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Abstract: To address the problem that a single energy management strategy cannot adapt to complex
driving conditions, in this paper, a real-time energy management strategy for different driving
conditions is proposed to improve fuel economy. First, in order to improve the accuracy and stability
of the driving condition identifier, a feature fusion extreme learning machine (FFELM) is used for
identification. Secondly, equivalent consumption minimization strategy (ECMS) offline optimization
is conducted for different types of driving cycles, and the effect of driving cycle type and driving
distance on the energy management strategy under the optimization result is analyzed. A real-time
energy management strategy combining driving cycle type, driving distance, and optimal power
allocation factor is proposed. To demonstrate the effectiveness of the proposed strategy, combined
driving cycles were used for testing. The simulation results show that the proposed strategy can
improve the equivalent fuel consumption by 10.21% compared to the conventional strategy CD-CS.
The equivalent fuel economy can be improved by 2.5% compared to the single ECMS strategy with
the less computational burden. Thus, it is demonstrated that the proposed strategy can be effectively
adapted to different driving conditions and shows better real-time and economic performance.

Keywords: energy management strategy; feature fusion extreme learning machine; driving condition
identifier; real-time

1. Introduction

In recent years, with the development of the automobile industry, the vehicle has not
only improved human life but also caused a significant increase in energy consumption
and urban haze. Currently, the automotive industry has adopted the energy structure
transformation and will gradually replace the internal combustion engine (ICE) with
multiple energy sources. The existing industrial base, hybrid electric vehicles (HEV), and
electric vehicles (EV) are one of the best solutions to this problem at this stage [1–3]. Among
them, HEV refers to vehicles with two or more power sources, such as the most widely used
vehicles driven by a mixture of internal combustion engine and electric motor, and the type
and capacity of the battery in this system will directly affect the intensity of the mixture and
the space available for optimization. Compared with EV, HEV can effectively alleviate the
technical bottleneck of limited battery storage and the low range of pure electric vehicles
through multiple power sources. Therefore, for HEV, the question of how to design an
effective EMS to reasonably distribute the power sources is the key to improving energy
utilization and fuel economy [4].

The current research on EMS can be classified into rule-based algorithms and opti-
mization based algorithms [5,6]. Rule-based EMS is developed based on empirical rules
summarized by logic extracted from experts or experimental data [7,8]. The rule-based
EMS is practical because of its simple structure and reliable control performance. The most
typical one is the Charge Depletion–Charge Sustaining(CD-CS) strategy [9]. In the CD
phase, the power required by the vehicle is provided by the battery and ICE is started only
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when the required drive power exceeds the peak output of the motor. As SOC decreases to
the SOC objective value, the operating mode switches to the CS phase. In the CS phase, ICE
starts, and vehicle driving is completed by the ICE and motor in conjunction while keeping
SOC fluctuating around its target value. CD-CS, while offering significant improvements
in fuel economy over short distances, simply distributing power as the driving distance
increases does not ensure that the power source is working in the optimal efficiency zone.
At the same time, the development of the strategy is completely dependent on expert expe-
rience. Therefore, to address the limitations of the above rule-based strategies, EMS based
on optimization algorithms has received attention from many scholars and companies [10].

According to the optimization objective, EMS based on optimization algorithms can
be categorized into global optimization and instantaneous optimization [11]. Global op-
timization is used to compute the optimal control volume by minimizing the sum of
the objective functions. Dynamic programming (DP) [7,12,13], Pontryagin’s minimum
principle (PMP) [14,15], and intelligent algorithms [16,17] are normally used as global
optimization. In EMS applications, all future driving information, such as vehicle speed
profiles, road geography information, etc., is usually obtained in advance, and then the
global optimization method is used to achieve the power allocation of the engine and motor
by minimizing the objective function. However, the global algorithm is difficult to apply
to real-time strategy optimization due to complex road condition information and a large
number of iterative operations required. To reduce the computational burden and apply it
to real-time optimization, instantaneous optimization strategies have been proposed and
studied by many scholars [18,19].

Instantaneous optimization algorithms are used to determine the control variables by
minimizing the instantaneous objective function. The equivalent consumption minimiza-
tion strategy (ECMS) is the most representative instantaneous optimization method. This
method converts electrical energy consumption into equivalent fuel consumption at each
moment and uses it as an optimization objective. In the literature [20], ECMS was used
to minimize the fuel consumption of HEVs by power allocation between ICE and electric
motor, and the results showed that the strategy can effectively lead to a reduction in fuel
consumption. Similar studies were conducted by Gao et al. and Rousseau et al. The results
showed that ECMS can produce near-optimal results for fuel consumption minimization
even without driving information [21,22]. Mursado et al. proposed an adaptive equivalent
consumption minimization strategy (A-ECMS) for real-time energy management in hybrid
vehicles, which continuously changes the equivalence factor according to the road load
conditions to obtain an approximately optimal control signal for maintaining the charge.
By comparing the results obtained from the A-ECMS controller with those obtained from
the dynamic programming optimal controller, the authors conclude that the use of an
equivalent fuel consumption minimization strategy, which is much simpler than dynamic
programming, can lead to a suboptimal solution that differs little from the optimal solu-
tion [23]. However, the above strategies do not apply to the complicated driving conditions
in which most vehicles are driven. Therefore, adaptive energy management strategies are
more important to optimize vehicle performance under real driving conditions where there
are no predefined driving cycles.

Driving condition recognition methods can be roughly divided into three categories,
which include driving condition recognition based on neural network theory, driving
condition recognition based on cluster analysis, and driving condition recognition based
on fuzzy controller, and the driving condition recognition technology is mainly combined
with the energy management strategy of rules and the energy management strategy of
instantaneous optimization. In reference [24], driving condition recognition consists of two
parts: (1) driving condition information extractor and (2) driving environment recognizer.
In the literature, the driving condition information extractor extracts 16 feature parameters,
and the driving environment recognizer includes a road type recognizer, a driving style
recognizer, a driving trend recognizer, and a driving pattern recognizer. Among these
parameters, 11 typical driving conditions were selected and constructed by the learning
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vector quantization (LVQ) neural network algorithm in the road type recognizer. The latter
three recognizers (environment, driving trend, and driving style) were implemented by a
fuzzy controller. In the literature [25], a learning vector quantization (LVQ) neural network
is introduced for designing driving pattern recognizers based on the driving information
of the vehicle. This multimodal strategy can automatically switch to a genetic algorithm
optimized strategy for a specific driving condition depending on the difference in road
condition recognition results. In reference [26], a new hierarchical clustering method is
used to divide the duty cycle data into four groups, which are extracted from a sample
of historical driving condition cycles. A support vector machine approach is then used to
predict the current driving cycle based on the classification results. Finally, a switchable
drive controller is built based on the current operating cycle and slope information. Several
papers have investigated the relationship between computational accuracy and complexity.
In reference [27], the k-nearest neighbor algorithm is used to study the speed extracted
from facility-based driving cycles. Cross-validation techniques have been used to evaluate
the effect of window length on classification accuracy. The final selection was made with
10 driving modes and a window length of 60 s. In the literature [28], a K-means clustering
algorithm was used to classify the driving blocks. A novel driving pattern recognition
method was designed by combining variational pattern score (VMD) and extreme learning
machine (ELM).

In summary, the rule-based energy management strategy does not require high hard-
ware conditions for the controller and has good real-time and robustness. However, various
thresholds in the strategy are dependent on expert experience, and the driving distance is
mostly greater than the maximum distance of pure electricity in the actual environment.
The driving conditions are complex and variable, and it is difficult for the simple allocation
strategy to play a good fuel-saving potential. The global optimization strategy in the
optimization-based energy management strategy can certainly achieve the overall optimal
results. However, entire driving conditions cannot be predicted and its computation is
huge; thus, it is only suitable for offline optimization of fixed driving conditions and cannot
be controlled online in real-time. Although the transient-based optimization strategy can
achieve real-time optimization, the determination of the fuel-electricity conversion factor
is less adaptable to complex driving conditions. Moreover, there is little literature that
considers the influence of driving distance on energy management strategy in the above
strategies. Therefore, if an energy strategy can be designed to achieve real-time optimiza-
tion and adapt to different driving conditions and driving distances, the fuel economy of
the vehicle can be further improved.

Motivated by this, this paper proposes a real-time energy management strategy based
on FFELM driving condition recognition by combining the energy management strategy
based on transient optimization and driving condition recognition technology. The pro-
posed strategy can realize real-time online control and adapt to different driving conditions,
and good fuel economy can be achieved. Firstly, feature data of different typical driving
conditions are collected and counted, and an extreme learning machine based on feature
fusion is used to classify and identify the data. Then, ECMS is used to optimize the different
typical driving conditions offline, and initial SOC, driving distance, and power distribution
under the optimization results of each typical condition are fitted and quantified. Based on
the above, the FFELM-based driving condition identifier and the fitted quantized results are
applied to real-time energy management. A real-time control strategy that can dynamically
adjust the power distribution to adapt to different driving conditions is designed.

The main contributions of this paper are as follows: (1) To improve the accuracy and
robustness of the driving cycle identification technique, an extreme learning machine that
can fuse features is used to classify and identify different types of typical driving condition
data. (2) To analyze the effect of driving condition type and driving distance on energy
management strategy, ECMS is used for offline optimization of each typical driving condi-
tion, and the results are analyzed and quantified. (3) To reduce the computational burden
and improve the fuel economy in real-time situations, a real-time energy management
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strategy is designed that can be adapted to different driving conditions. The simulation
results demonstrate that the proposed strategy can achieve real-time power allocation and
improve energy utilization under complicated driving conditions.

2. Hybrid Powertrain Model Descriptions

In this paper, the hybrid powertrain structure is shown in Figure 1, which mainly
consists of an engine, clutch, motor, battery, and automatic mechanical transmission (AMT).
A design in which the engine and electric motor are installed on the same shaft is adopted.
In addition, the engagement and disengagement of the clutch allowed for the separate
or combined drive of the engine and electric motor. To meet the needs of the vehicle’s
drive torque and improve the efficiency of power source transmission, a five-speed AMT
was equipped to adjust the torque. Table 1 shows the main parameters of the hybrid
powertrain [29].

InverterInverter

Engine Clutch Motor AMT

Final 

gearBattery

Mechanical path

Electrical path

Inverter

Engine Clutch Motor AMT

Final 

gearBattery

Mechanical path

Electrical path

Figure 1. The structure of the hybrid powertrain.

Table 1. The parameters of the vehicle.

Component Parameters Value

Engine
Engine type 1.9L.SI

Maximum Power 63 kW @ 5500 rpm.
Peak Torque 145 Nm @ 2000 rpm.

Motor Motor type Permanent magnet motor
Maximum power 25 kW

Battery Battery type Lithium–ion
Capacity 25 Ah

Five-speed AMT Gear ratios 3.25/1.81/1.21/0.86/0.64

Final gear Gear ratio 4.06

Vehicle

Vehicle mass 1350 kg
Radius of tire 0.282 m

Vehicle front area 2 m2

Rolling resistance coefficient 0.014
Aerodynamic drag coefficient 0.335

2.1. Vehicle Dynamics Model

The focus of this paper is on the exploration of energy management strategy and the
performance of hybrid systems, including dynamics and economy. It does not need to
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deal with the lateral forces and vertical motions that the vehicle is subjected to during the
driving process. Therefore, only the longitudinal dynamics model is modeled. Since the
engine and motor are coaxially connected, the relationship between the resulting driving
torque and the power coupling torque can be expressed as follows:

Tw = (Te + Tm)igi0ηT + Tb (1)

where Tw is the wheel driving torque, Te and Tm is the engine torque and motor torque,
respectively, ig is the AMT ratio, i0 is the final gear ratio, ηT is the transmission efficiency,
and Tb is the braking torque. According to the power balance formula, the driving torque
required by the wheels during the driving process of the vehicle can be shown as follows:

Tw =

(
mg f cos α + mg sin α +

1
2

CD Aρv2 + δm
dv
dt

)
Rw (2)

where m represents the vehicle mass, gstands for the gravity acceleration, f denotes the
rolling resistance coefficient, α is the road angle, CD means the air resistance coefficient, A
is the frontal area, ρ indicates the air density, v is the vehicle velocity, δ is the rotating mass
coefficient, and Rw is the wheel radius.

2.2. Power Source Model

The engine burns fuel in the cylinder to produce a high temperature and pressure
gas that drives the piston in an up-and-down reciprocating motion. The entire process
is complex and involves several disciplines, and it is difficult to express its nonlinear
characteristics by mathematical models. Therefore, the engine model is simplified by using
a data modeling method based on engine data. The fuel consumption of the engine can be
expressed as follows:

Q f uel = Te · we · be · ∆t/(3600ρe) =
·

m f uel ∆t (3)

where Q f uel is engine fuel consumption, and ρe means fuel density. be is the fuel consump-
tion rate. m f uel is the fuel consumption per unit time. The fuel consumption rate can be
obtained by fitting a function to the data collected by the engine, which can be expressed as
follows.

be = f unction(we, Te) (4)

The fuel consumption rate is obtained as a function of the current engine speed and
torque, and engine fuel consumption rate data are shown in Figure 2a.
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Figure 2. The be map of the engine for (a) and efficiency map of the motor for (b).

In this paper, a permanent magnet synchronous motor is adopted as another power
source, which has a simple structure, reliable operation, easy maintenance, high output
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torque, and high power density. It can be used either as a drive motor or as a generator.
The two operating modes of drive and power generation can be indicated as follows:

Pm =

{
Tmwm

ηm
Tm > 0

Tmwmηm Tm < 0
(5)

where Pm is the motor power, wm is the motor speed, and ηm is the motor efficiency; it can
be obtained according to the motor efficiency in Figure 2b. When the motor is driving, the
motor torque is positive, and when the motor is generating, the motor torque is negative.

2.3. Battery Model

An internal resistance open-circuit model based on the battery terminal voltage and
internal resistance characteristics [30] was developed without considering the effect of
power variation on battery charging and discharging performance. The equivalent circuit
is shown in Figure 3a. According to Kirchhoff’s voltage law, the equation for calculating
the load current is derived for modeling. Based on the equivalent circuit, the battery pack
voltage U is obtained as follows:{

U = Uoc − Ibatt · Rint
Pbatt = U · Ibatt

(6)

where Uoc is the battery open-circuit voltage, Ibatt is the battery current, Rint is the battery
internal resistance, and Pbatt means the battery output power. According to the Equation
(6), the battery current can be expressed as follows.

Ibatt =
Uoc −

√
U2

oc − 4Rint · Pbatt
2Rint

(7)

Battery SOC is used to calculate the sum of charge and discharge. Battery SOC is
calculated as the sum of the charging and discharging currents, which results in a change
in battery charge.The specific expression can be expressed as follows:

SOC =

(
Qbatt − ∫

I
3600

dt
)

/Qbatt (8)

where Qbatt is the capacity of the battery. Neglecting the effects of battery temperature and
battery life on the internal resistance of the battery, the variation of internal resistance with
SOC is shown in Figure 3b. According to the Equations (7) and (8), the rate of change of
SOC is shown as follows.

·
SOC =

Uoc −
√

U2
oc − 4RintPbatt

2RintQbatt
(9)
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3. Driving Pattern Recognition Based on FFELM
3.1. Selection of Typical Driving Cycles

Due to the limitations of the existing experimental conditions and the complexity
of the actual vehicle driving condition data, this paper combines the existing European
standard driving cycles as analysis samples. According to different traffic conditions and
vehicle driving areas, the standard driving cycles can be divided into three categories:
urban, suburban, and high-speed. Urban congested road condition refers to the vehicle
driving in the center of the city: The traffic flow is large, and road approach congestion
leads to frequent vehicle starts and low speed; thus, NYCC and NewYorkBus are selected
as the reference driving cycles. The suburban driving cycle means that the vehicle often
drives at medium speed with fewer traffic lights; thus, the vehicle stops less often and
for a shorter period of time. Therefore, ECE_EUDC_LOW and UDDS are selected as the
reference driving cycles. The highway driving cycle refers to the vehicle driving speed
being higher than the normal highway, and most of the time, it is at high speed, and
the number of stops is lower. Therefore, HWFET and US06 are selected as the reference
conditions. The speed curves of each reference driving cycle are shown in Figure 4.

In order to improve the accuracy and real-time performance of driving cycle classifi-
cation, this paper selects 11 important driving condition feature parameters for analysis
according to the literature [24,25], including average speed v, maximum speed vmax, max-
imum acceleration amax, average value of the acceleration a, the maximum deceleration
dmax, the average value of the deceleration d, idle time ratio ri , acceleration time ratio
ra, deceleration time ratio rd, constant speed time ratio rc, and idle times Ni in the entire
driving cycle. The specific data are shown in Table 2. From Table 2, It can be seen that the
amount of sample data for each driving cycle is too small, and achieveing high training
and recognition accuracy is difficult. Therefore, the method shown in Figure 5 is used to
segment the driving cycles and to calculate the feature parameters of each driving cycle
block to increase sample data. In this paper, each typical driving cycle is equally divided
by the 120 s period using the above method.

In order to further analyze the influence of feature parameters, Principal Component
Analysis (PCA) was performed on the collected data. Calculation results of the principal
component matrix are shown in Table 3. Select the largest two components to form the
component matrix shown in Table 4. It can be seen from Table 4 that component 1 has a great
influence on the first seven feature parameters, and component 2 has a great influence on
the last four feature parameters. Therefore, the importance of the input feature parameters
is listed in the order listed in Table 4.

Table 2. The main characteristic parameters of three typical driving conditions.

Urban Suburban High-Speed

Feature
parameters

NYCC
(Type1)

NewYork
Bus

(Type2)

ECE_EUDC_
LOW

(Type3)

UDDS
(Type4)

HWFET
(Type5)

US06
(Type6)

v 11.41 5.93 32.19 31.5 77.58 97.19
vmax 44.58 45.97 90 91.3 96.4 129.5
amax 2.68 2.77 1.06 1.48 1.43 3.08

a 0.62 1.17 0.58 0.5 0.19 0.34
dmax −2.64 −2.06 −1.39 −1.5 −1.48 −3.08

d −0.64 −0.68 −0.79 −0.6 −0.22 −0.4
ri 0.351 0.672 0.251 0.19 0.008 0.033
ra 0.326 0.127 0.203 0.4 0.441 0.483
rd 0.304 0.201 0.136 0.33 0.386 0.398
rc 0.02 0 0.411 0.08 0.165 0.084
Ni 18 11 13 17 1 1
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Table 3. The contribution rate of the principal component.

Component Number Eigenvalues The Contribution
Rate

The Contribution
Accumulative Rate

1 5.208 47.34% 47.34%
2 2.538 23.07% 70.41%
3 0.882 8.01% 78.42%
4 0.696 6.33% 84.75%
5 0.633 5.76% 90.51%
6 0.466 4.24% 94.75%
7 0.287 2.61% 97.36%
8 0.194 1.76% 99.12%
9 0.077 0.69% 99.81%
10 0.020 0.18% 99.99%
11 0.003 0.01% 100.00%

Table 4. The component matrixl component.

Component First Principal Component Second Principal
Component

v 0.92 0.11
ri −0.92 −0.11
a −0.90 −0.24

vmax 0.83 0.17
d 0.75 0.21

amax −0.66 0.56
Ni −0.46 0.17
rc 0.40 −0.83
rd 0.35 0.76

dmax 0.51 −0.67
ra 0.53 −0.62

3.2. Basic Extreme Learning Machine

The extreme learning machine (ELM) [31] is a Single-Layer Feedforward Neuron
Network (SLFN) that is originally proposed by Guang-Bin Huang, Qin-Yu Zhu, and Chee-
Kheong Siew at Nanyang Technological University in 2004 and presented at the IEEE
International Joint Conference, and it intends to improve the Backward Propagation (BP)
algorithm to improve learning efficiency and to simplify the setting of learning parameters.
The standard single hidden layer neural network structure is shown in Figure 6. Specifically,
SLFN consists of an input layer, a hidden layer, and an output layer.

ELM is a new fast learning algorithm for SLFN, and ELM can randomly initialize the
input weights and bias and obtain the corresponding output weights. Suppose the input
layer has N random samples (Xi, ti), which are the input sample data Xi = [xi1, xi2, ..., xin]

T

and corresponding output sample data ti = [ti1, ti2, ..., tim]
T . A single hidden layer neural

network with L hidden layer nodes can be expressed as follows:

oj =
L

∑
i=1

βig(Wi · Xj + bi), j = 1, ..., N (10)

where g(x) is the activation function,Wi = [wi,1, wi,2, ..., wi,n]
T is the Input weight,βi is the

output weight, and bi is the bias of the i-th neuron. The objective of single hidden layer
neural network learning is to minimize the error in the output, which can be expressed as
follows.

N

∑
j=1

∣∣∣∣oj − tj
∣∣∣∣ = 0 (11)
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There exist βi, bi, and Wi such that the following is the case.

L

∑
i=1

βig(Wi · Xj + bi) = tj, j = 1, ..., N (12)

The above formula simplifies into the following:

Hβ = T (13)

with

H(w1, ..., wL, b1, ..., bL) =

 g(w1 · x1 + b1)
...

g(w1 · xN + b1)

... g(wL · x1 + bL)
...
...

...
g(wL · xN + bL)



β =

 βT
1

...
βT

L

, T =

 tT
1

...
tT

N



... ...

...
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ijw jk
o1

o2

ol

... ...

...

x1

x2

xn

y1

y2

ym

ijw jk
o1

o2

ol

Input layer Output layer

 Hidden layer

... ...

...

x1

x2

xn

y1

y2

ym

ijw jk
o1

o2

ol

Input layer Output layer

 Hidden layer

Figure 6. The structure of ELM.

In order to train a single hidden-layer neural network,
∧

Wi ,
∧
bi, and

∧
βi are used.

||H(
∧

Wi,
∧
bi)
∧
βi −T|| = min ||H(Wi, bi)βi − T|| (14)

E =
N

∑
j=1

(
L

∑
i=1

βig
(
Wi · Xj + bi

)
− tj

)2

(15)

Since the ELM training network input weights and hidden layer bias are random
values and H is fixed at this point, only the output weights need to be solved. Therefore,
the output weights can be obtained by the following equation:

β̂ = H†T (16)

where is H† the Moore–Penrose generalized inverse of H.
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3.3. Feature Fusion Extreme Learning Machine FFELM)

Although ELM has a simple structure, fast learning speed, and good generalization,
it may cause poor stability due to the random assignment of input weights and hidden
layer bias [32,33]. In addition, there may be interactions between the features in the
sample data. Therefore, an extreme learning machine that effectively fuses the features
is used to improve the stability and accuracy of the classification problem [34]. A block
diagram of the extreme learner network for Feature Fusion Extreme Learning Machine
(FFELM) is shown in Figure 7. The entire network is divided into three parts: the kernel
mapping, the coefficient weighting, and the classification layer. The first and second of
these parts implement data feature fusion. The layers of this network are connected with
weight matrices W1, W2, W3, and W4. The individual weight matrices are calculated for
training purposes.
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Figure 7. The structure of FFELM.

The specific formulation is as follows: first input feature data X = [x1, x2, ..., xN ]
T ∈

RN×n, which corresponds to the output label features T ∈ RN×l . To avoid random assign-
ments of input weight W1, the Histogram Intersection Kernel (HIK) function is used to map
input data X to A ∈ RN×N ; thus, we have the following:

Aij = k(xi, xj) (17)

where k(xi, xj) includes the Mapping Functions. ELM is then used to train weight W2:

W2 = A†T (18)

where A† is the Moore–Penrose generalized inverse of A:

B = AW2 (19)

with B as the input of ELM-AE [33], and w and bias ϕ are randomly assigned activation
function g(.); at this time, the hidden layer output features H = g(Bw + ϕ), with B as the
output of ELM-AE.

W3 = H†B (20)

C = (BW3).∗A (21)
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Finally, ELM is used again to output the weight W4, and training is completed.

W4 = C†T (22)

4. EMS Based on Driving Condition Identification

According to previous studies, the initial values of battery SOC before driving, the
type of driving conditions, and the driving distance have a great influence on the real-time
energy management strategy of the vehicle. Therefore, this paper proposes a real-time
energy management strategy that integrates three factors to improve fuel economy. As
shown in Figure 8, the proposed strategy is divided into three parts: (1) offline optimization
strategy, (2) online optimization strategy, and (3) real-time driving condition identification.
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Figure 8. The structure of the proposed strategy.

According to what is discussed in Section 3.1, driving conditions are classified into six
categories based on the characteristic parameters of each condition, and FFELM is used for
training classification recognition. In addition, the initial values of battery SOC and driving
distance are very important for vehicle energy strategies; therefore, in order to combine
these two, the equivalent distance parameter is introduced according to the literature [14].
Considering that there is a relationship between the remaining power and the remaining
distance, the expression is as follows:

Sequ = SOCrem/SCOava
Srem/Smax

SOCrem = SOCt − SOCmin
SOCava = SOCmax − SOCmin

(23)

where Srem is the remaining distance, Smax is the maximum distance in pure electric mode,
SOCrem indicates the remaining charge, SOCt is the instantaneous value of the battery
charge during vehicle driving, and SOCava is the range of the available SOC. SOCmax and
SOCmin are the upper and lower battery limits, respectively. Sequ = 1 indicates that the
battery can complete the remaining distance in pure electric mode. When Sequ < 1, the
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battery has insufficient power left to complete the rest of the distance in pure electric mode,
and the engine is required.

4.1. Offline EMS Optimization

In order to adapt the control strategy to different driving conditions, ECMS is applied
offline to optimize the optimal allocation for each typical driving condition in preparation
for the application of the online strategy.

4.1.1. Objective Function

According to the actual driver demand power of the vehicle, the actual output power
of the engine and motor is reasonably allocated within the power range of the engine and
motor such that the sum of the equivalent fuel consumption of the instantaneous fuel
consumption of the engine and the power consumption of the motor is minimized [35];
thus, the objective function can be shown as follows:

J =
∫ t f

t0

[ ·
m f uel(x, u) +

·
mele(x, u)

]
dt (24)

where is J the total consumption, t0 and t f denote the initial time and final time, respectively,

x and u are the system state and control variables respectively,
·

m f uel is the instantaneous

fuel consumption of the engine, and
·

mele is the instantaneous equivalent fuel consumption
after power conversion. In order to calculate equivalent fuel consumption more accurately,
the equivalent charging factor and equivalent discharging factor are introduced, and the
equivalent fuel consumption of battery power can be expressed as follows:

·
mele =

 λdis
Pbatt
H f

Pbatt > 0

λchg
Pbatt
H f

Pbatt < 0
(25)

where H f is the fuel mass calorific value.
Since battery SOC’s balance is not well maintained by ECMS alone, a penalty function

is introduced to correct the equivalent fuel consumption to maintain it close to the objective
SOC [14]. The basic value of the penalty coefficient is taken as 1. When battery SOC is close
to the target SOC, the equivalent fuel consumption of the motor power is basically not
corrected so that the strategy can reasonably power the engine and motor according to the
lowest equivalent fuel consumption. When the battery SOC is higher than the target SOC
value, the penalty coefficient is less than 1, and the equivalent fuel consumption of motor
power consumption is reduced by the penalty coefficient so that the control strategy is
more inclined to use electric power. When battery SOC is lower than the target SOC value,
the penalty coefficient is greater than 1, and the equivalent fuel consumption of motor
power consumption is increased by the penalty coefficient such that the control strategy
is more inclined to use fuel. Moreover, the penalty coefficient in the target SOC near the
value of the change should be relatively gentle so that the penalty coefficient on the power
distribution can reduce impact; battery SOC deviates from the target SOC, and the speed of
change of the penalty coefficient should be intensified by speeding up the response as soon
as possible to maintain power balance. In order to make better and effective use of SOC,
the penalty function is introduced:

δ(SOC) = 1− φ× (
SOC(t)− SOCtar

SOC(t)− SOCmin
)× 2 (26)

where φ is the empirical coefficient; here, 0.2 is chosen; SOCtar is the objective value of
SOC, SOCmin is the minimum value of SOC, and SOC(t) is the SOC at time t; as shown
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in the figure, when the penalty factor decreases with the increase in SOC, the modified
equivalence factor is as follows.{

λ∗dis = δ(SOC) · λdis
λ∗chg = δ(SOC) · λchg

(27)

The corrected power equivalent fuel consumption is as follows.

·
m∗ele =

 λ∗dis
Pbatt
H f

Pbatt > 0

λ∗chg
Pbatt
H f

Pbatt < 0
(28)

Jmin = min
{∫ t f

t0

·
[m f uel(x, u) +

·
m∗ele(x, u)]dt

}
(29)

4.1.2. Control and State Variables

Since this paper is aimed at a single-axis parallel structure where the engine and motor
are located on the same shaft and the engine speed and motor speed are the same, the
distribution of driver demand power can be translated into an equation for the distribution
of engine and motor torque. In order to better achieve torque distribution, the power
distribution factor is expressed as the formula of the ratio of engine torque to demand
torque, and Ksplit is introduced. When 0 < Ksplit < 1, the engine and the motor drive
together, and when Ksplit < 1, the engine drives and it drives motor to charge the battery.
When Ksplit = 1 , the engine torque is the same as the demand torque and the vehicle is in
the engine drive-alone mode. When Ksplit = 0, the engine is not involved in vehicle driving:{

Pd = Pe + Pm
Tdwd = Tewe + Tmwm

(30)

where Pd is the demanded power, Pe and Pm are the engine power and motor power,
respectively, Td is the demanded torque, and wd the demanded speed. Therefore, it can be
further expressed as follows. {

Te = Ksplit · Td
Tm = (1− Ksplit) · Td

(31)

Optimal control variables are stated as follows.

u∗ = K∗split = arg min
·
[m f uel(x, u) +

·
m∗ele(x, u)] (32)

Changes in state variables with battery power SOC are defined as follows.

x = SOC (33)

The optimization of different initial values of SOC under different driving conditions
is conducted by ECMS. As shown in Figure 9a, the optimized data including the power
distribution factor, the rate of change of battery SOC, and the driving distance are sorted.
The variation of battery SOC and driving distance under a driving condition can be used to
obtain the optimal power distribution factor under this condition.
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Figure 9. Offline optimization flow diagram for (a) and real-time recognition flow diagram for (b).

4.2. Real-Time Driving Condition Recognition and Calculation

Based on the current driving conditions, FFELM is used to identify the conditions and
to calculate the equivalent distance parameters based on the current battery’s SOC and
the distance to the destination. As shown in Figure 9b, the parameters of the operating
conditions characterized by 120 periods are calculated, including maximum speed, max-
imum acceleration, maximum deceleration, etc. These parameters are used as the basis.
FFELM identifies the current operating conditions. The equivalent distance is calculated
based on the Equation (23), and it is then input to the vehicle controller during the vehicle
driving process.

4.3. Online Strategy Optimization

Online torque distribution is achieved by identifying the type of driving condition
and the equivalent distance parameters according to the required torque under current
driving condition. As shown in Figure 10, online torque distribution is achieved.

Td_Ksplit

Curves fitting
Ksplit

Td

Cyc type

Sequ

Te=Td*Ksplit

Tm=Td-Te

Td_Ksplit

Curves fitting
Ksplit

Td
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Te=Td*Ksplit

Tm=Td-Te

Figure 10. Online optimization flow diagram.

5. Simulation Results and Discussion

In order to better demonstrate the effectiveness of the proposed strategy, the accuracy
of the FFELM identification method is firstly verified. Based on this, the identification
method and the proposed strategy are applied to the combined driving condition in real
time. The advantages of the proposed strategy are further demonstrated by comparing it
with conventional strategy CD-CS.

5.1. Results and Analysis of FFELM

A total of 80 sets of feature data of each typical driving condition block were randomly
arranged, with 68 sets of data randomly selected as training data, and ELM and FFELM
were used for training. Then, 12 sets of data were randomly selected from 80 sets of data as
test data repeatedly. Tests with the trained ELM model and FFELM model and the results
are shown in Figure 11. It can be seen from Figure 11a that the accuracy distribution of the
test data under ELM is scattered and the accuracy ranges from 0.3 to 1, which is due to the
influence of the input weights and biases under random settings. The accuracy of ELM
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with specific input weights and biases is high for specific test data, but it may be lower or
even less than 0.5 for other test data. Therefore, the accuracy under ELM is scattered and
unstable. As shown in Figure 11b, the accuracy of the test data under FFELM is mostly
greater than 0.7 and is mainly concentrated in the region of 0.8 to 1. The accuracy and
stability are better than ELM.
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Figure 11. ELM for (a) and FFELM for (b).

In order to further verify the accuracy and effectiveness of the FFELM recognition
algorithm, different algorithms were used to train and test the data of the driving cycles.
From the 80 sets of data, 68 sets of data were randomly selected as training data, and
12 sets were used as test data. The LVQ (learning vector quantization), SVM (support
vector machine), ELM and FFELM are used for training and testing, respectively. The
identification results are shown in Table 5. It can be seen from the results that the LVQ
algorithm is not very accurate in testing. On the one hand, in the training process, the weight
vector may not converge and the information of each dimension attribute of the input
sample may not be fully utilized, which does not reflect the difference in the importance of
each dimension attribute in the classification process. Although the accuracy of the SVM
algorithm is not very good, stability is good. This is because once the parameters and
kernel functions of SVM are determined, accuracy remains relatively stable. Therefore, in
order to improve the classification accuracy of SVM, the parameters and kernel functions
must be optimized. Moreover, SVM is suitable for sample data with a small amount of
data. Although the accuracy of ELM is better than that of SVM, because the weights and
thresholds are randomly generated, accuracy is unstable, and the advantage is that the
learning speed is fast. FFELM combines kernel mapping and coefficient weighting for the
purpose of increasing classification power and robustness. Thus, it shows good accuracy.

Table 5. Recognition results under different algorithms.

Identification Algorithm Recognition Result Accuracy

Raw testdata 5 5 2 4 4 4 3 4 1 4 2 3 -
LVQ 5 5 2 4 3 4 3 4 4 3 1 6 58.33%
SVM 5 5 2 4 3 4 3 4 4 1 2 6 66.67%
ELM 5 5 2 4 3 4 3 4 1 3 1 6 66.67%

FFELM 5 5 2 4 3 4 3 4 1 3 2 6 75.00%

5.2. Results and Analysis of Offline Optimization

In this paper, ECMS is used for the offline optimization of each typical driving condi-
tion. Taking the typical driving condition HWFET as an example, the optimization results
are shown in Figure 12 with initial values of SOC of 0.8, 0.4 and 0.3, respectively. When
the initial value of SOC is 0.8, battery power is sufficient to sustain the entire distance;
thus, there is no need to charge the battery during the acceleration process of the entire



Energies 2022, 15, 4353 17 of 22

distance, and the relationship between the demand torque and the power distribution factor
at this time is shown in Figure 12a. When the demand torque is less than 20, the power
distribution factor is 0, which means that the vehicle runs on pure electric power when the
demand torque is less than 20. When the demand torque is greater than 20, the engine and
motor jointly drive the vehicle; thus, the ratio of engine torque to demand torque is less
than 1 and greater than 0. The red circled points are the optimal power distribution factor
corresponding to the optimized demand torque, and the blue line is the fitted curve. When
the initial value of SOC is 0.4, the power is not enough to sustain the entire distance; thus,
the entire driving distance needs both battery discharge and battery charge. When battery
SOC is less than the battery target value, the battery is charged. Therefore, as shown in the
figure, the distribution rate is both less than 1 and greater than 1. When the distribution
rate is greater than 1, the vehicle is driven by the engine and the battery is charged at
the same time. The red circled points are the optimal power distribution factor under the
optimization results, and the blue line is the fitted curve. When the initial value of SOC is
0.3, it cannot run purely on electricity at all; thus, the entire driving process needs to be
driven by the engine and the battery needs to be charged at the right time. Therefore, the
distribution ratio is always greater than 1. The red circled points are the optimal power
distribution factor after optimization, and the blue line is the fitting curve.
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Figure 12. The results of different SOC. (a) SOC = 0.8; (b) SOC = 0.4; (c) SOC = 0.3; (d) fitting curves
under different type of driving cycles.

According to the above description, the best power distribution factor fitting curves
for different typical driving cycles can be obtained using the same method. The fitted
curves for each driving condition are shown in Figure 12d. Under online optimization,
FFELM can identify the type of driving conditions, and the best power distribution factor
can be obtained from the fitted curve by using the current SOC, Srem, and demand torque.
Thus, the online real-time power distribution can be realized.



Energies 2022, 15, 4353 18 of 22

5.3. Results and Analysis under Different Strategies

In order to prove the effectiveness of the proposed strategy, the proposed strategy is
validated by using a combined driving cycle. The established combined driving cycles are
shown in Figure 13a. It consists of six different driving cycles, including urban congestion,
urban suburban, and highway conditions. The results of FFEFT identification are shown in
Figure 13b. It can be seen that the identification method can effectively identify the type of
combined driving conditions.
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Figure 13. Combined driving cycle and results of identifications.

Taking the initial value of SOC as 0.6, the optimization results of the three strategies
under the combined driving conditions are shown in Table 6. Compared with the CD-
CS strategy, the equivalent fuel consumption under ECMS and the proposed strategy is
improved by 8.96% and 10.21%, respectively. Figure 14 shows the trajectory of the SOC
under the three strategies during vehicle driving. It can be seen from the figure that the
decreasing trend of SOC for the three strategies does not differ much in the first 1000 s.
This is due to the fact that the vehicle is driving at a speed less than 40 km/h, the demand
torque is not large in urban congested driving conditions, and most of it is in pure electric
driving. In time 1000 s to 3500 s, the speed increases from low speed to high speed and then
turns to medium speed, and the corresponding torque also increases from small torque to
large torque by turning to medium torque. Because the CD-CS strategy is in CD mode with
priority battery drive, battery SOC decreases the fastest. ECMS and the proposed strategy
are the optimal allocation of engine and motor at each moment, but the proposed strategy
decreases slower compared to ECMS because the equivalent distance factor is calculated
at any time in the proposed strategy to keep the power limit. From 3500 s to 5000 s, the
CD-CS strategy is in the CS mode and SOC keeps fluctuating around the SOC objective.
The decreasing trend of SOC under ECMS and the proposed strategy is still similar to the
previous paragraph. When the time is longer than 5000 s, the vehicle is mostly driven at
high speed, and the required torque increases suddenly; thus, the engine and motor need
to drive together, and the motor torque increases, and battery SOC decreases faster.

Table 6. Comparison of equivalent energy consumption when the initial SOC is 0.6.

Strategy Equivalent Fuel Consumption (L/km) Improvement %

The proposed strategy 7.12 10.21
ECMS 7.31 8.96
CD-CS 8.03 -

Figure 15 shows the engine operating points for the optimization results under ECMS
and the proposed strategy. The engine operating point under the proposed strategy is
closer to the engine’s high efficiency region than the ECMS strategy.
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Figure 15. Engine operation points of ECMS and proposed strategy.

Figure 16 shows the relationship between engine torque and demand torque for
different strategies. Since the single-shaft parallel hybrid system is studied in this paper,
the required torque of the drive is provided by the engine torque and the electric motor. It
reflects the working state of the engine at each time point. In Figure 16a, it can be seen that,
under the CD-CS strategy, the engine is not involved in driving during the CD mode, except
when the demand torque is high, and the engine is not involved in driving in the other
parts, which mainly involves the electric drive. After entering the CS mode, the engine
is involved in driving and charging the battery. Comparing Figure 16b with Figure 16c,
the engine torque changes similarly to ECMS in the first 2000 s time range. However, as
the distance traveled increases, the proposed strategy will plan the torque distribution
according to the type of driving conditions and the remaining distance driven.
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Figure 16. The results of different strategies. (a) The engine torque of CD-CS; (b) the engine torque of
ECMS; (c) the engine torque of the proposed strategy.

6. Conclusions

In this paper, a real-time energy management strategy based on driving condition
recognition is proposed. First, an FFELM identification method with high stability and
accuracy is used to train six typical driving conditions, which provides the basis for
identification under combined driving conditions. Second, the six typical driving conditions
are optimized offline using ECMS. By collating the data of optimization results under each
driving condition, the optimization results were analyzed based on the equivalent distance
coefficients of battery SOC and driving distance. The optimal power distribution factor
for each condition optimization is also provided by fitting the data to help the real-time
management strategy. Finally, to demonstrate the effectiveness of the proposed strategy,
the real-time energy management strategy under mixed driving conditions is used and
compared with CD-CS strategy and ECMS strategies.
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The comparison between ELM and FFELM for raw data identification shows that
FFELM is more accurate and stable than ELM. In the simulation experiments for verifying
the effectiveness of the proposed strategy, it is shown that the proposed strategy improves
fuel economy by 10.21% and the computation time is slightly longer than that of CD-CS.
This means that the proposed strategy has a great potential to save fuel compared to the rule-
based strategy and is also effective in real-time control. The equivalent fuel consumption
of the proposed strategy is 7.12 L/km compared to the equivalent fuel consumption of
ECMS of 7.31 L/km, which is a 2.5% improvement. This shows that the proposed strategy
can be adjusted in real-time to achieve optimal fuel economy. Therefore, the proposed
strategy has great advantages in fuel economy in real-time and practicality for different
driving conditions.

Although the proposed strategy has greatly improved real-time fuel economy and
the application of complicated driving conditions, the extraction of typical driving cycle
data in this paper are all from the European standard driving cycles and the selection of
the features of the road condition data has a great influence on the recognition accuracy
of the driving conditions. Therefore, in future work, we will collect the driving condition
data that meet the actual driving characteristics of Chinese roads and establish the driving
condition recognition model on this basis to improve recognition accuracy.
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