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Abstract: The electrical power infrastructure of the modern world is advanced, efficient, and robust,
yet power outages still occur. In addition to affecting millions of people around the world, these
outage events cost billions of dollars to the global economy. In this paper, the revenue loss borne
by electricity-supplying companies in the United States due to power outage events is estimated
and predicted. Various factors responsible for power outages are considered in order to present an
exploratory data analysis at the U.S. level, followed by the top ten affected states, which bear over
85% of the total revenue loss. The loss is computed using historic observational data of electricity
usage patterns and the tariff offered by the energy suppliers. The study is supplemented with
reliable and publicly available records, including electricity usage patterns, the consumer category
distribution, climatological annotations, population density, socio-economic indicators and land area.
Machine learning techniques are used to predict the revenue loss for future outage events, as well as
to characterize the key parameters for efficient prediction and their partial dependence. The results
show that the revenue loss is a function of several parameters, including residential sales, percentage
of industrial customer, time-period of the year, and economic indicators. This study may help energy
suppliers make risk-informed decisions, while developing revenue generation strategies as well as
identifying safer investment avenues for long-term returns.

Keywords: revenue loss; power outages; prediction

1. Introduction

Power infrastructure reliability and pliability is a major concern worldwide. The
modern world demands uninterrupted electric power to fulfill its rapidly increasing needs.
The power infrastructure in the United States (U.S.) is classic, complicated, and extensive,
spanning over a large geographical area. The existing infrastructure is becoming fragile,
but current expansion plans are not enough considering the rising electricity demand [1].
Interruption in the power supply affects everyone, including the utility industry, socio-
econometric activities, law and order, and the health and education sectors. There are a
number of causes of power outage events in the U.S., such as natural or weather-induced
disasters, system operability disruption, equipment failure, fuel supply emergencies, island-
ing, intentional attacks, and public appeals. However, weather-induced natural disasters
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have been the top cause of power outage events [2,3]. From the environmental perspective,
some areas are more exposed to natural disasters in comparison to others. Shen et al. [4],
based on data from 2007 to 2018, revealed that the eastern U.S. is more vulnerable to severe
weather disasters. In another study conducting single-state analysis, it was found that
Texas (TX), California (CA), and Ohio (OH) were prone to several kinds of weather-induced
disasters; Michigan had the highest frequency of disasters, followed by Texas and Cali-
fornia; and hurricanes were the most common disaster in Texas, Florida, New York, and
Louisiana [5].

The frequency of weather-related natural disasters has significantly increased over
the last two decades. Such events are detrimental to the smooth running of electric power
systems and may trigger cascaded power outages [3,6,7]. During the current year (2021),
Texas faced a major power crisis due to three extreme winter storms that swept across the
U.S. [8]. During the year 2020, a total of 22 severe weather and climatological events, such
as tropical cyclones, storms, droughts, and wildfire, occurred across the United States [5];
this surpasses the previous record of 16 events, which occurred in both 2011 and 2017 [9].
From 2003 to 2012, the cause of 80% of all outages was severe weather events [10]. A
report by the U.S. Department of Energy (DOE) in 2017 showed that more than 90% of
power outages occurred in the transmission phase, and most of them were due to extreme
weather events.

Power outage events, specifically those due to weather-related natural disasters, not
only cause prolonged outages affecting millions of people, but also result in a huge financial
loss. The winter storms in 2021 alone cost the U.S. economy a record USD 200 billion [11].
The winter storm that hit Texas in Feb 2021 affected 5 million people, with 151 casualties [12].
According to one estimate, it resulted in a total economic loss of USD 45–50 billion, including
the destruction of structures, loss of jobs and wages, medical expenses, and damage to
businesses [13]. The 22 disaster events that happened in the year 2020 alone cost more
than USD 1 billion per event. The top three of these events included: Hurricane Laura
(Category 4) on 27–28 August in Louisiana, which caused a total economic loss of USD
18+ billion; Derecho on 10 August, which traveled from South Dakota to Ohio with a wind
speed of 80–100 mph, causing severe damage and a total economic loss of USD 11 billion;
and Hurricane Sally (Category 2) on 14–18 September, along the Alabama coast, which
saw a record 1–2 feet of rain in Florida and Alabama and caused a total economic loss of
USD 7 billion [5]. In 2017 alone, the U.S. witnessed 16 disasters, which cost billions of US
dollars [14]. Hurricane Sandy in 2012 affected 8 million people and caused a loss of USD
70 billion [15]. Hurricane Irene in 2011 affected a population of 6 million, with a financial
loss of USD 10 billion [15]. From 2003 to 2012, severe-weather-related power outages cost
the U.S. economy USD 20 to 50 billion [15]. In the period 1980–2017, weather-induced
natural disasters cost the U.S. circa USD 219 billion [16]. Regarding the consequence of
power outages, as discussed above, studies have been carried out to assess the overall
economic losses caused by these events, including the cost of infrastructure damage,
damage to equipment, revenue loss due to non-sale of electricity, costs to consumers due to
non-provision of the power supply, and so on. These studies consider two perspectives:
one is the (residential/commercial/industrial) consumer’s perspective of monetary loss,
which they bear due to the absence of power; and the other is the supplier’s perspective,
where he bears the revenue loss due to non-sale of electricity. In our study, we use the data
from historical power outage events and aim to specifically compute, as well as predict, the
revenue loss borne by electricity suppliers due to non-sale of electricity during such events.

2. Background

The economic loss due to interruption of electricity can be estimated based on the
feedback from users. For instance, the estimated financial loss based on the feedback
provided by commercial sector users will represent the commercial monetary loss. Sim-
ilarly, estimates can be made for other sectors by collecting the information from their
corresponding consumers. However, this approach is less practical, since most of the time
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the outage occurs due to natural disasters, so post-event circumstances are difficult, and
it is hard to approach and collect feedback from the people affected. Another popular
and widely used approach for financial loss assessment is based on how much money
the user is willing to pay (WTP) for an uninterrupted supply of electricity [17]. This is a
subjective assessment based on individual’s way of thinking and the added value they
associate with an uninterrupted supply of electricity. In recent literature, this approach
has been extensively used by researchers for economic loss assessment associated with
power outages. One study estimated the economic loss from climate change effects using
this approach [18]. Research conducted on small firms in Hyderabad, India, revealed how
much the owners were willing to pay for a consistent supply of electricity [18]. The authors
concluded that, on average, the firms were willing to pay 20% more for an uninterrupted
electricity supply. Another study was conducted in Zambia to assess the willingness of
organizations to pay for an improvement in the reliability of their electric power supply [19].
It was concluded that large organizations with higher revenues were willing to pay more
than small firms for an uninterrupted supply of electricity. Another study from Nepal used
the contingent valuation approach to rate the willingness to pay for improved services after
the energy crises during 2008–2016 [20]. The authors reported that households were ready
to pay an extra 65% of the actual monthly electricity bill for improved quality of power
supply. Another study discussed estimates of users’ willingness to pay for developing a
local, limited electric power supply system in case of long outages [21]. The study discusses
different scenarios based on services during the outage; the duration of supplied services;
and the billing cost over 5, 10, and 20 years for the development of a limited power supply
system for use during long outages. Another study presents an economic loss assessment
based on Pennsylvania residential customers’ willingness to pay for uninterrupted power
supply up to 20A for a week-long period [22]. The residents were willing to pay up to USD
1.2 per kWh for their high-priority services.

The studies discussed above used the WTP (willingness to pay) approach and pre-
sented the financial loss estimation from consumers’ perspective. However, there is hardly
any evidence focusing on the electricity suppliers’ perspective of financial damage; in
particular, estimation of the revenue loss incurred by electric supply enterprises due to
non-sale of electricity has not been discussed in the past literature, and we are going to
explore this aspect.

In general, the economic loss due to interruption of electricity can be estimated in
different contexts based on the nature of the collected/available information, as has been
presented in the literature [23–27]. Among these studies, many considered the economic
loss estimation from the perspective of consumers (for instance, residential, industrial, or
commercial consumers). However, the perspective of electric power suppliers regarding
fiscal loss in these sectors due to power outages has not been discussed.

There is a significant amount of literature related to the economic loss caused by power
outages using the end users’ WTP for ensuring an uninterrupted supply of electricity. Other
methods to estimate economic losses were based on post-outage feedback from affected
consumers. Again, there is hardly any evidence of revenue loss assessment based on
non-sale of electricity itself. Public and private electric-power-supplying enterprises bear
a huge revenue loss associated with power outage events. However, there is a gap in the
literature to accurately quantify this phenomenon. In this study, the estimation of revenue
losses due to power outages borne by electricity suppliers due to non-sale of electricity is
presented. For this purpose, a publicly available historical data set for the U.S. is used. The
data includes records of electricity usage patterns, socio-economic indicators, the number
of consumers belonging to different sectors, the population of individual states, the land
area, and so on [28]. A study has already been carried out using this data, where the
10 most vulnerable states of the U.S. were extensively studied [29]. An exploratory data
analysis is presented covering the outage events’ frequency, the reasons for occurrence, the
natural disaster impact, and the computation of revenue losses due to non-sale of electricity.
Machine learning techniques are employed to predict such revenue losses for future outage
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events. The relation between the revenue loss and the potential parameters for estimation
is characterized.

The organization of the rest of the paper is as follows: Section 3 presents the exploratory
data analysis. Section 4 explains the methodology. The results and discussion are presented
in Section 5. The conclusion is added in Section 6.

3. Exploratory Data Analysis

Comprehensive historical data including several parameters related to power outage
events that occurred during 2000–2016 are used. A total of 1534 power outage events
occurred from 2000 to 2016 in the US. The data is publicly available and contains the
information of 1534 power outage events over a 17-year time period [28]. It includes seven
types of events that triggered the power outage. The data includes observations of several
parameters recorded at the time of the outage event, which are distributed among nine
different categories, where each category includes multiple indicators. The categories of
the data and their corresponding sources are shown in Table 1.

Table 1. Historical data categories and their respective sources [28].

Sr No Data Category Data Sources

1 Annual population U.S. Census Bureau

2 Electricity consumption National Oceanic and Administrative
Administration (NOAA)

3 Percentage of customers US Energy Information Administration (EIA 826)
4 Economic parameters Bureau of Economic Analysis
5 Land and water mass percentage U.S. Census Bureau
6 Climate and water data NOAA’s National Climate Data Centre (NCDC)
7 Year category NOAA
8 Regional climate (by state) NOAA
9 Urban and rural area percentage U.S. Census Bureau

The data reveals that there were seven different types of events that have caused
power outages, including severe weather, islanding, fuel supply emergency, equipment
failure, system operability disruption, intentional attacks, and public appeal. The frequency
of these events is shown as percentages in the Figure 1. It is evident that half of the outage
events were triggered by severe-weather-related natural disasters.
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To understand the frequency of such events in relation to different seasons, the month-
wise histogram of occurrence of these events is shown in Figure 2, where the histogram
shows the frequency of a particular event over the entire period (i.e., 2000–2016). It can be
observed that the frequency of severe-weather-related outage events is high during the
summer months (i.e., June–August), where 92 events occurred on average per month. In
contrast, during the winter season, specifically December–February, 64 events happened
on average in a month.
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Figure 2. Month-wise frequency distribution of events that caused power outages during 2000–2016 [29].

As shown in Figure 1, half of the total number of outage events occurred due to
severe-weather-related natural disasters. A statistical analysis of the classes of severe-
weather-related natural disasters reveals that 58.2% of the total outage events occurred
due to five categories of disasters. The monthly histogram visualization of those types
of severe-weather natural disasters is presented in Figure 3. Here, winter storm can be
observed as the main cause of power outages during the winter season, while the main
cause is thunderstorm for the summer season.
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Power outages affect consumers across all sectors, including residential, industrial,
and commercial. The electricity cost or the tariff offered to one sector consumer is usually
different from the other. The electricity suppliers generate their revenue from the sale,
which depends on the consumers’ demand. Whenever a power outage occurs, the supply
is cut and so is the sale. Therefore, the power suppliers generate no revenue during the
outage. The longer the outage, the larger is the revenue loss. To make an estimate of the
revenue loss during an outage event, the sale of an individual consumer sector at the time
of the outage event is calculated using Equation (1). The total revenue loss during an
outage event is the product of the total sale and the total outage duration, computed using
Equation (2). Here, the total sale is the sum of income from all the individual consumer
sectors, including residential, commercial, and industrial. The total revenue loss over the
sixteen-year period is the sum of all the individual event losses from 2000 to 2016.

Total Sale per sector (USD million/min) =
Elec.sale (MWh)× Elec.price(cents/KWh)

60× 105 (1)

Total Revenue loss (USD million) = Total Sale (USD million/min) × outage duration (min) (2)

The revenue loss is considered as the output parameter, since the prediction of such
loss is performed for the future power outage event in the coming sections of this paper.
The unit price for electricity consumption is measured in USD cents (USD 0.01) per KWh,
where the unit of consumption is MWh (megawatt hour). From the available data, it was
observed that the majority of outage events lasted for a relatively small time period, while
fewer events caused prolonged outages. The visualization of observed (actual) outage
duration parameter as kernel density distribution reveals this phenomenon, as shown in
Figure 4a. It can be observed that the distribution is positively skewed. For improved
representation and better visualization, the log-transform version of outage duration is
computed and shown in Figure 4b. The log-transformed observations of outage duration
are obtained using Equation (3). The density distribution of total sales in USD millions is
shown in Figure 4c. It is worth mentioning again that total sale is computed by adding
the sale of all individual sectors at the time of occurrence of the power outage event. The
density distribution of total revenue loss using transformed outage duration (TLTra) is
shown in Figure 4d, while the density distribution of total revenue loss using observed
outage duration (TLO) is shown in Figure 4e.

Transformed outage duration = log (observed outage duration + 1.1) (3)
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The historical data includes the information of power outage events from 50 States
of the U.S. So far in this research, the electricity sale, the revenue generated, and the
loss for all the states of the U.S. overall have been computed. Similarly, we will next
compute the revenue loss at the individual state level. Figure 5 reveals that 85.4% of
the total accumulated loss belongs to 10 states, including Texas (TX), California (CA),
New York (NY), Michigan (MI), Florida (FL), Pennsylvania (PA), Ohio (OH), New Jersey
(NJ), Louisiana (LA), and Indiana (IN). Interestingly, all those states belong to the North
American region. Among them, Texas, California, and New York accumulate more than
55% of the total revenue loss.
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The density distribution of the top 10 states’ data, similar to Figure 4, is presented
in Figure 6. The similarity between both the figures is evident, since the visualization in
Figure 6 projects 85% of the data used for Figure 4.
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As discussed earlier, there are seven different kinds of events covered in the historical
data causing power outage; it is important to see the contribution of each of those events
toward the revenue loss. Figure 7 shows the accumulated revenue loss in percentage due to
those seven events. It can be seen that severe-weather-related events are responsible for 70%
of the total revenue loss. Previously, in Figure 1, it was shown that 50% of outage events
happened due to disasters related to severe weather; however, the accumulated revenue
loss due to such disasters is even higher (i.e., 70%). This is because of the prolonged outage
durations that occur due to natural disasters, in contrast to the other events.
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As observed from Figures 2 and 3, the frequency of natural disasters is high during
the extreme summer and winter seasons. To see the corresponding impact on revenue loss,
a box plot of monthly revenue loss in USD millions is illustrated in Figure 8 for the U.S.
overall. The box plot in Figure 8 shows that the revenue loss is higher during June–October
as well as December-January compared to the other months. As expected, this is due to the
frequent occurrence of severe-weather-related outage events during those periods. Since
the box plot also provides insight into the quartile ranges of the data, it can be observed
that there are many outliers in the data. Such outliers make the data noisy and lead to high
generalization error of the classifier.
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Figure 9 illustrates the monthly dispersion of the revenue loss in USD millions cal-
culated for the top 10 most affected states. A similar pattern to the one in Figure 8 can be
observed here as well, since it projects 85% of the total loss.
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The main source for revenue loss computation is electricity sale and the proposed tariff.
This varies among different consumer sectors. For instance, the demand is usually highest
in the commercial sector, while the tariff, in contrast, is normally highest for the residential
consumers. As established earlier, 85.4% of the total loss happened in the top 10 states;
therefore, we visualize the annual revenue loss for those individual states. Figure 10 shows
the revenue loss for each of the top ten states in the residential sector over the period from
January 2000 to July 2016. It is observable that New York, California, and Texas have seen
larger losses over the entire period overall. It is also observable that the revenue loss is
highest for the year 2008, specifically in Texas. This is due to the occurrence of prolonged
outages in the months of July and September under severe weather conditions, particularly
due to hurricanes. The largest outage duration observed spanned over twenty days in
September 2008.
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Similarly, the revenue losses can be seen in Figures 11 and 12 for the industrial and
commercial sectors, respectively. A similar trend can be observed with respect to the
individual states. A comparison of the sectors shows that the revenue loss is highest
in the commercial sector. As mentioned earlier, the commercial sector is often more
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demanding than other sectors; the demand of the commercial sector is almost 160% that of
the residential sector. However, it is worth mentioning that, according to the data, the price
of the commercial sector electricity is lower, almost 70% that of the price of the residential
sector on average. The trend of high commercial revenue loss is almost consistent in all the
individual states; however, it is comparatively higher in the states of Texas, California, and
New York. The high demand and the tariff are the reasons. Now, excluding the commercial
sector, the loss is comparatively higher for the residential sector than the industrial sector.
This is because of the relatively higher electricity rate, almost twice comparatively, as well
as the higher demand in general.
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Figure 13 shows the yearly combined revenue loss of the three sectors over the total
17-year duration. The total revenue loss is the sum of the losses computed at the level of
the individual sectors.
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Finally, we present the statistical analysis for revenue loss in the Table 2, calculated
using both observed and transformed outage duration. It is observable that the statistics
for the top 10 states of the U.S. have greater values (for instance, the mean, the median, and
the IQR). The reason is obvious; the majority of instances for the top 10 states belong to
prolonged outage events, where the duration of outage spanned from days to weeks. In
comparison, for the overall U.S. level, many short-duration outages exist along with the
prolonged ones, leaving the mean outage duration smaller. The outage events that lasted
for a few seconds (less than a minute) were rounded up and recorded as zero minutes. That
explains why we added a constant in log transformation when computing the transformed
outage duration. It is worth mentioning that when calculating the financial loss associated
with transformed outage duration, the outage durations are initially log-transformed
(using Equation (3)) and then multiplied with the price (using Equation (2)) to obtain the
transformed loss.

Table 2. Statistical analysis of the total revenue loss for top 10 states and the U.S. overall.

Revenue
Loss

(Million USD)

Statistical Parameters

Mean Median Std.
Dev. Min Max IQR

U.S.
Over

all

TLO 55,190 12,455 155,065 0 2,366,544 45,972

TLTra 125 91 118 0.04 685 147

Top10 States
TLO 93,718 33,494 204,404 0 2,366,544 86,451

TLTra 202 180 119 0.04 685 172

TLO: total loss calculated based on observed outage duration. TLTra: total loss calculated based on transformed
outage duration.

4. Methodology

So far, a detailed exploratory data analysis has been carried out by observing the
events responsible for power outages, the major events primarily responsible for power
outages (weather-related natural disasters), the revenue loss both for observed (actual)
outage duration and the transformed outage duration, the monthly distribution analysis
for events, and the losses. The aim is to perform a prediction of revenue losses in the
case of power outages due to any kind of event that has been observed. Therefore, the
revenue loss is selected as the response (or output) variable, to be predicted using machine
learning techniques. There are a number of machine learning algorithms that have been
used for prediction, such as linear regression, support vector machines (SVM) [30], artificial
neural networks (ANN) [31], and decision trees [32]. The selection of the appropriate



Energies 2022, 15, 4327 12 of 24

technique is important, since each has its associated pros and cons. The SVM is a popular
machine learning technique, also called the large margin classifier. It can fit both linear
and non-linear models to the data. However, it is largely used for classification purposes
rather than regression problems, as in the current scenario. The decision tree is a low-bias,
high-variance technique and therefore causes over-fitting. Moreover, it is sensitive to noise
and outliers, which leads to large generalization errors.

The nature and size of the data set plays an important role. The data used in this
research is multidimensional and diverse, and therefore the presence of noise and outliers
is likely, as can be observed in the box plots in Figures 8 and 9. Keeping in view the nature
of the data and the problem-specific machine learning algorithms, the artificial neural
network (ANN) and the random forest algorithms are selected for the prediction and results
evaluation. The ANN is a state-of-the-art technique that has been used in multidisciplinary
research for regression as well as classification purposes [33–35]. The random forest is an
ensemble tree-based method. A brief description of these methods, along with definitions
of illustrative evaluation methods, is included in the following subsections.

4.1. Artificial Neural Network Model

An artificial neural network (ANN) consists of a layered structure with interconnected
nodes, called neurons. It is a data-driven algorithm whose working mechanism is inspired
by the biological nervous system. The data is fed as input at the first layer of the ANN, and
the output layer produces a prediction of the network. A multilayer ANN may have one or
more hidden layers (which include all the layers other than the input and the output layer).
Generally, one hidden layer is sufficient to map the input–output relationship; however,
it may require more layers to accommodate highly complex data. The prediction error is
iteratively reduced using the back-propagation algorithm, used for training of the neural
network [36]. Once the network is trained by achieving the minimum training error, the
network is evaluated using the unseen data. A sample model of an artificial neural network
with an input layer, a hidden layer, and an output layer is shown in Figure 14. The first
layer is the input layer, where the features are applied to the neural network. Therefore,
I1 represents the first input feature, h1 represents the first hidden unit, and O1 represents
the first output unit. Since there is only one output in our case (i.e., the revenue loss), only
one output is shown. The n is an arbitrary number that represents the total number of
input features, and the same is used to represent the total number of hidden units in the
hidden layer. The actual number of input and output units of the estimated network will
be discussed in the coming Results and Discussion section.
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4.2. Random Forest Model

Brieman originally developed the random forest (RF) model [37]. It is a tree-based
ensemble algorithm that can comprehend the nonlinear nature of the data and is robust to
outliers and the noise. It is a non-parametric technique; therefore, it does not reflect any
particular distribution and performs efficiently for heterogeneous data, making it suitable
for problems with diverse data. It is easy to implement, without any need for fine tuning,
and produces reasonably good results. The procedure to develop a random forest algorithm
is as follows [37]:

1. Select N re-sampled batches of data as training set and keep the remaining data
for validation.

2. Choose m variables to split and fit the regression tree.
3. Choose the optimal splitting value and let the tree grow.
4. Compute the prediction error by using residual data.
5. Repeat the steps 1–4 K times to establish K number of trees.

Random forest apprehends the broad structure of the data and has sensitivity to
outliers, which is the high-variance scenario. Since each individual regression tree is fit
on random subsets of data, and the split of the tree is random as well; therefore, taking
averages of the estimates of all the trees overcomes the high-variance impact and improves
the accuracy. These features make it a perfect algorithm to fit compound and noisy data.

4.3. Partial Dependance Plots

Partial dependence plots provide insight into the influence of an individual feature,
such as economic indicators, land area, population, time of the event, and so on, on the
response variable (revenue loss). In non-parametric models, PDPs reveal the impact of a
single feature on the output considering all the other factors to be constant. It is an effective
way to show the bordering effect on the output parameter by keeping all the features
unchanged except one [38]. A PDP can be computed as follows:

Ys(Xs) =
1
K

K

∑
i=1

Y(Xs, xiR) (4)

where Ys is the output variable, Xs represents the covariate for which the PDP to be
estimated, and xiR are all the covariates except Xs.

4.4. Quantile–Quantile (QQ) Plot

A quantile–quantile (QQ) plot is a graphical way to compare two probability distri-
butions by plotting their quantiles against each other. When the two distributions are
identical, the QQ plots follow a 45◦ line (i.e., y = x). If the line is relatively flatter, the
distribution plotted on the horizontal axis is more dispersed than the one on the vertical
axis. Conversely, the relatively steeper line indicates a higher dispersion of the distribution
on the vertical axis than that on the horizontal axis.

4.5. Final Feature Selection for Loss Estimation

Since the data in this study is multivariate, it is important to look at the multi-
collinearity. It may avert the impact of input features on the output variable, which
needs to be addressed. To reduce the multi-collinearity in the data, only the features with
a variance inflation factor (VIF) less than 4 are short-listed [39]. The VIF is the ratio of
the variance in a model with multiple terms to the variance of the model with a single
term. It shows how the variance of an estimated regression coefficient is increased due to
collinearity. The VIF is computed to select the final features to be used for the prediction
of revenue loss, both for TLO and TLTra. The finally selected features are summarized in
Table 3 separately for TLO and TLTra.
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Table 3. Final set of features selected for prediction of revenue loss.

Feature

For Total Loss
(Observed

Outage
Duration)

For Total Loss (Transformed
Outage Duration)

Year × ×
Month × ×

Anomly_level × -

Demand_loss_MW × -

Customers_affected × -

Industrial_price × -

Residential_sales × ×
PCT_residential_electricity_consumption - ×

PCT_commercial_customers × ×
PCT_Industrial_customers × ×

PC_real_GSP_USA × -

PC_real_GSP_change × ×
Utility_contribution × ×
PC_real_GSP_REL × ×

PCT_land_area_urban × ×
PCT_land_area_state.level × ×

PCT_inland_water_area_state.level × ×
Postal_code × ×

PCT_population_urban_cluster - ×
Severe_weather_catgory × ×

Climate_region × ×
× = Yes, - = No.

The exploratory data analysis in Section 2 revealed that more than 85% of the financial
loss is borne by only 10 states of the U.S. Therefore, from this point on, further analysis
and results evaluation are carried out using the data of those 10 states. The final features
presented in Table 3 are also estimated using the data of the top 10 most affected states. The
overall workflow of this study is expressed in the block diagram shown in Figure 15.
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5. Results and Discussion

Since the prediction of the revenue loss is a regression problem in nature, for results
evaluation, several error metrics are considered, such as mean absolute error (MAE),
mean absolute percentage error (MAPE), root mean square error (RMSE), and accuracy.
Since the target and the predicted value are both real numbers, the mean absolute error
provides the average difference between the two. MAPE provides a better insight about
the prediction results in terms of percentage error. The RMSE is another widely used error
metric to compute the error between two real values. These error metrics are mathematically
expressed as follows:

MAE =

n
∑

i=1
|yi − pi|

n
(5)

MAPE =
1
n

n

∑
i=1

|yi − pi|
yi

(6)

RMSE =

√√√√√ n
∑

i=1
(yi − pi)

2

n
(7)

where yi is the actual value, pi the predicted value, and n the total number of observations.
The accuracy is computed as 1-MAPE.

It is worth mentioning the hardware and software resources used for this study. The
experiment was performed on an Intel Core i3 2.2 GHz processor machine with 4 GB RAM.
On the Windows 10 operating system, a Python programming environment was used with
the Keras library for implementing machine learning algorithms. The execution time for
training and testing data for neural network was recorded as 2.12 s and 1.04 s, respectively.
For random forest, the execution time was recorded as 1.53 s and 0.67 s for training and
testing data, respectively.

5.1. Neural Network Model Prediction

For the neural network model, architecture with a single hidden neuron is selected.
For the training of the network, the data is randomized and split into 70, 15, and 15 percent
for the purpose of training, validation, and testing, respectively. The network is trained
using the training set and optimized using the validation set, while mean square error is
observed for network optimization. The network was optimized, ending up with 22 hidden
neurons to achieve minimum validation accuracy. The learning rate was set as 0.001. As
mentioned earlier, since the top 10 identified states are considered, the total data is the
combination of the observational outage data of the top 10 identified states, independent of
state affiliation. The objective is to predict the revenue loss independent of the location of
the event.

The results using the neural network model are presented in Table 4 for both the
observed outage-duration-based loss and the transformed outage-duration-based loss. It
can be observed that the MAE for transformed financial loss is much smaller than the
observed loss. This is because of the values used at the logarithmic scale. However,
to calculate the accuracy of the predicted transformed loss, its inverse-log is taken and
compared with the actual loss. In other words, the target value for revenue loss is not
changed at all. Prediction using log-transformed values is performed, and the result is
converted back by taking its inverse log. In this way, both values are compared, and the
error is calculated. The accuracy in the case of actual (untransformed) loss prediction is
higher, with a statistically larger error. This is because of scale conversion. The MAPE
reflects the results on a similar scale, and it can be observed that this error is almost half in
the case of observed revenue loss. The higher value of R2-square also confirms the better
prediction results in the case of observed revenue loss.
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Table 4. Final revenue loss prediction results of machine learning algorithms.

Predicted Revenue Loss per Event (USD Million)

with Observed
Outage Duration

with Transformed
Outage Duration

Artificial Neural
Network Model

MAE 23,012.7 19.6
MAPE 24.8 45.3
RMSE 29,173 26.9

Accuracy 75.2 54.7
R2 0.68 0.56

Random Forest Model

MAE 19,063.9 16.2
MAPE 20.2 38.2
RMSE 22,356 18.5

Accuracy 79.8 61.8
R2 0.76 0.68

5.2. Random Forest Model Prediction

For the random forest model, the data is split into training and test sets as 75% and 25%,
respectively. During the training, the optimum number of estimators was found to be 200.
The prediction results of the random forest model are presented in Table 4. In the context of
observed versus transformed, we find in the results a similar pattern as that recorded using
the ANN. The results with observed loss are better than those with transformed loss (i.e.,
the accuracy is 18% higher), and the MAPE is almost half. As a comparison between the
models, the random forest produced better prediction results than ANN, achieving lower
error and higher accuracy. The reason is its better fit for multi-dimensional, nonlinear, and
noisy data with outliers.

5.3. Identification of Important Features

The results in Table 4 revealed that higher prediction accuracy can be achieved using
original observed outage duration. Based on this, the final feature set for the TLO from
Table 3 is considered for further feature-level analysis. Among those features, the most
important ones are identified using the random forest model, since it can be utilized for
feature importance ranking. Important feature ranking has been carried out in [37], where
key features were identified for individual state analysis. The outage duration parameter in
this paper is used for calculating the revenue loss; therefore, it has not been considered as an
input feature for the revenue loss prediction. Figure 16 shows the important features along
with their normalized importance for prediction of revenue loss using observed outage
duration. The electricity sale of the residential sector is identified as the most important
feature for prediction of revenue loss, followed by percentage of industrial customers and
percentage of land area, respectively, as the second and third features.
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Figure 17 shows the performance analysis graph where the relationship between the
top five important features and the response variable is plotted. The off-diagonal plots
from left to right show the density distribution of individual features. The bottom row of
Figure 17 shows the correlation between the individual feature variable and the response
variable (revenue loss). It can be observed that there is almost no correlation between the
loss and the individual feature variables. The rest of the plots illustrate the inter-feature
correlations. It can be observed from these plots that the majority of the features are
uncorrelated with each other, with a couple of exceptions. For instance, the correlation of
the residential sales variable with the rest of the variables can be observed in the scatter
plots in the first column of Figure 17. The residential sales variable has a positive correlation
with the industrial customer percentage variable and the percentage land area variable.
Similarly, a minor negative correlation can be observed between residential sales and the
year variable.
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Figure 18 presents the inter-feature Pearson correlation coefficient for the top 10 im-
portant feature variables along with the heat map. A higher magnitude of the Pearson
correlation index shows a stronger linear relationship between the features, while a neg-
ative value represents the inverse relationship. The bottom row of Figure 18 shows the
correlation index between individual feature and the predicted revenue loss. The rest of
the observations correspond to inter-feature correlation coefficients. A large positive value
represents the high positive correlation between the feature variables. For instance, the
residential sales variable has a moderate positive correlation with the industrial customers’
percentage, percentage of land area, and percentage of commercial customers variables (see
the first column of Figure 18). Similarly, a negative correlation exists between industrial
price and utility contribution, with a correlation coefficient of −0.61.
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5.4. Partial Dependency Plots

The PDP provides an insight about the effects of individual features on the response
variable. In each plot, the range of a feature value influencing the response variable is
represented on the horizontal axis. The vertical axis represents the predicted revenue loss
in USD millions. For the sake of illustration of partial dependence, we shall discuss the
PDPs of the three most important feature variables.

The PDP shown in Figure 19 illustrates the influence of the residential sector electricity
sales parameter on the predicted revenue loss. Many peaks of predicted revenue loss can be
observed against the residential sales. The effect is generally low in the mid-range of sales,
except at 0.75. With a further increase in sales, the predicted revenue loss keeps increasing.
In general, there are a few observations of residential sales where the classifier predicts
high revenue loss. Other than those, the predicted loss is generally low and constant. The
normalized feature importance of residential sales is 0.15; therefore, we noted the effect of
residential sales on predicted loss to be less correlated.
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Figure 20 shows the QQ plot between residential sales and revenue loss. The red
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the plot indicate the dispersion in the probability distribution of both variables. It also
suggests that the model may not efficiently capture the variance in the data.
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The second important feature is the percentage of industrial customers. The PDP of
this feature variable is shown in Figure 21. The predicted revenue loss over the range of
this variable is low and almost constant. A peak in the predicted loss is observed when the
industrial customer percentage reaches 1.5, while it remains low otherwise. The normalized
feature importance of the industrial customer percentage on the predicted loss is 0.13.
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Figure 21. Influence of industrial customer percentage parameter on the revenue loss.

The QQ plot between industrial customer percentage and revenue loss is shown in
Figure 22. The points forming horizontal lines in the plot indicate the presence of multiple
observations of revenue loss against a single observation of industrial customer percentage.
This is because such percentages remained the same over the period of a year, when
multiple outages occurred and resulted in different revenue losses.
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Figure 22. QQ plot of industrial customer percentage and revenue loss (the red dashed line represents
95% confidence interval).

The third important parameter is percentage of land area in the region. It can be
observed from Figure 23 that while the land area in the region remains between 60% and
82%, the predicted revenue loss is low. The predicted loss is higher but remains almost
constant for the region with land area between 82% and 95%. For the regions with land area
more than 95%, the loss shoots up instantly. It is also noteworthy that the deviation in the
predicted loss remains smaller for this variable compared to the top two feature variables.
The normalized feature importance for percentage land area is 0.12.
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the financial losses for the state of Indiana (IN) are low despite the occurrence of long-
duration power outage events. The reasons for this are the low prices and the small sale 
figures. 

Figure 23. Influence of land area percentage on revenue loss.

Figure 24 shows the QQ plot between land area percentage and predicted revenue loss.
The points forming the long horizontal line in the bottom left quadrant of the plot indicate
that the distribution of revenue loss is highly dispersed compared to the percentage of land
area. The low value of R2 indicates that the model will capture the variance in the data
poorly compared to the top two variables.
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confidence interval).

Finally, the scatter plot between the total loss and the outage duration is presented in
Figure 25. It can be observed that for the state of California (CA), the largest financial losses
are recorded, even for a small duration of power outages. This is because of the elevated
prices of electricity in this state, as well as the high sale of electricity. In contrast, the
financial losses for the state of Indiana (IN) are low despite the occurrence of long-duration
power outage events. The reasons for this are the low prices and the small sale figures.
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The revenue loss prediction results reveal that, on average, each increment of 10 min
in outage duration will cause a revenue loss of USD 225 million based on the data of the
top 10 states combined. Overall, the U.S. bore an average loss of USD 55,190 million per
outage event during 2000–2016, where a mean revenue loss of USD 93,717.7 million is
estimated for the top 10 affected states of the U.S. per outage event. Undoubtedly, there
will be interesting and substantial observations from each state of the U.S. if state-level
financial loss prediction is performed; however, this is beyond the scope of this paper and
can be considered for future work.
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The data of power outage events used in this study belongs to the revenue-loss-based
top 10 affected states of the Unites States of America. Therefore, the results are reliable for
the prediction of revenue loss in those states. However, the proposed model can be used
for any region of the world. The results will vary depending on the nature of available
data. This study will be helpful for regulatory authorities in general to make risk-informed
decisions, and in particular, for power-supplying enterprises making stock investment
decisions and identifying safer investment avenues.

6. Conclusions

In this paper, revenue loss due to non-sale of electricity caused by power outage
events in the United States has been predicted. The exploratory data analysis revealed that
weather-related natural disasters caused half of the total outage events that occurred, and
more than 2/3 of total revenue loss. It was observed that in just 10 of the 50 States, the power
suppliers suffer 85% of the total revenue loss of the U.S. The individual consumer sectors
were analyzed to gain insight into sector-specific revenue loss, where it was found that
the commercial sector was mostly affected. The prediction of revenue loss was performed
collectively for the top 10 ranked states using machine learning algorithms, and over
80% accuracy was achieved. It was estimated that revenue of USD 1.35 billion is lost for
every hour of power outage in the top ten states, collectively. The impact of the three
most important features on the revenue loss was illustrated via partial dependency plots
and QQ plots. The results show that revenue loss is a function of multiple parameters,
including electricity sales, the percentage of individual consumer sectors’ customers, the
geographical landscape, and the economic indicators; however, a very small correlation
was found between the important features and the revenue loss.
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