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Abstract: Oil drilling is the core process of oil and natural gas resources exploitation. Well overflow is
one of the biggest threats to safety drilling. Prediction of the overflow in advance can effectively avoid
the occurrence of this kind of accident. However, the drilling history has unbalanced distribution, and
labeling data is a time-consuming and laborious job. To address this issue, an overflow-prediction
algorithm based on semi-supervised learning is designed in this paper, which can accurately predict
overflow 10 min in advance when the labeled data are limited. Firstly, a three-step feature-selection
algorithm is conducted to extract 22 features, and the time series samples are constructed through
a 500-width sliding window with step size 1. Then, the Mean Teacher model with Jitter noise is
employed to train the labeled and unlabeled data at the same time, in which a fused CNN-LSTM
network is built for time-series prediction. Compared with supervised learning and other semi-
supervised learning frameworks, the results show that the proposed model based on only 200 labeled
samples is able to achieve the same effect as supervised learning method using 1000 labeled samples,
and the prediction accuracy can reach 87.43% 10 min in advance. With the increase in the proportion
of unlabeled samples, the performance of the model can sustain a rise within a certain range.

Keywords: oil drilling; overflow; time series prediction; deep learning; semi-supervised learning

1. Introduction

As the “blood” of modern industry, oil is important primary energy. It not only
plays an important role in basic necessities but also works as an indispensable strategic
resource for national survival and development that promotes the economy and safeguards
security. Drilling is a key step in oil and gas exploitation, in which overflow is one of the
greatest threats to the safety of the operation. If it is not handled properly, the overflow
will evolve into a blowout, resulting in wellbore scrapping, which will not only cause
great economic losses but also endanger the lives, property, and safety of drilling workers
and surrounding people. The most effective prevention approach is the early detection of
overflow. Therefore, predicting the occurrence of overflow based on real-time drilling data
can strive for precious time control overflow, to reduce safety risks timely and effectively.

In the traditional oil drilling technique, overflow is usually judged by the drilling
engineers on the ground with relevant instrument data, by analyzing the changes in drilling
feature parameters, such as standpipe pressure, inlet and outlet flow difference, and so
on. However, artificial judgment highly depends on the experience of engineers, and it
brings great work pressure to the engineers. With the development of machine learning
technology, more and more scholars construct machine-learning models to predict overflow
risk. Hargreaves et al., (2001) analyzed deep-sea acoustic data to monitor overflow by
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Bayesian model and calculated the probability of overflow [1]. Lian (2013) fused a rough
set and support vector machine (RS-SVM) to monitor the occurrence of overflow [2].
Lind et al., (2014) proposed a radial basis function (RBF) neural network based on the
k-means clustering algorithm to predict drilling risk [3]. Li et al., (2015) put forward a
prediction method of the overflow based on the fuzzy expert system [4]. Liang et al.,
(2018) proposed a fuzzy multilevel algorithm based on Particle swarm optimization (PSO)
to optimize Support vector regression machine (SVR), and realized real-time dynamic
evaluation of drilling risk [5]. Liang et al., (2019) established a model for overflow diagnosis
based on the monitoring of standpipe pressure and casing pressure in pressure wave
transmission with the genetic algorithm and BP neural network (GA-BP). In this model,
the genetic algorithm was used to accelerate the convergence speed of neural networks
and avoid falling into the local extremum. The early diagnosis of drilling overflow was
realized, and the misjudgment rate of drilling overflow was reduced [6]. In the same year,
based on the correlation between overflow accidents and the trend of casing pressure,
Liang et al., proposed an intelligent early warning method for drilling overflow accidents
based on an improved DBSCAN clustering method. The early warning method used the
idea of time-series scanning and hierarchical rule clustering to improve the speed and
accuracy of clustering [7]. Zhu et al., (2019). collected data such as geological lithology,
designed well structure, real-time drilling fluid performance, rock physical properties of
backflow cuttings, and drilling engineering parameters to build an artificial neural network
to predict the risk probability of stuck pipe [8]. Sergey Borozdin et al., (2020) used deep
learning method and created a drilling simulator, which makes it possible to recreate a
digital twin of a real well and simulate an almost unlimited number of complications of
various kinds on it [9]. Mohammad Sabah et al., (2020) combined a number of heuristic
search algorithms including genetic algorithm (GA), particle swarm size (PSO), and cuckoo
search algorithm (COA), with multilayer perception (MLP) neural network and least
square support vector machine (LSSVM) to present different hybrid algorithms in the
prediction of lost circulation [10]. Liu et al., (2021) developed a dynamic Bayesian network
to create a dynamic risk assessment model for evaluating the safety of deep-water drilling
operations [11]. In the same year, Yin et al., applied a similar method to risk analysis of
offshore blowout [12], and Liang et al., established a random forest overflow accident
identification and classification model based on bat algorithm optimization [13]. Wang
et al., (2022) proposed a drilling identification method based on optimized SVM [14].

According to the above literature, machine-learning and deep-learning models, such as
support vector machine (SVM), artificial neural network, long-term and short-term memory
network (LSTM), and so on, become the main steam to predict overflow. The accuracy of
these supervised learning-based methods highly depends on a large number of labeled
training data. In practice, drilling data produced by one well is massive, and labeling
data manually is time-consuming and heavily dependent on the experience of engineers.
Besides, overflow data is very rare. The generalization ability limits the application of the
above models in drilling engineering. Therefore, to solve the problem of the small amount
of labeled data and a large number of unlabeled data, a semi-supervised learning model is
proposed that can predict overflow with limited label data.

2. Related Work
2.1. Semi-Supervised Learning

Semi-supervised learning (SSL) is a kind of learning method that combines supervised
learning with unsupervised learning. SSL model is built with a small number of labeled
samples and a large number of unlabeled samples. In practice, collecting labeled samples
is often difficult, expensive, and time-consuming in practical conditions, while unlabeled
samples are easy to obtain. In this case, SSL is more suitable for the application, since
SSL can effectively utilize the unlabeled data to improve the model performance. The
application of the SSL results from the hypothesis of the model. When the model hypothesis
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is established, unlabeled data can improve the learning performance of the model with a
high probability and vice versa. The main SSL assumptions are as follows [15]:

1. Smoothing hypothesis.
2. When two samples are very close in the high-density data region, their class labels are

likely to be the same; on the contrary, when the low-density data regions divide the
two samples, they are likely to have different class labels.

3. Clustering hypothesis.
4. When two samples belong to the same cluster, their class labels are probably the same.

This hypothesis is also named as low-density separation hypothesis, which means
that the classification decision surface should be located in the low-density data region
instead of the high-density data area. The decision surface should not divide the
samples from the same high-density data area into both sides of the surface.

5. Manifold hypothesis.
6. On the one hand, in high-dimensional space, the data volume increases exponentially

as the dimension increases, so it is difficult to estimate the real data distribution.
On the other hand, if the input data is on some low-dimensional manifold, a low-
dimensional representation could be found by unlabeled data, and then the simplified
task will be fulfilled with labeled data. Therefore, the manifold hypothesis maps the
high-dimensional data to the low-dimensional manifold, and if the two samples are
located in the local neighborhood of the low-dimensional manifold, their class labels
are likely to be the same.

It is worth noting that, when the semi-supervised model hypothesis is not valid,
unlabeled data will actually degrade the learning performance of the model.

2.2. Mean Teacher Algorithm

The Mean Teacher [16] method is a kind of consistent regularization method based
on the smoothing hypothesis. The main idea of the Mean Teacher model is to reduce the
over-fitting problem of the neural network through the consistent regularization method of
unlabeled data, that is, the model can be trained to consistently predict a given unlabeled
data and its perturbed data. The structure of the Mean Teacher algorithm is shown in
Figure 1.

Figure 1. Scheme 16.

As shown in Figure 1, Mean Teacher consists of a student model and a teacher model,
which share the same framework based on supervised learning, but the parameters of both
models are different. The parameters θ represent the student model, and the parameters
θ′ represent the teacher model. fθ represents the output of the student model, while fθ′

represent the output of the teacher model. In each training iteration, the same sample
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with different noise interference is input into the student model and the teacher model, the
disturbance of the student model is η, and the disturbance of the teacher model is η′.

The purpose of calculating the classification cross-entropy loss (Ls) between the pre-
diction label of the student model output and the real label of the sample is to ensure the
data-fitting of the labeled sample. The purpose of calculating the consistency loss (Lu)
between the prediction labels of the student and the teacher model is to preserve the simi-
larity between the prediction labels of the student and the teacher model under different
noise disturbances. The whole loss function is obtained by weighting the cross-entropy
classification loss and consistency loss, and then the parameter weights of the student
model are updated by back propagation. In the training phase, the classification cross-
entropy loss and consistency loss are computed simultaneously for the labeled data, while
the classification cross-entropy loss is not used for the unlabeled data. The teacher model
is not trained by back propagation directly, but Exponential Moving Average (EMAs) as
Equation (1) is conducted on the parameters of the student model to update the parameters
of the teacher model as the parameter of the teacher model, where N is the periodic size.
The overall loss function of the Mean Teacher model is constructed as Equation (2), where
H(y, fθ(x)) is the cross-entropy of the student model.

θ′t = aθ′t−1 + (1− a)θt, a =
N − 1
N + 1′

(1)

L =
1
|Dl | ∑

x,y∈Dl

H(y, fθ(x)) + w
1
|Du| ∑

x∈Du

dMSE( fθ(x), fθ′(x)) (2)

The specific training process of Mean Teacher is shown in Algorithm 1.

Algorithm 1. Mean Teacher learning algorithm.

1. The labeled data after disturbance η is input into the student model, and then the
classification cross-entropy loss between the prediction label and the real label of the
training set is calculated.

2. All the data after perturbed η′, including labeled data and unlabeled data, are input into the
student model and the teacher model, and the consistency loss between the prediction label
of the student model and the teacher model is calculated.

3. According to Equation (2), parameter weights of the student model are updated by
back propagation.

4. According to Equation (1), the exponential moving average of the parameters of the student
model is taken as the parameter of the teacher model.

5. Repeat the above process until the network converges.

3. Dataset and Feature Selection

In this study, 10 overflow samples have been collected based on the historical drilling
data from one real well in an oil field. Each sample consists of the Well Logging, Pressure
While Drilling (PWD), and Managed Pressure Drilling (MPD) data around the overflow
once per second, with a total of 56 features, as shown in Table 1.

In this paper, there are three steps to select features to obtain the best feature subset—
Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and Mutual Infor-
mation Coefficient (MIC)—which can ensure the maximum classification accuracy in the
subsequent process [17]. ANOVA is used to filter features with small variance. RFE is a
greedy algorithm for selecting the best subset of features; the main principle is to build a
machine-learning model constantly, delete the worst features based on the weight of the
model, and iterate this process repeatedly until all features are traversed. The redundant
relationship between features is not considered in the above two feature selection methods.
MIC method is used to capture the relationship between each feature and label to further
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screen features. The feature selection process is shown in Figure 2 and the final selected
features are shown as Table 2.

Table 1. Descriptive statistics of data.

No. Time Total Number Samples before
Overflow

Overflow
Samples

1 10.11 10:53–10.11 11:52 3187 2608 579
2 10.11 9:30–10.11 10:53 4392 3169 1223
3 10.11 10:53–10.11 11:52 3283 2645 638
4 10.29 6:14–10.29 7:55 5375 3221 2154
5 10.29 0:45–10.29 2:15 4800 3172 1628
6 10.28 16:39–10.28 18:14 4973 3867 1106
7 10.28 12:41–10.28 14:13 4834 2724 2110
8 10.24 1:56–10.24 2:25 1595 956 639
9 10.24 0:28–10.24 1:55 4663 3181 1482

10 10.22 23:49–10.23 0:50 6524 3180 3344

Figure 2. Flowchart of three-step feature selection.

Table 2. Data feature table after feature selection.

No. Feature Name No. Feature Name

1 Drilling Time (min/m) 12 Inlet Temperature (◦C)
2 Bit Pressure (KN) 13 Outlet Temperature (◦C)
3 Hook Load (KN) 14 Total Hydrocarbons (%)
4 Torque (KN·m) 15 PWD Vertical Depth (m)
5 Hook Position (m) 16 PWD Annulus Pressure (MPa)
6 Hook Speed (m/s) 17 PWD Angle of Inclination (◦)
7 Standpipe Pressure (MPa) 18 PWD Direction (◦)
8 Totle Pump Stroke (SPM) 19 C2 (%)
9 Mud Tanks Volume (m3) 20 Wellhead Pressure (MPa)

10 Circulating Pressure Loss (MPa) 21 Outlet Flow (L/s)
11 Lag Time (min) 22 Inlet Flow (L/s)

The model constructed in this paper inputs 10 min of drilling data to predict whether
overflow will occur in the next 10 min, and MPD device stores 50 pieces of data in 1 min, so
the time series of 500 samples are used to predict whether overflow will occur in the next
500 samples. In view of the above intercepted data, a sliding time window is employed to
construct time series samples, in which the window size is 500 timesteps and the sliding
step size is 1. We collect the data of 500 timesteps as sample feature X, and collect whether
overflow occurs after 500 timesteps as label y. For label y, if the feature data of 1–500 is taken
as a sample feature X1 (the blue box in Figure 3), the corresponding label y1 is calibrated
by finding whether overflow occurs in 501–1000 unit time Y501 −Y1000, and the occurrence
is 1, otherwise it is 0. Taking the feature data of 2–501 as the second sample feature X2
(see the red box in Figure 3), the corresponding label y2 is calibrated by judging whether
overflow occurs in 502–1001 unit time Y502 −Y1001, and the occurrence is 1, otherwise it is 0,
and so on. Finally, in order to eliminate the influence of physical dimension, the Min-Max
Normalization method is adopted for the original data, and the data range is reduced to
[0, 1] to minimum training error.
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Figure 3. Sample label construction.

4. Methodology
4.1. The Prediction Model

Overflow prediction is essentially an issue concerning the multi-variable and multi-
step time-series prediction. The overflow condition can be determined according to the
trend of the features of multiple drilling parameters, and the convolution neural network
(CNN) can extract and map these parameters to produce higher and more extensive effective
features. Regarding the long timestep of overflow prediction, the problem of gradient
disappearance can be avoided by using the Long Short Term Memory (LSTM) model. In
this paper, we build a CNN-LSTM fusion network for overflow prediction, using CNN
and LSTM to merge a variety of effective features to capture the long-term dependence of
time series and avoid the disappearance of gradients. The network structure is shown as
Figure 4, and the detailed structure is shown as Supplementary Materials Table S1.

Figure 4. CNN-LSTM network architecture diagram.

The CNN-LSTM model consists of a one-dimensional convolution network (1D-CNN),
a LSTM layer, a three-layer full connection layer, and an output layer. Specifically, the
input layer dimension is (500, 22). We use convolution layer for convolution on one-
dimensional sequence and complete feature extraction through convolution operation.
The one-dimensional convolution network built in this paper is composed of three sets of
convolution and pooling layers. The first layer convolution has 64 convolution kernels, the
kernel size is 11 × 22. There are 128 convolution kernels in the second layer, and the size of
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the kernel is 7 × 64. The third layer has 128 convolution kernels, and the size is 10 × 128.
The output size of the model is reduced through the pool layer, and finally the features
extracted by 1D-CNN are output. And then LSTM layer, the full connection layer and the
output layer follow the CNN part. In order to avoid the over-fitting of the neural network,
we add the batch normalization layer after the convolution layer and the dropout layer
after the full connection layer. Finally, the output layer is the SoftMax layer.

4.2. Construction of Semi-Supervised Framework

In this paper, Mean Teacher algorithm is used to build a semi-supervised learning
framework, and the input data needs to be enhanced according to the characteristics of
Mean Teacher algorithm. After researching the characters of the drilling data, noise injection
is more suitable for our data, which injects a small amount of noise/abnormal values into
the time series without changing the corresponding label [18]. Terry et al., use methods
such as Jitter, Scale, MagWarp, and TimeWarp to enhance wearable sensor data; appropriate
enhancement can improve classification performance from 77.54% to 86.88% [19]. Jitter is
usually to simulate additional sensor noise, and we use Gaussian noise in this paper. Scale
resizes the data in the time window by multiplying a random scalar. MagWarp changes
the size of each sample by converting the smooth curve of the data window. TimeWarp
changes the time position of samples by smoothly distorting the time interval between
samples. These data-enhancement methods can improve the robustness to multiplicative
and additive noise.

In order to explore the effect of the above four kinds of data enhancement, we randomly
select a data sample with the size of (500, 22). Due to the significant changes in Stand Pipe
Pressure (Mpa), Pump Impulse (spm), Wellhead Pressure (Mpa), Outlet Flow (L/S), and
Inlet Flow (L/S) when overflow occurs, these five features are selected to enhance in four
ways above. According to Figure 5 as follows, it can be seen that Jitter increases noise to
time series data but does not change the trends of time series data. Therefore, Jitter is used
to enhance the input data of Mean Teacher, that is, to increase Gaussian noise.

Figure 5. Enhancement effect of different time series. V.P. represents Stand Pipe pressure. P.I.2
represents Pump impulse. M.B.P. represents Wellhead pressure. I.F. represents Inlet flow. O.F.
represents Outlet flow.

Finally, the overall framework of Mean Teacher is as follows. Firstly, the training
dataset is obtained by pre-processing the original data. Then, the input data is enhanced by
Jitter to effectively avoid the problem of over-fitting of the model. Finally, the CNN-LSTM
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model [20] is used as the student model and teacher model of Mean Teacher for time-series
prediction. The CNN-LSTM model is proved to be effective to predict overflow as the
accuracy 89% in 10 min advance. The framework is shown in Figure 6.

Figure 6. Mean Teacher overall frame diagram.

5. Results
5.1. Model Training

In the experiment, 15% of the data are randomly selected as the verification set, that is,
the proportion of training set and verification set is 17:3. In the training stage, to fully use
the unlabeled data, the unlabeled data ratio λu is defined as Equation (3), where L is the
number of labeled samples, while Lu is the number of labeled samples.

λu =
Lu
L

(3)

Firstly, L pieces of data are randomly selected from the training set as labeled data sets.
Secondly, the corresponding amount of data λuL is randomly selected from the remaining
data at the ratio of λu, and the label is deleted as the unlabeled data set. At the same
time, in each iteration, the label batch size is set to N, which means that the batch data of
each training contains N labeled samples and λuN unlabeled samples. In order to verify
the experimental results, Pseudo-label [21] semi-supervised framework and CNN-LSTM
supervised learning model are built for comparing. In this experiment, almost the same
hyper-parameters are used on Pseudo-label and Mean Teacher, Adam is used as optimizer,
lr is learning rate, initial value is 0.001, weight decay is set as exponential decay, value
is 0.0001, and λu is given a value of 5. Under different number of labeled training data,
namely 50, 200, 1000 label samples, Mean Teacher, Pseudo-label, and supervised learning
models are compared. The experimental parameters are shown as follows (Table 3).

Table 3. Experimental parameter settings.

Parameter 50 Labels 200 Labels 1000 Labels All Labels

Batch_Size (N + λu N) 60 300 600 200
Label_Batch_Size (N) 10 50 100 200

Epoch 100 100 100 300

5.2. Model Results

The model is implemented by PyTorch, and the model is trained on the 32-core Telsa
P40 calculation card. The accuracy is selected as the evaluation metric, and the results are
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shown in Table 4. MeanTeacher+ represents MeanTeacher with Jitter data enhancements.
Supervised represents a CNN-LSTM model that uses only labeled data. The training
process is shown as Figure 7. It can be seen that the model is convergent after 70 epochs.

Table 4. Accuracy of various algorithms under different label samples.

Method 50 Labels 200 Labels 1000 Labels All Labels

Pseudo-label 72.17% 84.13% 87.10% -
Mean Teacher+ 83.15% 87.43% 89.70% -

Supervised 79.59% 86.77% 88.62% 89.90%

Figure 7. Loss and accuracy iteration curve.

According to Figure 8, the accuracy of MeanTeacher+ is higher than that of supervised
learning in the case of 50, 200, 1000 label samples. This is because supervised learning
only uses a small number of labeled samples for model training and the model is easy
to over-fit, resulting in poor performance. While MeanTeacher+ inputs the unlabeled
data into the model for training, the consistency loss provided by the unlabeled data can
make the classification decision boundary fall in the low-density area. On the contrary,
the performance of Pseudo-label is slightly worse. Pseudo-label uses the labeled data to
train the model first, and then the trained model is used to predict the unlabeled data’s
pseudo-labels. Obviously, due to the initial label data being less and the accuracy of the
model being limited, pseudo-labels of unlabeled data are likely to be wrong. The large
percentage of wrong pseudo-labels are input for training, which has a negative impact on
the performance of the model.

Figure 8. Accuracy of various algorithms under different labeled samples.

When the ratio of unlabeled samples to labeled samples is 5, in the case of 50 labeled
samples, MeanTeacher+ model is 3.56% better compared with supervised learning; in the
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case of 200 labeled samples, the highest prediction accuracy of 10 min in advance is 87.43%,
which is only 1% lower than that of supervised learning using 1000 labeled samples. The
results suggest that a similar predictive result can be achieved with 200 labeled samples by
MeanTeacher+ compared with supervised learning, which needs more than 1000 samples.
In the case of 1000 labeled samples, the accuracy of the MeanTeacher+ is almost equal to
that of supervised learning using all label samples.

To further verify the effect, ablation experiments are conducted to compare different
machine-learning models and the effect of main component of MeanTeacher+. The machine-
learning models such as SVM, Random Forest, LightGBM, XGBoost, and CNN-LSTM are
trained in supervised mode under 200 label samples. MeanTeacher− means MeanTeacher+
without feature selection and Jitter noise, while MeanTeacher means MeanTeacher+ without
Jitter noise. All the MeanTeacher models are trained with 200 labeled samples under λu = 5.
The results are listed in Table 5.

Table 5. Results of ablation experiments.

Method Precision Recall F1

SVM 0.9679 0.6047 0.7443
Random Forest 0.9876 0.6220 0.7632

LightGBM 0.6246 0.6827 0.6523
XGBoost 0.9504 0.5039 0.6586

CNN-LSTM 0.7851 0.8064 0.7956
MeanTeacher− 0.8746 0.7527 0.8091
MeanTeacher 0.8804 0.7539 0.8123

MeanTeacher+ 0.9154 0.7467 0.8225
From the table, it shows CNN-LSTM perform better than other supervised models, and feature selection and Jitter
noise are able to improve the effect of MeanTeacher.

5.3. Sensitivity Analysis

To verify the effect of the main parameter unlabeled data ratio λu, we change λu to
compare the accuracies with the number of labeled data L. Figure 9 shows the accuracy of
MeanTeacher with different λu in each batch training data given 50 labeled samples. It can
be seen that, when λu is increased, the accuracy of the algorithm is improved. The result
is valuable for real-world engineering application. Unlabeled samples are quite easy to
obtain, so it is possible to improve the accuracy of the model by increasing the number of
unlabeled samples.

Figure 9. Model accuracy with different λu.

The sliding window width is another key parameter for our model. The width
represents the model’s visual field. The bigger the width is, the more information the model
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can obtain. More information will surely help the model to improve the effect, but it also
brings expensive training costs and makes convergence hard. Hence, the width should
be set properly. Several experiments are conducted to find the width, and the results are
shown in Figure 10. It can be seen 500 is a proper width, and when the width is beyond
500, the accuracy begins to decrease.

Figure 10. Model accuracy and loss with different sliding window widths.

6. Conclusions

In order to predict drilling overflow, a three-step feature selection algorithm is con-
ducted to extract 22 effective features from historical drilling data. The Mean Teacher
semi-supervised learning framework is employed to train labeled data and unlabeled
data at the same time, in which the CNN-LSTM fusion network works as the time-series
prediction model, and Jitter noise is added to the time-series data as enhancement to pre-
vent over-fitting. Compared with supervised learning and other semi-supervised learning
frameworks, the results show that under the ratio of labeled to unlabeled data as 1:5, our
model only needs 200 labeled samples to achieve the effect of the supervised learning
method under 1000 samples, and the prediction accuracy can reach 87.43% 10 min in
advance. Therefore, the drilling overflow prediction algorithm based on semi-supervised
learning designed in this paper can predict drilling overflow accidents in advance to ensure
drilling safety, even when the amount of labeled data is limited.

The success of the deep-learning model is based on the assumption that the distribution
of training data and test data is consistent. Due to the differences in data distribution of
different wells, the deep-learning model has poor prediction ability when facing new wells.
Regarding the prediction of new wells, it is still necessary to label the new well data for
model re-training and re-prediction. However, labeling manually is time-consuming and
heavily depends on the experience of practitioners, and often only a small amount of
labeled data can be obtained. The main advantage of this algorithm is to achieve high
accuracy by a small amount of labeled data. It not only reduces the workload of labeling,
but also predicts the overflow accurately.

According to the above process, when facing the prediction problem of a new well,
the limitation of this algorithm is that it still needs a small amount of the labeled data
of the new well, and the small amount of the labeled data must consist of normal and
overflow data. However, it is quite difficult to acquire these data completely during the
initial drilling process, and that means it is hard to apply the model in a short time for a
new well. To address this issue, we will study transfer learning and realize the adaption for
a semi-supervised domain with a small amount of labeled data from the new well and the
previous well-source domain samples. Besides, the proposed model is a general model,
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and we will transfer the model to predict other complex work conditions such as mud
losses and pipe sticking.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15124324/s1, Table S1: Detailed Network Framework.
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