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Abstract: The accuracy of wind power prediction is crucial for the economic operation of a wind
power dispatching management system. Wind power generation is closely related to the mete-
orological conditions around wind plants; a small variation in wind speed could lead to a large
fluctuation in the extracted power and is difficult to predict accurately, causing difficulties in grid
connection and generating large economic losses. In this study, a wind power prediction model based
on a long short-term memory network with a two-stage attention mechanism is established. An
attention mechanism is used to measure the input data characteristics and trend characteristics of
the wind power and reduce the initial data preparation process. The model effectively alleviates the
intermittence and fluctuation of meteorological conditions and improves prediction accuracy signifi-
cantly. In addition, the modified particle swarm optimization algorithm is introduced to optimize the
hyperparameters of the LSTM network, which speeds up the convergence of the model dramatically
and avoids falling into local optima, reducing the influence of man-made random selection of LSTM
network hyperparameters on the prediction results. The simulation results on the real wind power
data show that the modified model has increased prediction accuracy compared with the previous
machine learning methods. The monitoring and data collecting system for wind farms reveals that
the accuracy of the model is around 95.82%.

Keywords: wind power prediction; modify particle swarm optimization algorithm (MPSO); attention
mechanism; LSTM neural network

1. Introduction

With the continuous consumption of fossil fuels in the electric power industry, the
environmental pollution caused by burning fossil fuels is becoming more and more seri-
ous [1]. The proportion of thermal power generation in the world is gradually decreasing.
Clean energy such as wind, solar and tidal energy has been developing quickly [2]. Wind
energy supply in most countries is abundant and inexhaustible, and wind energy conver-
sion technology is relatively simple, so it is included in the key considerations of many
countries. Wind energy’s extreme volatility, intermittency, and randomness may cause
power fluctuations and have an impact on the regional grid’s overall operation [3]. As a
result, when wind farms, particularly high-capacity wind farms, are connected to the grid,
they introduce some hidden dangers to the overall power system’s safety and stability [4].
These variable, intermittent, and random characteristics will have a significant impact on
wind turbine power’s generating efficiency and service life. As a possible solution to the
aforementioned issues, a power dispatching management system requires an effective
wind power forecast method in order to design a reasonable power generating plan and
improve the grid’s economy, safety, and reliability [5–7].
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The problem of wind power prediction has attracted a lot of attention from researchers
in related fields. Recently released wind power prediction methods can be divided into
three categories: physical, statistical, and machine learning methods from the methodologi-
cal point of view.

The physical method uses a numerical weather forecast produced by a meteorological
service to mimic the weather in the wind farm area. The weather data, physical facts
surrounding the wind turbine, and the height of the wind turbine’s hub center are then
combined to construct a prediction model. Finally, the forecasted power is determined
using the wind turbine’s power curve [8]. However, physical methods are greatly limited in
wind power prediction and have poor prediction accuracy due to the limitations of complex
mathematical calculations and the difficulty of accurately modeling environmental factors.

Statistical methods are adopted to fit complex functional relationships between his-
torical data, weather forecasting data, and forecasting results through one or more math-
ematical tools. They are basically used to find mathematical patterns in a large amount
of data and to adjust forecasting based on the patterns found from this data. Statistical
models mainly include autoregressive models, autoregressive sliding average models, and
integrated sliding average autoregressive models. However, wind power series data are
highly stochastic and intermittent, making their data very complex, and these statistical
models cannot extract the corresponding nonlinear features well [9], so there is still much
room for improvement in statistical prediction methods.

With the fast growth of deep learning in recent years, machine learning has been
extensively used to load prediction. Methods for machine learning primarily include
genetic algorithms, artificial neural networks, fuzzy logic, support vector machines, etc. [10].
Since neural networks may potentially infinitely approximate any linear or nonlinear
connection, they are frequently employed to tackle classification and regression issues.
However, artificial neural networks have intrinsic disadvantages: they are computationally
demanding, susceptible to local optima, and sensitive to starting parameters, among others.
To circumvent these disadvantages, researchers have developed interval prediction of
wind power generation based on particle swarm optimization back propagation neural
networks [11]. With the fast development of deep learning methods in the disciplines of
image and natural language processing, many researchers have attempted to use these
techniques to address other issues. The literature [12] employs a single LSTM for predicting
the operational state of a transformer. It considerably enhances the accuracy of predictions.
For wind power prediction, the literature [13] blends long short-term memory (LSTM) and
attention techniques. In addition, deep learning models were utilized in the literature [14]
for energy power forecasting. The literature [15] used PSO-LSTM for the short-term
prediction of non-time-series electricity price signals and optimized the LSTM network
input weights using particle swarm techniques. However, the effects of the particle swarm’s
own weights and learning rate on the global optimal solution were not considered. In
addition, in recent years, some improved advanced algorithms have been proposed for
load forecasting [16–20], and we will be showing a comparison between available and
proposed technology and highlighting the novelty and advantages of these in Table 1.

Wind power generation is highly dependent on meteorological variables such as wind
velocity. Traditional forecasting techniques, such as analyzing the impacts of variables
on wind power generation using Pearson correlation coefficients, increase the model’s
complexity. Inspired by the attention mechanism for letter alignment in the field of natural
language translation [21], we built an attention mechanism model that enables the model
to learn multiple weights for input data. In this research, an LSTM model with a two-stage
attention mechanism is developed for forecasting wind power generation using the time
series of wind power generation and relevant meteorological variables. Two components
comprise the model: an encoder and a decoder. Based on the LSTM structure, the attention
mechanism weights are learned for the input weather data during the encoding stage. A
similar daily attention approach based on time windows is presented for the decoding
step by comparing the encoder’s output at each moment. Meanwhile, LSTM networks
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usually use the Adam optimizer for the parameter optimization of neural networks, but the
hyperparameters of the network are set by humans, and the setting of hyperparameters has
a large impact on the fitting results of the model. Therefore, we will introduce the MPSO
algorithm to perform the hyperparameter search for LSTM networks. Finally, we input
all the information into the MPSO_ATT_LSTM model proposed in this paper to predict
wind power. This paper is structured as follows: Section 2 introduces particle swarm
optimization (PSO) and proposes modified particle swarm optimization (MPSO). Section 3
introduces the LSTM model with a two-stage attention mechanism. Section 4 introduces
the fused MPSO_ATT_LSTM model. Simulation experiments are conducted in Section 5,
and the results are quantitatively analyzed. The conclusion and outlook are presented
in Section 6.

Table 1. Model comparison.

Model Name Novelty and Advantage Deficiency

Modified-LSTM [16] Hybrid model is proposed for classification and
prediction Not compared with advanced algorithms

GA-PSO-ANN [17] Using optimization algorithm to adjust neural
network parameters

No optimization for neural network
hyperparameters

Multi-Sequence LSTM-RNN [18] Proposed multi-sequence deep learning model
based on meta heuristic algorithm Lack of data processing and feature extraction

MFF-SAM-GCN [19] It can effectively capture external features that
have an impact on load forecasting

The relationship between weather factors is
not analyzed and extracted

CEEMD-WOA-ELMAN [20] A new meta-heuristic algorithm WOA is
introduced to optimize the model

There is a large error between different
time scales

MPSO_ATT_LSTM The features between data are extracted and the
hyperparameters of neural network are optimized Discuss in part of conclusion

2. Optimization Algorithm
2.1. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) was derived from the study of bird predation
behavior. The basic idea of PSO is to find the global optimal solution by sharing information
among individuals in the population [22]. Each particle in the algorithm can be regarded as
a possible optimal solution, the individual information of each particle is defined in terms
of position and velocity, and finally, the optimization result is described by the fitness value.
The particles iterate continuously, both to complete the global search for the optimal solution
in the search space and finally to obtain the optimal solution that satisfies the termination
condition or reaches the maximum of iterations [23]. In the search space, multiple particles
form a population, and the velocity and position of the particles are formed after the t
iteration, represented by Vi,t and Xi,t. In the search process, the particles continuously
update their positions and velocities and finally obtain the individual extremes Pbest,i and
the global optimal solution gbest,i [24–26]. The particles update their velocity and position
according to Equations (4) and (5):

Vi,t+1 = ωVi,t + c1 rand (pbest − Xi,t) + c2 rand (gbest − Xi,t) (1)

Xi,t+1 = Xi,t + λVi,t+1 (2)

where c1, c2 are the learning factors of individual particles and population;ω is the inertia
weight; rand is a random number between [0, 1]; and λ is the velocity coefficient, which is
generally set to 1.

2.2. Modified Particle Swarm Optimization (MPSO)

In the earliest PSO algorithms, the inertia weights and learning factors are kept
constant, which makes the models prone to premature convergence and falling into local
optima. With the advancement and development of research, linearly adjusting the inertia
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weights and learning factors in PSO algorithms emerged. However, the linearly varying
parameters still have the previous drawbacks. Therefore, we propose a modified particle
swarm optimization (MPSO) with adaptive variation of nonlinearly adjusted parameters.
The inertia weightω and the individual particle learning factor c1 in the algorithm decrease
using a concave function, and the population learning factor c2 increases using a concave
function. The equation is as follows.

ω = ωmax − (ωmax −ωmin)× 4
π arctan t

tmax
(3)

c1 = c1max − (c1max − c1min)× 4
π arctan t

tmax
(4)

c2 = c2min + (c2max − c2min)× 4
π arctan t

tmax
(5)

where ωmax, ωmin are the maximum and minimum values of inertia weights, c1max, c2min
are the maximum and minimum values of individual particle learning factors, c2max, c2min
are the maximum and minimum values of population learning factors, and t, tmax are the
current and maximum of iterations.

Such an iterative strategy allows the algorithm to have a strong global search capability
in the early stage and to enter the local search more quickly; it also allows a slow search in
the later stage of the algorithm for a better local search. In the process of the nonlinear ad-
justment of the weights, we also refer to the “variation” operation in the genetic algorithm,
where the probability of variation increases with the number of iterations, allowing the
particles to enter other regions to continue the search and jump out of the local optimum.
This can effectively expand the search range and reduce the probability of falling into the
local optimum. The adaptive variation equation is as follows:

pi = 0.3 + 0.5
t

tmax
(6)

where pi is the probability of the ith particle variation. The PSO and MPSO algorithms were
tested and evaluated using different benchmark functions; the parameters of the algorithms
are shown in Table 2. The parameters of the test functions are shown in Table 3.

Table 2. Parameter value of PSO and MPSO.

Algorithm Parameter Setting

Common setting Maximum iteration tmax = 200
population size P = 5

PSO c1 = c2 = 1.5
ω = 0.9
p = 0.5

MPSO c1max = c2max = 2
c1min = c2min = 0.5
ωmax = 0.9
ωmin = 0.2

Table 3. Parameter of test functions.

Test Function Name Best

(1) Unimodal test functions

F1 = ∑n
i=1 x2

i Sphere 0

(2) Multimodal test functions

F2 = 20 + e− 20 exp
(
−20

√
1
n ∑n

i=1 x2
i

)
− exp( 1

n ∑n
i=1 cos(2πxi)) Ackley 0

F3 = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

Rastrigin 0
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Figure 1 presents the qualitative metrics for the F1–F3 functions, including 2D views of
the functions and fitness curves. For the fitness curves in Figure 1, the blue line represents
the PSO and the red line represents the MPSO. It can be seen that the convergence speed
and accuracy of MPSO are better than that of PSO in test functions.

Figure 1. (a) Sphere function; (b) Ackley function; (c) Rastrigin function.

3. LSTM Network Based on Attention Mechanism
3.1. Standard LSTM Network

Input layer, hidden layer, and output layer are the components of a standard neural
network. Standard neural networks, however, perform poorly in sequential tasks due
to their inability to capture the trend aspects of sequence changes. RNNs are proposed
as a solution for this issue. Traditional RNNs are limited, however, because they cannot
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handle the gradient expansion and gradient disappearance problems [27]. Long short-term
memory (LSTM) and gated recurrent unit (GRU) proposed in [28] and [29], respectively,
handle the aforementioned issues flawlessly. They are commonly employed in sequence
issues. The standard LSTM structure is shown in the Figure 2.

σ σ tanh σ

tanh

tX

th

tc1tc −

th1th −

tf
ti to

tc

Forget Gate

Input Gate Output Gate  
Figure 2. Standard LSTM structure diagram.

The corresponding parameters are calculated as follows:

ft = δ
(

W f [ht−1, xt] + b f

)
(7)

it = δ(Wi[ht−1, xt] + bi) (8)

ot = δ(Wo[ht−1, xt] + bo) (9)

c̃t = tanh(Wc[ht−1, xt] + bc) (10)

ct = ft × ct−1 + it × c̃t (11)

ht = ot × tanh(ct) (12)

ft, it, and ot denote the forget gate, input gate, and output gate, respectively; W denotes
the weight, the symbol [ht−1, xt] denotes the dimension of the input and the dimension
of the hidden layer of the previous layer are summed in series, and b denotes the bias
term; δ is the nonlinear activation function sigmod, and W f , Wi, Wo, b f , bi, bo, and bc are the
parameters that the model needs to learn.

3.2. Attention Mechanism Model

The complete model framework is depicted in Figure 3. The model has two compo-
nents: encoder and decoder. In the encoder step, we proposed to extract features using
variable importance-aware input attention based on the LSTM structure. In the decoder
step, an identical attention technique based on time windows is proposed by comparing
the encoder’s output at each instant. Ultimately, the actual wind power is computed by
combining all available data.



Energies 2022, 15, 4334 7 of 17

Energies 2022, 15, x FOR PEER REVIEW 7 of 17 
 

 

𝑓௧, 𝑖௧, and 𝑜௧denote the forget gate, input gate, and output gate, respectively; 𝑊 denotes 
the weight, the symbol ሾℎ௧ିଵ, 𝑥௧ሿ denotes the dimension of the input and the dimension of 
the hidden layer of the previous layer are summed in series, and 𝑏 denotes the bias term; 𝛿  is the nonlinear activation function sigmod, and  𝑊௙, 𝑊௜, 𝑊௢, 𝑏௙, 𝑏௜, 𝑏௢, and 𝑏௖ are the 
parameters that the model needs to learn. 

3.2. Attention Mechanism Model 
The complete model framework is depicted in Figure 3. The model has two 

components: encoder and decoder. In the encoder step, we proposed to extract features 
using variable importance-aware input attention based on the LSTM structure. In the 
decoder step, an identical attention technique based on time windows is proposed by 
comparing the encoder’s output at each instant. Ultimately, the actual wind power is 
computed by combining all available data. 

LSTM LSTM LSTM LSTM

1x  2x  1Tx − Tx

1x 2x 1Tx − Tx

LSTM

LSTM LSTM LSTM L

1y 2y 1Ty − Ty

0s 1s 2Ts −

1Ts −

0 0[ , ]h c 1 1[ , ]h c

0s 1s 2Ts −

Softmax

2 2[ , ]T Th c− − 1 1[ , ]T Th c− −

encoder

decoder

1o  2o  1To − To

1 1[ , ]h o 2 2[ , ]h o 1 1[ , ]T Th o− − [ , ]T Th o

 
Figure 3. Wind power prediction model. 

3.2.1. Input Attention Mechanism 
The encoder step extracts datasets of feature from the input data. In this stage, the 

meteorological conditions are represented as a time series, denoted as 𝑋 =(𝑥ଵ, 𝑥ଶ, 𝑥ଷ … 𝑥௧ … 𝑥்), where 𝑥 = (𝑥௧ଵ, 𝑥௧ଶ, 𝑥௧ଷ … 𝑥௧௡) represents the 𝑛  sub-features of the 𝑡 
step. For each time increment within the time window, using the following equation, 
useful features are extracted:  ℎ௧ = 𝑓ଵ(ℎ௧ିଵ, 𝑐௧ିଵ, 𝑥௧)  (13)

where ℎ௧ is the current output state; ℎ௧ିଵ and 𝑐௧ିଵ are the output state and cell state at the 
prior time; t.𝑥௧ is the input at the current time; and 𝑓ଵ is a nonlinear function representing 
the LSTM model. 

The attentional feature parameter 𝑒௧௜ and the corresponding weight 𝛼௧௜ for the 𝑖𝑡ℎ 
input at time 𝑡 are determined by the following equation:  𝑒௧௜ = 𝑊௘ሾ𝑥௧, ℎ௧ିଵ, 𝑐௧ିଵ, ሿ + 𝑏௘  (14)

 𝛼௧௜ = exp൫𝑒௧௜൯∑ exp൫𝑒௧௜൯௡௜ୀଵ  (15)

The input to the LSTM model can then be calculated by the following equation: 

Figure 3. Wind power prediction model.

3.2.1. Input Attention Mechanism

The encoder step extracts datasets of feature from the input data. In this stage, the mete-
orological conditions are represented as a time series, denoted as X = (x1, x2, x3 . . . xt . . . xT),
where x =

(
x1

t , x2
t , x3

t . . . xn
t
)

represents the n sub-features of the t step. For each time incre-
ment within the time window, using the following equation, useful features are extracted:

ht = f1(ht−1, ct−1, xt) (13)

where ht is the current output state; ht−1 and ct−1 are the output state and cell state at the
prior time t; xt is the input at the current time; and f 1 is a nonlinear function representing
the LSTM model.

The attentional feature parameter ei
t and the corresponding weight αi

t for the ith input
at time t are determined by the following equation:

ei
t = We[xt, ht−1, ct−1,] + be (14)

αi
t =

exp
(
ei

t
)

∑n
i=1 exp

(
ei

t
) (15)

The input to the LSTM model can then be calculated by the following equation:

x̃t =
(

α1
t x1

t , α2
t x2

t . . . αn
t xn

t

)
(16)

Ultimately, the following equation is utilized to compute the input to the LSTM model
based on the attention mechanism:

ht = f1(ht−1, ct−1, x̃t) (17)

f 1 denotes the LSTM network nonlinear function that dynamically adjusts the weather
sub-feature weights at each moment through the attention mechanism.

3.2.2. Similar Day Attention Mechanism

The wind power generation and meteorological characteristics change constantly, but
they have a certain trend of variation over a standard time series. To further capitalize
on this variation pattern, we consider a new attention mechanism for similar days. This
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approach extracts the temporal trend characteristics by weighting the encoder output to
determine the relationship between days with comparable characteristics, which is achieved
by the following equation.

lt = Wl [ht, hT ] + bl (18)

βt =
exp(lt)

∑n
t=1 exp(lt)

(19)

where ht is the output of the encoder at each time, and hT is the output of the encoder at the
last time T. Wl and bl are the parameters obtained by the model through learning. lT and βt
are the attention parameters and the corresponding weights obtained through the softmax
layer. The final decoder input õt is determined by the following equation:

õt = (β1h1, β2h2 . . . βThT) (20)

The decoder also selects the LSTM network. First, the decoder step input õt and the
hidden layer state hd

t−1 and cell state cd
t−1 obtained from Equation (13) are connected as the

innovative LSTM structure hidden layer state št:

s̃t = Wo

[
õt, hd

t−1, cd
t−1

]
+ bo t ∈ [0, T − 1] (21)

The input is yt = [y1, y2 . . . yt−1], and the features hd
T−1, cd

T−1 are fused by the LSTM
network. The final wind power is determined using the following equation:

yT = L
(

hd
T−1, cd

T−1, õT

)
(22)

where L is a three-layer neuronal layer with complete connectivity. The wind power
prediction model is as follows:

3.3. Hyperparameters on the Network

Firstly, we test whether the hyperparameters in the LSTM network affect the results.
The hyperparameters that need to be set in the LSTM network, such as the learning rate,
the first and second hidden layer nodes, and the batch size experiments, are conducted
with the parameters often used in the literature; other training parameters are consistent.
The hyperparameters are shown in the Table 4.

Table 4. Hyperparameter of different LSTM network.

Number of Model Learning Rate First Hidden Layer Nodes Second Hidden Layer Nodes Batch-Size

Hyperparameter-1 0.001 64 128 32
Hyperparameter-2 0.001 128 256 64
Hyperparameter-3 0.001 256 64 32
Hyperparameter-4 0.002 64 128 64
Hyperparameter-5 0.002 128 256 128
Hyperparameter-6 0.002 256 64 128

The training results of different networks for the same dataset are shown in the
Figure 4.

It can be seen from the result chart that different hyperparameters have significant
differences on the training results of the model. Therefore, the selection of hyperparameters
is particularly critical to the quality of the model prediction results. It is not feasible to
select hyperparameters by human experience.
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Figure 4. Training for different hyperparameters.

4. MPSO_ATT_LSTM Model

MPSO_ATT_LSTM modelling process:

Step 1: Pre-process the experimental data and slice the processed data into training data
and test data.

Step 2: Initialize the relevant parameters of the modified particle swarm optimization
(MPSO). Set up the maximum number of iterations tmax of the modified particle
swarm algorithm, the maximum and minimum values of inertia weights ωmax and
ωmin, the maximum and minimum values of individual particle learning rates c1max
and c1min, the maximum and minimum values of population learning rates c2max
and c2min, and the number of populations M. Set up the learning rate, the number
of neurons in the first hidden layer and the second hidden layer, and the batch
size in the LSTM model with the attention mechanism as the target optimization
parameters of the improved particle swarm algorithm.

Step 3: Form the corresponding particles and populations according to the parameters to
be tuned, and construct the LSTM model with the attention mechanism with each
particle corresponding to the initial parameters. Training is performed through the
training data. As the fitness value of each particle, the mean absolute percent error
(MAPE) of the results is used.

Step 4: Real-time update individual particles and population optimal particle positions
according to the MPSO algorithm.

Step 5: Repeat the iterations until the maximum number of iterations is exceeded. Return
the particle parameter corresponding to the best fitness and determine the value
of the LSTM hyperparameter with the attention mechanism. Otherwise, return to
step 4.

Step 6: Substitute the obtained hyperparameters for the LSTM model with the attention
mechanism. Wind power prediction has been performed on the test data.

The flow chart of the algorithm is as follows (see Figure 5).
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Figure 5. The workflow of the proposed research work.

The fitness curves are as follows (see Figure 6).

Figure 6. MPSO_ATT_LSTM fitness curve.
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The MPSO_ATT_LSTM network hyperparameter search process is as follows (see
Figure 7).

Figure 7. MPSO_ATT_LSTM network hyperparameter search process.

5. Experiment
5.1. Dataset Description

National Renewable Energy Laboratory provided the wind power generating dataset
used in this investigation [30]. This dataset contains hourly wind power, temperature,
pressure, wind speed, and wind direction measurements from wind farms between 2007
and 2012. The initial five years of data were used as the training dataset. The data from the
sixth year was used as the testing dataset (see Figure 8).

Before data processing, we analyzed the uncertainty of the data by using box diagrams;
it can be seen from the result chart that the data is evenly distributed and stable (see
Figure 9).

We have preprocessed the data before conducting the experiments:

(1) Data cleaning: The original dataset contains some illogical or absent values. For
instance, values of wind speed less than zero must be eliminated, and the missing
values are filled with the mean of the upper and lower moments.

(2) Data processing: Due to the fact that dataset has various units and orders of magni-
tude, the dataset is not comparable; they are standardized and normalized in advance.
The wind direction takes values in the range of [0◦, 360◦]. Consequently, the wind
direction data are converted to its sine and cosine values as the characteristics. Then,
the transformed values are normalized to [−1, 1].

zt =
xt − µ
σ

(23)

x̃ =
Zt

max(z)
(24)
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Normalization of wind power according to Equation (25):

x̃ =
xt −min(x)

max(x)
(25)

Figure 8. Historical data of the turbine power.

Figure 9. Data box diagram.

5.2. Training Process

The encoder and decoder have distinct functions; thus, they are optimized concurrently
using two Adam optimizers with regularization. Adopting a learning rate that decreases
exponentially throughout training allows for a rapid convergence of the model. The model
with the greatest performance on the validation set is picked as the final model throughout
the training process. This paper’s model implements Python as the programming language
and Tensorflow as the deep learning framework. The parameters of the model are reported
in Table 5.
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Table 5. Model parameters.

Parameters of the Model Value

LSTM layers 2
Activation function ReLU

Number of first hidden nodes 34
Number of second hidden nodes 48

Dropout 0.5
Learning rate 0.001

Learning decay rate 0.8
L2 regularisation 0.00001

Length of time windows 5
Batch size 78

5.3. Wind Power Forecasting Assessment

Mean absolute percentage error (MAPE) and mean absolute error (MAE) are utilized
to assess the accuracy of the suggested wind power prediction model by measuring the
forecast results.

The mean absolute percentile error (MAPE) is used to measure forecast accuracy:

MAPE =
1
N

N

∑
I=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (26)

The mean absolute error (MAE) reflects the actual situation of the errors:

MAE =
1
N

N

∑
I=1
|yt − ŷt| (27)

yt, ŷt are the true and predicted values of wind power at time t, respectively.
To value the proposed method, LSTM (network using the Adam algorithm), ATT_LSTM

(LSTM model with the attention mechanism), PSO_ATT_LSTM (LSTM model fusing parti-
cle swarm optimization with the attention mechanism), MPSO_ATT_LSTM (LSTM model
fusing modified particle swarm optimization with the attention mechanism), modified
long short-term memory model [16] (Improved Agorithms_1), and improved artificial
neural network [17] (Improved Agorithms_2) are used on the same dataset respectively for
predictions. The prediction results are plotted as follows (see Figure 10).

Figure 10. Wind power prediction results.
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Based on the evaluation index and prediction graphs, it can be determined that
although all six approaches produced good results, the two-stage attention mechanism
method based on MPSO-LSTM performs the best. It also reveals that both the modified
particle swarm optimization algorithm and the two-stage attention mechanism improve
the accuracy of model prediction greatly. In Table 6, the error evaluation metrics of the
approaches are provided. Obviously, compared with the existing and the latest literature
methods, the model significantly improves the accuracy of prediction.

Table 6. Model evaluation.

MAPE, % MAE, KW

LSTM 17.2 2423.6
ATT_LSTM 8.2 621.8

PSO_ATT_LSTM 5.9 359.3
Improved Agorithms_1 5.3 429.2
Improved Agorithms_2 6.5 373.6

MPSO_ATT_LSTM 4.6 211.5

When the performance of the model on both the training and validation sets is satis-
factory and it does not overfit, the model fit is deemed appropriate. Figure 11’s loss curve
illustrates the degradation of the loss function over time. This curve may be used to predict
if the model has been overfitted, underfitted, or is appropriately adapted to the training
and testing datasets. Given the size of the training set, the loss function decays fast to
a low value, as seen by the graph. Training and validation losses decline and level out
approximately at the same time. Thus, the model accurately represents the wind power
generation trends.

Figure 11. Loss value curve.

5.4. Two-Stage Attention Mechanism Explanation

Input attention mechanism: traditional machine learning techniques typically require
variable correlation analysis to choose the most pertinent input features. By weighing each
input variable, the input attention mechanism developed in this study automatically learns
the relative importance of each variable throughout the training process and gives greater
weight to the most important variables. This method resembles principal component
analysis. According to the representation of input attention weights in the Figure 12, wind
speed has the biggest impact on wind power generation, which is consistent with the
findings of the current related study [31]. That study demonstrates the correctness of the
input attention mechanism for selecting input variables.
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Figure 12. Input Attention Weights; T: Temperature; P: Pressure; WS: Wind Speed; WD(sin): Wind
Direction sine; WD(cos): Wind Direction cosine.

Similar-day attention mechanism: The similar-day attention mechanism is utilized
to acquire similar day weights by comparing the depth properties of the previous and
current times inside the time window. The classic similar day technique compares expected
data and previous data using the original statistical characteristics to obtain day-to-day
information that is comparable. In this experiment, the similar day strategy provides
comparable data through automatic model learning, hence reducing data preparation time.
Although wind power fluctuates over time, it exhibits a definite trend. Therefore, the
characteristics of the first few moments of the forecast point have different degrees of
influence on the forecast results. In terms of influence weights, the closer the prediction
time point is, the greater the influence on the prediction results. Similar daily attention
weights do include this influence tendency, as demonstrated by Figure 13.

Figure 13. Similar Day Attention Weights.
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6. Conclusions

This paper proposes a two-stage attention-based LSTM model optimized by using a
modified particle swarm optimization for forecasting wind power generation. By adding
the attention mechanism, the importance of the input variables is automatically determined,
hence eliminating the feature selection procedure required by conventional algorithms. On
this basis, a similar-daily attention mechanism is proposed to extract the characteristics of
the approaching time step in order to limit the impact of random fluctuations in wind power.
Correlation outcomes that are computed by an end-to-end model can be applied to input
variables directly. It avoids the clustering of data employed by the conventional method.
Prediction accuracy is improved by introducing a modified particle swarm optimization to
avoid the influence of artificially determined network hyperparameters. The simulation
results on datasets show that the method in this paper has a higher prediction accuracy than
the previous and most advanced algorithms. However, the hyperparameter search time is
long, and we can consider improvements to the method to achieve parallel operation and
reduce the network training time. At the same time, because most neural networks contain
hyperparameters, this scheme is also applicable to other neural networks in principle and
can be further verified in the future.
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