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Abstract: Based on the COMSOL software, body forces substituted into the Reynolds-averaged
Navier–Stokes (RANS) equations as the source terms instead of the actual blade rows were improved
to better predict the compressor performance. Improvements in parallel body force modeling were
implemented, central to which were the local flow quantities. This ensured accurate and reliable
off-design performance prediction. The parallel force magnitude mainly depended on the meridional
entropy gradient extracted from three-dimensional (3D) steady single-passage RANS solutions. The
COMSOL software could easily and accurately translate the pitchwise-averaged entropy into the grid
points of the body force domain. A NASA Rotor 37 was used to quantify the improved body force
model to represent the compressor. Compared with the previous model, the improved body force
model was more efficient for the numerical calculations, and it agreed well with the experimental
data and computational fluid dynamics (CFD) results. The results indicate that the improved body
force model could quickly and efficiently capture the flow field through a turbomachinery blade row.

Keywords: improved body force model; off-design; Reynolds-averaged Navier–Stokes equations;
meridional entropy gradient; rotor 37

1. Introduction

Because axial compressors often operate under off-design conditions, aircraft engines
must have good performance [1]. The performance of the compressor under off-design
conditions must be accurately estimated during the engine design stage [2,3]. Computa-
tional fluid dynamics (CFDs) have been considerably developed in recent decades and
can accurately and efficiently simulate the flow field and estimate the axial compressor
performance [4–6]. However, 3D, unsteady, multi-row calculations through the compres-
sor or a coupled inlet fan with the actual blade geometry demand significant computer
resources, including CPU time and memory [7,8]. Moreover, lots of flow field simulations
are required [9,10]. To save computer resources, a passage-averaged body force model
substituted into the RANS equations as the source terms instead of the actual blade rows
is proposed herein and used to simulate the pressure rise, flow turning, and loss effects
caused by the rotor/stator blade rows with reasonable computer resources [11,12].

Kim developed a body force approach to simulate the flow fields of N3-X. It was
assumed that entropy production was related to the mass flow rate (MFR) at a constant
speed [13,14]. Li et al. developed a method to perform the coupled inlet-fan Navier–Stokes
simulation using the COMSOL–CFD code [15]. The advantage of this method was that the
COMSOL–CFD code is a completely open architecture, and the flux terms in the RANS
equations can be altered without compromising the computational stability. Source terms
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and boundary conditions can be functions or logical expressions of arbitrary variables.
The body force terms were inputted into the COMSOL–CFD code and could directly
simulate the viscous flow close to the blade passage walls and the momentum exchange
between fluids. However, the parallel force model had limitations when calculating the
local parallel force magnitude, which was proportional to the square of the total relative
velocity [13]. The adjusting function g(ṁlocal) in the normal force formula, which depends
on the local MFR, also makes the numerical simulation complicated and tedious [14,15].
Based on the work [15], an improved body force model was proposed using the COMSOL–
CFD code. The COMSOL software can easily facilitate all steps in the modeling, part
definition, meshing, simulation, and data post processing processes. In this study, the
parallel force formula was modified using Marble’s results [16], which indicated that
the parallel force magnitude was proportional to the meridional entropy gradient. The
magnitude of the meridional entropy gradient was estimated from the 3D steady single-
passage RANS solutions of the compressor. The COMSOL software could accurately
translate the pitchwise-averaged entropy into the grid points of the body force domain. The
normal force formula no longer contained the term g(ṁlocal), which made the simulation
processes efficient. A NASA Rotor 37 was used to quantify the improved body force model
to represent the compressor.

The rest of this paper is organized as follows: Section 2 introduces the construction of
the improved model; Section 3 explains the computational case and numerical techniques
for flow simulations; Section 4 verifies this model, and in closing, Section 5 presents an
overall conclusion drawn.

2. Improved Body Force Model
2.1. Governing Equation

In this paper, the governing equations [15] in Cartesian coordinates can be written in
a non-conservative form, and the body force terms were added on the right-hand side as
source terms, as follows.

b
[

∂ρ
∂t +∇ · (ρV)

]
b
[
ρ DVx

Dt + ∂p
∂x −

∂τxx
∂x −

∂τyx
∂y −

∂τzx
∂z

]
b
[
ρ

DVy
Dt + ∂p

∂y −
∂τxy
∂x −

∂τyy
∂y −

∂τzy
∂z

]
=Φ

b
[
ρ DVz

Dt + ∂p
∂z −

∂τxz
∂x −

∂τyz
∂y −

∂τzz
∂z

]
b

 ρ De
Dt − ( ∂

∂x

(
k ∂T

∂x

)
+ ∂

∂y

(
k ∂T

∂y

)
+ ∂

∂z

(
k ∂T

∂z

)
− ∂(up)

∂x −
∂(vp)

∂y −
∂(wp)

∂z + ∂(uτxx)
∂x

+
∂(uτyx)

∂y + ∂(uτzx)
∂z +

∂(vτxy)
∂x +

∂(vτyy)
∂y +

∂(uτzy)
∂z + ∂(wτxz)

∂x +
∂(wτyz)

∂y + ∂(wτzz)
∂z )


(1)

where τxx = 2
3 µ
(

2 ∂u
∂x −

∂v
∂y −

∂w
∂z

)
, τxy = τyx = µ

(
∂v
∂x + ∂u

∂y

)
, τyy = 2

3 µ
(
− ∂u

∂x + 2 ∂v
∂y −

∂w
∂z

)
,

τxz = τzx = µ
(

∂u
∂z + ∂w

∂x

)
, τzz =

2
3 µ
(
− ∂u

∂x −
∂v
∂y + 2 ∂w

∂z

)
, τyz = τzy = µ

(
∂w
∂y + ∂v

∂z

)
, the energy

e is given by e = CvT + 0.5
(

V2
x + V2

y + V2
z

)
; the pressure p is given by p = (γ− 1)(

e− 0.5ρ
(

V2
x + V2

y + V2
z

))
; the blockage b can be modeled as b =

∣∣θs − θp
∣∣N/2π to ac-

count for the blade thickness, and the source term Φ is given by Φ = Φ′ + Φ′′. Φ′ and Φ′′
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In Equation (1), the energy equation of the fluid contains the internal energy and the
mechanical energy. So, the differential form of the energy equation can be written as
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From Equation (6), it can be seen that the body force can only change the size of the
mechanical energy with nothing on the internal energy. So, Equation (1) can be written as
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where

Φ′′′ = (0 0 0 0 − (V x(Φ
′
x + Φ′′ x) + Vy(Φ′y + Φ′′ y) + Vz(Φ′z + Φ′′ z)))

T (8)

2.2. Construction of the Body Force

In this model, the blade force on a cascade section was separated into two parts that
were parallel and normal to the local flow, as shown in Figure 1. The normal force Fn
represents the effects of the pressure difference, and the parallel force Fp is related to the
viscous shear.
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2.2.1. Normal Body Force

The body force normal to the flow direction, Fn, is formulated as follows:

Fn =
Kn

h
VnVp +

2
c

sin(
∆α

2
)V2

n (9)

where h, Vn, Vp, and ∆α are the blade-to-blade gap-staggered spacing, axial velocity, circum-
ferential velocity, and the camber angle difference between the trailing edge and leading edge,
respectively. Kn is the normal force coefficient [13] formulated in Equation (10). The second
expression on the right-hand side of Equation (9) was different from Gong’s formulation:

Kn = (4.2− 3.3α) f (r) (10)

Here, the second expression f(r) was used to adjust the normal force coefficient Kn,
which was a line segment connected by a few control points along the spanwise direction.
The components of the normal force Fn in the x, y, and z directions are expressed as:

Fn,x = Fn
Vz cos θ−Vy sin θ

Vrel

Fn,y = −Fn
Vx
Vrel

sin θ,
Fn,z = Fn

Vx
Vrel

cos θ

(11)

where Vrel is the relative blade velocity.

2.2.2. Parallel Body Force

The parallel body force is always tangential to the relative flow and represents the
effects of the mixing of the tip leakage flow and main flow and flow blade surface boundary
layers. The parallel body force Fp is formulated as follows [11]:

Fp = −
Kp

h
V2

rel (12)
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where the parallel force coefficient Kp is equal to 0.04. In a fixed speed, the magnitude of Fp
increases as the MFR increases. The entropy production across the blade domain decreases
as the MFR increases. The parallel body force Fp can be expressed as:

Fp = −T
Vm

Vrel

∂s
∂m

(13)

where s is the entropy; T is the temperature, and m is the coordinate along the meridional
streamline (Figure 2). Instead of Gong’s model, Equation (13) was used herein to calculate
the magnitude of the local parallel force because the direct relationship between the merid-
ional entropy gradient and the parallel body force makes the modeling process of the body
force easier and more physical.
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The velocity Vm and the partial differential ∂m can be written using the follow
-ing transformations:

dm2 = dx2 + dr2

V2
m = Vx

2 + Vr
2

Vm∂m = Vx∂x + Vr∂r

(14)

Hence, Equation (13) becomes simply

Fp = − T
Vrel

(Vx
∂s
∂x

+ Vr
∂s
∂r

) (15)

where ∂s/∂x and ∂s/∂r are the local entropy gradients along the axial and radial directions,
respectively. The local gradients of the pitchwise-averaged entropy generated across the
blade rows extracted from the 3D steady single-passage RANS solutions are used as the
input terms to Equation (15). The components of the parallel force Fp in the x, y, and z
directions are expressed as:

Fp,x = Fp
Vx

Vrel
, Fp,y = Fp

Vy

Vrel
, Fp,z = Fp

Vz

Vrel
(16)

3. Computational Case and Numerical Techniques

Figure 3 briefly shows the demand on the computational accuracy versus the computer
resources for different levels of numerical techniques [17]. It is obvious that the improved
body force model can be relatively independent of the empiricism and cost much less
computer resources than the RANS model within a proper accuracy range [18]. Below,
the RANS model and improved body force model were used to simulate the flow field
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performances of Rotor 37. Compared with the experimental data, the results were analyzed
to further validate the accuracy of the improved body force model.
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3.1. Compressor Used for Study

A transonic compressor, a NASA Rotor 37, as shown in Figure 4, was used to validate
the improved body force model because it is a well-documented and typical test case.
This section presents the CFD tool and methodologies. The main design parameters are
summarized in Table 1.
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Figure 4. Schematic of the NASA Rotor 37.

Table 1. Design parameters of the NASA Rotor 37.

Parameters Value

Blade number 36
Inlet hub-to-tip ratio 0.7

Blade aspect ratio 1.19
Tip solidity 1.29

Tip relative inlet Ma 1.48
Rotating speed (rpm) 17,188
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Table 1. Cont.

Parameters Value

Mass flow rate (kg/s) 20.19
Total pressure ratio 2.106

Adiabatic efficiency (%) 87.7

3.2. CFD Methods
3.2.1. Turbomachinery Flow Simulation

In this study, the commercial solver NUMECA FINE was used as the CFD tool for 3D
steady single-passage flow simulations of the compressor. And then later on, the meridional
entropy gradient of the compressor was extracted from steady RANS solutions simulated
by the NUMECA FINE to calculate the parallel force magnitude. Finally, the experimental
data and NUMECA FINE results were used to compare with results obtained by the
improved body force model. In detail, the temporal and spatial discretization schemes were
selected as the explicit fourth-order Runge–Kutta scheme and second-order accurate central
difference scheme, respectively. Based on previous studies [15,19,20], the one equation
Spalart–Allmaras (S–A) turbulence model was used. Some acceleration techniques, such
as implicit residual smoothing and local time stepping methods, were employed [21].
The single-blade passage simulation was performed with periodic boundary conditions
in the circumferential direction. At the inlet, the total temperature and pressure were
specified along with the flow angle. The outlet of the computational domain was located
at approximately two chords downstream of the rotor. At the outlet, based on the radial
equilibrium, the averaged static pressure was given. Adiabatic and no-slip conditions were
given on solid surfaces.

In this paper, all computations were performed using identical boundary conditions.
Figure 5 shows the computational meshes for the Rotor 37. A periodic multi-block O4H-
type structured grid was used in each blade channel. An O-type grid and an H-type grid
were employed around the blade surface and the remaining regions, respectively. The
minimum grid orthogonal angle was greater than 30◦, and y+ near the wall was less than 5,
as shown in Figure 6.
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A series of computations were conducted with four different meshes to verify the
solution errors related to the grid by imposing the same boundary conditions, and the
MFR and adiabatic efficiency are shown in Figure 7. The figure illustrates that the adiabatic
efficiency and MFR remained basically the same when the mesh number reached 734,761.
So, the grid that consists of a total of 734,761 meshes was selected to achieve the mesh
independence needed to provide the flow field analysis in detail.
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3.2.2. HMNF Flow Simulation

High Mach Number Flow (HMNF) as a COMSOL–CFD module was selected to add
body forces into the governing equations for simulating the pressure rise, flow turning, and
loss effects caused by the blade rows in this study. The finite element method was employed
to discretize the RANS equations, and the one equation S–A turbulence model was used
the same as the turbomachinery flow simulation. In the HMNF module, segregated
solvers were used to compute the flux, in which Newton’s method was executed. For 3D
numerical full-annulus simulations, the full-annulus grid of the compressor was chosen
as a hexahedral structure grid, and local encryption near the wall was carried out. The
boundary conditions were the same as in the NUMECA FINE simulations. The HMNF
module computational mesh for the Rotor 37 is shown in Figure 8, and the rotor region is
marked in blue. The grid consists of a total of 75,600 meshes and is appropriate in achieving
the mesh independence needed to provide the flow field analysis in detail, as shown in
Figure 9.
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According to the above formulas, the magnitude of the body force is mainly determined
by the local flow field and blade geometry parameters. Before the numerical calculations,
it is necessary to discretize the blade geometry parameters into the body force domain grid
points, and it mainly includes the camber angle α, the blade-to-blade gap-staggered spacing h,
the blockage b, and the solidity σ as shown in Figure 10. The local gradient of the pitchwise-
averaged entropy as an input term to the parallel force formula was obtained from steady
RANS solutions simulated by the commercial solver NUMECA FINE in this study. Figure 11
shows the pitchwise-averaged entropy on the meridional plane for a 98% choked mass flow
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at 100% of the designed rotor speed. The number in Figure 11 represents the value of the
isentropic curve. The values of the entropy around the hub and shroud were larger, and the
loss, which degraded the compressor performance, was also larger. Because the body forces
were added into the governing equations as source terms, the improved body force formula
was defined at grid points of the body force domain. However, the body force model grid is
different from the pitchwise-averaged NUMECA FINE grid. The COMSOL software could
easily and accurately translate the body force formula inputs extracted from solutions solved
by the NUMECA FINE to grid points of the body force domain. Then, the values of the entropy
gradient along the axial and radial directions at those grid points could be determined.
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4. Model Validation

The flow field performances of the Rotor 37 were simulated using the NUMECA FINE,
and they improved the body force model. The simulated results were analyzed to further
validate the accuracy of the improved body force model.

Figure 12 illustrates a comparison of the Rotor 37 pressure ratio versus the MFR at
80%, 90%, and 100% of the designed rotor speed. It was shown that NUMECA FINE and
the improved body force model results agreed very well with the experimental data ob-
tained from the AGARD Advisory Report 355 entitled CFD Validation for Propulsion System
Components. The experimental values were slightly higher than the simulation results. The
maximum error was 1.2%. At other speeds, the simulation that used the improved body
force model generally agreed well with the NUMECA results. The maximum error was
1.9%, which was still within the acceptable error range. Compared with Li’s model [15], the
results using the improved body force model were better at lower MFR points. Therefore,
the improved body force model could capture the flow field through a turbomachinery
blade row well within a proper accuracy range.
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Figure 13 presents the pitch-averaged total temperature ratio, total pressure ratio,
Mach number, and swirl angle at the outlet along the spanwise direction for a 98% choked
mass flow (Figure 12) for the experimental data, NUMECA FINE, and body force models.
Compared with the Gong and Li models, the distributions of the performance parameters
around the hub and shroud obtained using the improved body force model were better
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and agreed well with the experimental data. The errors about the NUMECA FINE and
improved body force model in the comparisons with the experimental data in Figure 13a–c
are listed in Table 2. Figure 14 presents the Mach number contours, pressure contours, total
pressure contours, and swirl angle contours on the meridional plane for a 98% choked
mass flow. The comparison between the NUMECA FINE and the improved body force
model indicated that the results’ overall distribution trends were basically the same. In
the rotor region illustrated in Figure 14, it could be approximated that the pressure and
total pressure increased linearly along the streamwise direction. The inlet airflow was also
deflected through the blade passage, with the flow angle increasing almost linearly.
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It should be noted that based on the COMSOL software, this model could be further
optimized in future work. It could be assumed that the local entropy gradients ∂s/∂x and
∂s/∂r are functions of the local parameter ρVx, where Vx and ρ are the local axial velocity
and density, respectively. The values of the local entropy gradients ∂s/∂x, ∂s/∂r and the
local parameter ρVx were extracted from the 3D steady single-passage RANS solutions. In



Energies 2022, 15, 4389 17 of 18

that case, the flow field of aircraft/engine integration under clean and distorted inflows
can be simulated easily using this model.

5. Conclusions

Body forces substituted into the RANS equations as the source terms instead of the
actual blade rows solved using the COMSOL–CFD code were improved to better predict
the compressor performance. The flow field performances of Rotor 37, including the
pressure rise, flow turning, and loss effects caused by the blade rows were simulated by
the improved body force model. Compared with the experimental data, NUMECA FINE,
Gong’s model, and Li’s model the following conclusions can be drawn:

1. Based on the COMSOL software, the improved body force model could directly simu-
late the viscous flow close to the blade passage walls and the momentum exchange
between fluids. The improved parallel force formula is modified using Marble’s re-
sults, indicating that the magnitude of the parallel force is proportional to the entropy
gradient along the meridional streamline extracted from 3D steady single-passage
RANS solutions. Therefore, the modeling process of the body force is easier and
more physical.

2. The improved normal force formula no longer contains the term g(ṁlocal), which
makes the simulation processes more efficient. Compared with those of NUMECA
FINE, the total number of grid points for the HMNF module is less at least an order
of magnitude, and it takes less time to compute them. The simulation results for the
Rotor 37 indicate that the improved body force model could capture the flow field
through a turbomachinery blade row well within a proper accuracy range. When 3D,
full-annulus, unsteady, multi-row calculations through the compressor or integrated
calculations of the aircraft and engine were performed, the improved body forces
could be substituted into the RANS equations as the source terms instead of the actual
blade rows, and it could greatly reduce the total number of grid points and save
significant computer resources, including CPU time and memory.

3. Because body forces are added into the governing equations as source terms, the
improved body force formula was defined at grid points of the body force domain.
The COMSOL software could easily and accurately translate the body force formula
inputs extracted from solutions solved by the NUMECA FINE-Turbo EURANUS to
grid points of the body force domain. The COMSOL software environment can easily
facilitate all steps in the modeling, part definition, meshing, simulation, and data post
processing processes.
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