltaic abandonment rate, which are represented as:

(1− αPV)PPV
max,m,t,s ≤ PPV

m,t,s ≤ PPV
max,m,t,s ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (10)

(1− αWT)PWT
max,m,t,s ≤ PWT

m,t,s ≤ PWT
max,m,t,s ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (11)

QPV
min,m,t,s ≤ QPV

m,t,s ≤ QPV
max,m,t,s ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (12)
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QWT
min,m,t,s ≤ QWT

m,t,s ≤ QWT
max,m,t,s ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (13)

where αPV and αWT are the maximum allowable abandonment rate of wind power and
photovoltaic, respectively.

2.2.5. Load Loss Constraints

To ensure the reliability of power supply, the energy not supplied should not exceed
the limit value, which is expressed as:

0 ≤ Ploss
m,t,s ≤ βPnode

m,t,s ∀m ∈ Ωnode, ∀t ∈ T, ∀s ∈ Ωs (14)

where β is the maximum energy not supplied rate.

3. Solving Process of Acceptance Capacity Evaluation of DG in Distribution Network
Based on Improved NSGA-II

The solving process of the proposed evaluation model consists of two successive
phases. First, the Pareto frontier solution set of the acceptance capacity is obtained by
the proposed improved non-dominated sorting genetic algorithm II (NSGA-II). Then, the
entropy weight method is used to obtain the comprehensive index value of the acceptance
capacity. After sorting all Pareto frontier solutions according to the comprehensive index
value, the compromise optimal solution is obtained, which can be used to determine the
maximum acceptance capacity of DG.

3.1. Phase I: The Acquirement of the Pareto Frontier Solution Set with NSGA-II for Acceptance
Capacity Evaluation of DG

The acceptance capacity evaluation of DG in the distribution network presented in this
paper belongs to a multi-objective optimization problem. Under different distribution net-
work scenarios, the importance of each objective changes dynamically. Different objectives
may have conflicts in the optimization process. The improved NSGA-II is used to solve the
proposed model, which cannot be solved by the traditional single-objective optimization
method. According to the improved NSGA-II based on the Pareto optimal concept, the
individuals are layered and sorted according to the dominant relationship before selecting
genetic operators. The congestion comparison operator and the elite strategy are introduced
to obtain new offspring by selecting the operator with high congestion and competing with
the offspring and parents. The improved NSGA-II has the advantages of fast solution speed
and good population diversity. At the same time, in order to prevent the optimal solution
generated in the process of evolution from being destroyed by crossover and mutation,
the proposed algorithm sets up a Pareto optimal solution set to store the Pareto optimal
solution and uses the solution to find the optimal compromise solution. Based on the
improved NSGA-II, the solving process for the Pareto frontier solution set of the evaluation
of the acceptance capacity of DG in distribution network is as follows:

1. Input the distribution network topology information and parameters and set k = 1;
2. Initialize the parent population of DG access scheme;
3. Calculate the carbon emission in the full life cycle, the node voltage deviation and the

line capacity margin of each parent population;
4. Use NSGA-II to sort the parent population;
5. Use the tournament method to screen the parent population;
6. Cross and mutate the screened parent population to obtain the offspring population;
7. Calculate the carbon emissions of the full life cycle (f 1), the node voltage devia-

tion (f 2) and the line capacity margin (f 3) of the k-th generation population of DG
access scheme;

8. Merge the parent and offspring populations of the k-th generation DG access scheme;
9. Use the improved NSGA-II and congestion calculation to sort the merged k-th genera-

tion DG access scheme;
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10. Screen the merged k-th generation DG access scheme with the elite strategy to obtain
the k+1-th generation population and set k = k + 1;

11. Update the Pareto optimal solution set according to the dominant relationship between
the corresponding objective function values of each particle in the population;

12. If k reaches the maximum number of iterations, output the Pareto optimal solution set
of the acceptance capacity evaluation of DG; otherwise, turn to Step 6.

3.2. Phase II: The Determination of the Optimal Compromise Solution with the Entropy Weight
Method for the Acceptance Capacity Evaluation of DG

In order to determine the optimal compromise solution from multiple solutions, the
entropy weight method is employed in this section. Since the sub-objectives proposed in
this paper are evaluation indexes with different dimensions, the objective functions of the
Pareto frontier solution set need to be standardized. On the one hand, the carbon emissions
throughout the full life cycle and the node voltage deviation belong to the cost objective
function. The smaller the value of the objective function, the better the corresponding index.
On the other hand, the line capacity margin belongs to the benefit objective function. The
larger the objective function, the better the corresponding index. Therefore, the presented
three sub-objectives need different standardization according to their types. For the r-th
Pareto optimal solution, the standardization formula of cost and benefit objective functions
gr are presented as:

gr =


fmax − fr

fmax − fmin
fr − fmin

fmax − fmin

(15)

In order to obtain the Pareto optimal solution for the acceptance capacity evaluation
of DG, it is necessary to calculate the comprehensive index of the three sub-objectives.
The entropy weight method is used to determine the weight of each sub-objective in
the comprehensive index: the greater the dispersion of the value of the sub-objective,
the greater the entropy of the sub-objective, which means that the impact of the index
on the comprehensive evaluation is greater. The entropy weight method can adaptively
distinguish the importance of each sub-target, which makes the weighting more objective.
For the Pareto optimal solution set with Y objective functions and R solutions, the entropy
of the y-th objective function Ψy can be obtained by Equation (16), which is expressed as:

Ψy =

−
1

ln R

N
∑

j=1
(ψ

y
r ln ψ

y
r

)
ψ

y
r 6= 0

0 ψ
y
r = 0

(16)

where ψ
y
r = gy

r /
R
∑

r=1
gy

r .

The Pareto frontier solution with the maximum comprehensive index value Gr is the
optimal compromise solution for DG access. The maximum comprehensive index value Gr
is expressed as:

Gr =
M

∑
i=1

Πygy
r (17)

The optimal compromise solution comprehensively considers the requirements of
secure operation, good flexibility and low carbon emission of the distribution network.
The total capacity of the connected DG is the maximum capacity for DG of the regional
distribution network.

3.3. Model Solving Process

The flowchart of the proposed evaluation model of acceptance capacity of DG is shown
in Figure 1.
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Figure 1. Flowchart of the proposed evaluation model for the acceptance capacity of DG in distribu-
tion networks.

4. Case Study

An actual 20 kV 55-bus distribution network is used to illustrate the effectiveness of the
proposed model. The topology of the distribution network is shown in Figure 2, including
2 substation nodes, 53 load nodes and 53 lines. The candidate nodes for distributed
photovoltaic generation configuration consist of nodes 3, 5–7, 9, 11, 12, 29, 30, 34, 36, 37,
39–41, 50, 54 and 55. The candidate node for the distributed wind generation configuration
is node 51.

The evaluation model takes the actual distributed photovoltaic generation, distributed
wind generation output and load curves of the region into consideration. Based on three
distributed wind generation output curves and four distributed photovoltaic generation out-
put curves, 12 daily operation scenarios are formed. Each daily operation scenario includes
six scheduling periods. The output curves after standardization are shown in Figure 3.
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The population size of improved NSGA-II is set to 100, the number of iterations to 100,
the crossover probability to 0.7 and the mutation probability to 0.3. The change in the
number of Pareto frontier solutions with the number of iterations is shown in Figure 4. It
can be seen from Figure 4 that the improved NSGA-II can converge when iterating 26 times.
The Pareto frontier solution set of the acceptance capacity of DG is solved and shown
in Figure 5.

In Figure 5, the Pareto solutions are scattered in the Pareto front of the three-dimensional
objective function space. All points represent a non-dominated DG access scheme with
low congestion and good distribution. The red point represents the optimal compromise
solution (scheme 31), which is obtained after calculating the comprehensive index value
through the entropy weight method. The corresponding DG access scheme is shown in
Table 1. The red point also represents the single objective optimal solution (i.e., boundary
solution) of the minimum carbon emissions of the full life cycle. Compared with the two
boundary solutions of the minimum node voltage deviation and maximum line capacity
margin, the objective function value of the node voltage deviation f 2 in the optimal solution
is 1.5% higher than the optimal value (i.e., the minimum value) in all Pareto frontier
solutions, and the objective function value of line capacity margin f 3 in the optimal solution
is 0.1% lower than the optimal value (i.e., the maximum value) in all Pareto frontier
solutions. This indicates that the optimal compromise solution not only takes into account
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the security and economy of distribution network operation but also has the lowest carbon
emission from the perspective of the full life cycle.
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Table 1. The DG access scheme of the optimal compromise solution (scheme 31).

Number of Node Capacity of DG (MW) Number of Node Capacity of DG (MW)

3 3.4 36 6.3
5 3.5 37 7.7
6 5.2 39 1.6
7 7.2 40 9.7
9 8.3 41 9.5
11 8.5 50 5.2
12 7.7 51 8.0
29 6.5 54 0.9
30 1.3 55 3.8
34 0.6

Figures 6–8 compare the three sub-objectives of each boundary solution under sce-
nario 5. It can be seen from Figures 6–8 that the fitness of the corresponding optimal
sub-objective of each boundary solution is better than that of the other two boundary
solutions in each scheduling period. Scheme 9 is the boundary solution of the line capacity
margin. In each scheduling period, the line capacity margin of scheme 9 (i.e., f 9

3 ) is greater
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than that of schemes 24 and 31 (i.e., f 24
3 and f 31

3 ). In scheduling period 4 with more DG
output, f 9

3 is 4.4% and 2.7% higher than f 24
3 and f 31

3 , respectively. Scheme 24 is the boundary
solution of node voltage deviation. In each scheduling period, the node voltage deviation
of scheme 24 (i.e., f 24

2 ) is less than that of schemes 9 and 31 (i.e., f 9
2 and f 31

2 ). In scheduling
period 4, f 24

2 is 42.0% and 32.9% lower than f 9
2 and f 31

2 , respectively.
The total amount of DG access of each Pareto frontier solution is shown in Figure 9.

In Figure 9, the total acceptance capacity of DG in schemes 9, 24 and 31 are 109.7 MW,
84.0 MW and 105.0 MW, respectively. It can be seen from Figures 7–9 that the larger the
acceptance capacity of DG, the greater the impact of DG on the distribution network. The
increase of line capacity margin means the improvement of line load transfer capacity and
the node voltage deviation means the power quality degradation.

In Figure 9, the total amount of DG access in schemes 41 and 48 are 119.4 MW and
70.0 MW, which are the schemes with the largest and smallest DG access among the Pareto
frontier solutions. The penetration rates of DG in schemes 31 (i.e., the optimal compromise
solution), 41 and 48 are 77.0%, 87.6% and 51.4%, respectively. It can be seen that the
distribution network system used in this case study has a good acceptance capacity of DG.
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Using the entropy weight method, the weights of the three objective functions for
calculating the comprehensive index are 0.42, 0.30 and 0.28 respectively. It can be seen that
in the Pareto optimal solution set, the dispersion of the objective function of the carbon
emission level throughout the full life cycle is greater than that of node voltage deviation
and line capacity margin, which indicates higher weight. The dispersion of the objective
function of the node voltage deviation is equivalent to that of the line capacity margin. It
illustrates that when evaluating the acceptance capacity of DG, the importance of the two
objective functions and the weight obtained are similar. The optimal compromise solution
not only takes into account the requirements of the distribution network operation economy
and reliability but also meets the needs of low-carbon development of distribution network.

The function values of the optimal compromise solutions obtained by the traditional
NSGA-II and the proposed improved NSGA-II are compared in Table 2. The f 1 and f 2 of
Case 1 are 2.9% and 4.9% less than that of Case 2, respectively. The f 3 of Case 1 is 0.1%
more than that of Case 2. This demonstrates that the performance of the improved NSGA-II
in finding the optimal solution is better than that of the traditional NSGA-II. In addition,
the total acceptance capacity of DG of Case 2 is 97.9 MW, which is 6.8% less than that of
Case 1, which indicates that according to the proposed improved NSGA-II, more DGs can
be configured in the distribution network.
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Table 2. Comparison of objective function values between different algorithms.

Case Algorithm
Minimum Carbon Emission

of the Full Life Cycle
(f 1)

Minimum Node
Voltage Deviation

(f 2)

Maximum Line
Capacity Margin

(f 3)

1 Improved
NSGA-II 2536.58 1251.98 3224.30

2 NSGA-II 2609.22 1313.36 3222.40

5. Conclusions

In this paper, an evaluation model of acceptance capacity of DG in distribution network
considering carbon emission is established. The model comprehensively considers the
security, economy and low-carbon requirements of distribution network operation against
the background of the rapid development of DG, including reducing the carbon emissions
of the full life cycle, reducing the node voltage deviation and improving the line capacity
margin. To guide the planning and configuration of DG more accurately, the proposed
evaluation model fully considers the operation optimization problem of the distribution
network under different wind and photovoltaic output scenarios. Considering that the
model is a multi-objective optimization problem, an improved NSGA-II is proposed in
this paper. The entropy weight method is used to quantitatively analyze the importance of
each sub-objective in the Pareto solution set. Through calculating the comprehensive index
value of acceptance capacity, the optimal compromise solution is obtained. The simulation
results illustrate that a large amount of DG access will aggravate the voltage fluctuation and
improve the line capacity margin of the distribution network, which shows the necessity
of the scientific evaluation of DG acceptance capacity. The acceptance capacity evaluation
proposed in this paper can effectively evaluate the maximum acceptance capacity of DG
and provides guidance for DG configuration in the distribution network.

In addition, because the output of DG has the characteristics of uncertainty and
fluctuation, the charging and discharging function of energy storage systems (ESSs) play
an important role in improving the utilization rate of sustainable energy. It is meaningful
to consider the coordinated configuration of DG and ESSs when evaluating the acceptance
capacity of DG in the distribution network. The operation and the benefit of carbon
emissions throughout the full life cycle of ESSs will be the focus of further research on the
acceptance capacity evaluation model of DG in the distribution network.
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