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Abstract: The accurate prediction of the performance output of photovoltaic (PV) installations is
becoming ever more prominent. Its success can provide a considerable economic benefit, which can
be adopted in maintenance, installation, and when calculating levelized cost. However, modelling
the long-term performance output of PV modules is quite complex, particularly because multiple
factors are involved. This article investigates the available literature relevant to the modelling of PV
module performance drop and failure. A particular focus is placed on cracks and hotspots, as these
are deemed to be the most influential. Thus, the key aspects affecting the accuracy of performance
simulations were identified and the perceived relevant gaps in the literature were outlined. One of
the findings demonstrates that microcrack position, orientation, and the severity of a microcrack
determines its impact on the PV cell’s performance. Therefore, this aspect needs to be categorized and
considered accordingly, for achieving accurate predictions. Additionally, it has been identified that
physical modelling of microcracks is currently a considerable challenge that can provide beneficial
results if executed appropriately. As a result, suggestions have been made towards achieving this,
through the use of methods and software such as XFEM and Griddler.
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1. Introduction

With the rising demand of renewable energy sources, the use of solar energy systems is
growing rapidly and is becoming ever more important. As a result, the PV community and
industry have made considerable efforts to reduce the cost of PV power. This is dependent
on the system’s manufacturing cost, its efficiency and lifetime. In this regard, the durability
of PV modules is a key aspect for the financial viability of installations that will determine
the rate at which the technology is implemented to meet environmental demands. It is
therefore also not unexpected that extensive research is being conducted on PV module
performance output. This review article summarizes the critical state-of-the-art research
relating to the failure and performance drop of PV modules, with an aim to explain the
mechanisms and origins of defects in PV modules. This is crucial for being able to predict
the performance of PV modules over long periods of time and therefore a particular focus
has also been placed on simulations and modelling approaches While the main interest of
this paper is to predict how PV modules will behave during operation, understanding their
previous life stages is vital in achieving this accurately and as a result, be able to preserve
their long-term performance. The goal of this review, more specifically, is to summarize
and clarify the simulation methods and approaches that can be used to approximate the
occurrence of failures in PV installations. This will ultimately make the use of PV systems
more efficient and therefore viable.

This survey commences by outlining the external causes of PV module failures, ex-
plaining how they affect physical components and their performance. As a result, an
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investigation of the types and modes of failure follows, in which microcracks and hotspots
are found as the most critical. To better understand these two critical failures, each one
is investigated from its roots, recognizing a potential but not clear correlation between
the two. Next, the available methods for detecting these failures, mainly microcracks, are
discussed, examining which detection methods are suitable for PV installations. This is
followed by a detailed outline of the characteristics and classifications of microcracks that
provides a more structured approach for predicting failures and their severity. The most
impactful and relevant contributions from available literature that focus on the perfor-
mance of PV installations are reviewed to improve understanding. This will in turn aid in
the development of better and more realistic models. For the same reason, the available
literature that utilizes PV simulation models, both in terms of methods and conclusions, is
critically analyzed. Using this literature review, the possibilities for modelling PV cracks
and hotspots are investigated. Finally, plans for mitigating such failures are proposed.

2. Causes of Reduced Performance and PV Failures

Manufacturers give PV good performance guarantees of 20 to 25 years based only on
quality certification tests and not based on tests that assess their long-term reliability [1].
Additionally, one of the few studies evaluating the performance of PV modules over a long
period of time, resulted in 17.6% of the PV modules failing using a performance warranty of
90% power after ten years and 80% after 25 years [2]. As a result, there is a need for methods
that accurately estimate individual PV module performance. However, as they are installed
around the world in sites with different environments, it is important to understand all
the possible stresses that can be imposed on modules due to the surrounding climate. To
determine a PV module’s long-term performance output correctly, the external effects and
severity of conditions need to be established for each specific scenario [1].

2.1. Failure Caused by Climate Stress

The PV performance effects caused by such climatic phenomena dramatically depend
on the severity of the stress imposed, depending on the specific site location and the time
of the year. For example, the following factors are likely to impact the performance of the
PV systems:

• Humidity: Humidity can affect the performance of polymers, which can happen when
it enters the PV module, the active layer (semiconductor), and metallic elements like
fingers, grids, and connectors. It can also affect the adhesion between polymer layers
in combination with heat;

• Snow and wind: snow can cause heavy static mechanical loads and wind can cause
both static and dynamic loads on PV modules;

• Hail: hail causes impact stress, depending on its size and velocity, and can have a high
local impact;

• High temperature: High temperature can change the polymeric material properties
drastically if the glass transition point is reached. When there are temporary high-
temperature fluctuations, this can cause thermo-mechanical stress. The thermal stress
concentrates at the interfaces between layers, which can result in considerable module
failure and degradation rates. This can be seen in the thermal cycling tests performed
on PV cells/modules [3–5];

• Air: air with high salt concentrations can cause the corrosion of metallic components
and degradation of polymers, especially in areas near the sea;

• Sand and dust: Both elements combined with wind can be abrasive or, with many dry
and wet cycles, result in layer build up on the panels, especially in the Sun Belt area
of the continents. Their deposition and accumulation adversely affect the PV panel’s
energy yield by either reflecting or absorbing the solar radiation [6]. More particularly,
dust, depending on its size and density, causes a reduction in transmittance, resulting
in particle shading. Additionally, the difference in temperature between dusted and
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non-dusted areas causes a reduction in open and short-circuit voltage. A summary of
experiments that assess PV power output affected by dust is outlined by [6];

• Gases: gases of certain types can, alone or in combination with humidity, cause
corrosion, particularly in areas near industrial plants or main roads.

Among all the climate stresses that PV modules are facing, temperature and humidity
are deemed as the two major ones causing performance degradation [3]. For this reason,
there is a lot of research conducting thermal and humidity cycling. Extended thermal
cycling tests are the best way to simulate longer term environmental impacts, as deemed
by IEC 61215 standards. The application of 500 cycles in the thermal cycling test has been
reported to correspond to 20 years of PV module exposure [1]. Additionally, not only can
such tests be good for determining service lifetime but can also reveal defects that trace back
to incorrect manufacturing process, as has been shown by [5]. They found, for example,
that conducting thermal cycling tests with 600 cycles allowed them to detect degradations
caused by solder bond failure. In general, these effects on the PV performance have been
extensively examined. Furthermore, the relationship between the temperature and the
illumination conditions, becomes important as this is generally where PV installations are
desirable. It has, for example, been established that lowering the operating temperature of
a PV module, will allow for better PV cell performance, especially during high light illumi-
nation [7]. As high illumination itself can be the cause of increased operating temperatures,
this was found to induce higher cell performance losses. In this case, the main reason for
this occurrence is an increased leakage in current and Auger recombination. At this stage, it
must be mentioned that UV exposure can also play a significant role in power degradation,
especially when it is combined with high temperature. This is not an uncommon scenario,
particularly in hot and dry climatic zones. UV radiation aids the generation of acetic acid
from the encapsulant material, which leads to the chemical corrosion of finger electrodes.
This has been considered by [8] to be the main origin of degradation when PV modules
were exposed to UV radiation in a combined acceleration test. However, as the detailed
analysis of the climatic stress impacts on PV performance is outside of this paper’s scope,
they have not been further explored individually.

2.2. PV Failure Modes

In general, polymers seem to be the weakest point of PV modules. Additionally, silicon
(Si) wafer contributes about 40% to the cost of a silicon solar cell [9]. The active semiconduc-
tor (Si) is the most important part of a PV module, where both types of mechanical loads
can induce or worsen microcracks. This causes cell breakage, which can already be a part
of the runaway production process. Cell vibrations, mechanical and thermomechanical
stress can cause finger disconnection and can impact modules in various ways [1]. It is
therefore important to understand which of the failure modes impact the performance of
PV modules and how easily they can be detected. For this reason, all failure modes are
outlined in Table 1.

The fact that certified PV modules are sometimes also observed to fail on the field prior
to their estimated lifetime proves that IEC standards are not severe enough. Nevertheless,
it is still important to consider that 1/3 of new modules fail during testing for certification
in the laboratories, allowing for better quality control. Climate chamber tests, hotspot tests,
and mechanical load tests are the most severe in the current standards, but a combined
testing approach needs to be developed for more robust testing [1]. Additionally, while
failure modes found in outdoor and indoor tests are similar, the relation between the two
in terms of stress factors and failure modes must be defined more clearly to be able to
diagnose PV module lifetimes more accurately.
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Table 1. PV mechanical failure modes.

Failure Mode Cause Other Failures Power Loss * Detection

Yellowing/browning of
encapsulants and back sheets - Hotspots None Simple detection method

Delamination of encapsulants
and back sheet

- Microcracks, cell breakage
- Corrosion of connection
- Bubble formation

Low

Requires technical equipment
to detect, e.g., IP cameras

Bubble formation
- Worsens delamination

of encapsulant
- Microcracks, cell breakage

Low

Oxidation formation - Encapsulant delamination Low

Discoloration of busbars Medium

Corrosion of connection and
cracks of back sheet - Discoloration of busbars Medium

Hotspots High

Cell breakage Low–high **

Microcracks - Can cause hotspots (more below) Low–high **

* Power loss indicated as an output drop of: Low < 5%, 5% < Medium < 10%, High > 10%. ** Please note that,
depending on the breakage direction and orientation, the power loss from microcracks and cell breakage varies
(more explained in Sections 2.5 and 3).

As indicated in Table 1, many failure modes correlate to each other and should
therefore not be considered in isolation. For example, it is very common for breakages and
cracks to be followed by corrosion, discoloration, and delamination. Nevertheless, it is clear
that the critical failure modes requiring further investigation involve microcracks (shown
in Figure 1a) and PV hotspots (shown in Figure 1b), since cell breakage is the result of
microcrack propagation, and they all have a high impact on performance. While it might be
interesting to also investigate further the other failure modes and their relationships with
hotspots and microcracks, this route was opted out to avoid generalizations and drawing
fragmentary conclusions. That being said, there is a contradictory amount of evidence to
conclude whether pre-existing microcracks partially cause hotspots. However, microcrack
initiation is predominantly attributed to stresses generated during the assembly of the PV
modules [10]. These then propagate, resulting in cell breakage due to climatic stresses, and
therefore, it is vital to investigate the exact causes of microcracks during production [9].
It must also be mentioned that the physical stress generated during transportation [11]
and handling [12,13] are also influential sources of microcracks, as well as causes of their
propagation. It was found that the loads subjected during transport induce stresses, which
are the leading cause of crack growth in solar panels [11]. The typical loading situations
during transport involve shocks and vibrations that can break the glass or solar cells [14].

2.3. Root Cause of Microcracks

Starting with the crystalline material block, the first stage in production is wire sawing.
The heat involved in the process can cause thermally induced stress, which, together with
the sawing forces, can result in the initiation and propagation of microcracks in the material.
It has been found that microcracks are usually introduced at the wire sawing stage of
blocks [10].
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Figure 1. Failure modes in solar cells: (a) Microcracked solar cell, this image is taken using an
Electroluminescent (EL) imaging camera; (b) hotspot solar cell (this image was taken using a FLIR
thermal imaging camera) [15].

The detection of microcracks during this stage is challenging, since they are hidden in
the bulk of the wafer. Other stages that can induce microcracks during production involve
firing, soldering, and lamination. During firing and soldering, temperature and time are
key parameters, since the processes involve high temperatures causing thermo-mechanical
stresses in cells that can lead to crack formations in PV cells [16–18]. The lamination
process of Si solar cells creates residual stress in the wafers due to the high temperature
and pressure [19]. The losses resulting from microcracks can be as high as 5–10% in a
typical manufacturing facility [20]. During the last decade, the PV industry is constantly
trying to decrease the thickness of silicon cells, making them both more efficient and
reducing their manufacturing costs [21]. However, this has increased their susceptibility to
thermomechanical damage during handling, processing, and operation [22].

2.4. PV Hotspots

The main reason for the presence of hotspots is the fluctuation of the solar and ambient
temperature affecting the PV modules. They are also likely to occur from an increasing
amount of shading in the cells [23]. This shading can be caused by bird droppings, leaves
and dust patches, which inhibit the cells’ function and block the current generated from
other cells. As a result, the cell diode operates in reverse bias mode, thus heating the cell
and causing hotspots [6]. Of course, as with microcracks, hotspots can also be caused by
other things such as contamination, broken diodes and PIDs [24–26], some of which are
explained further in Section 3.

Solar cell hotspots are mainly detected using a thermal imaging camera, as we show
in our experiment in Figure 2. In this case, we have found that the temperature increased
by nearly 13 degrees compared with non-hot-spotted solar cells. However, in different
settings, this can increase to be as high as 50 degrees. Additionally, more recently, the
measurement of the I–V characteristic and resistance of each string is sometimes measured
to verify for any leakage current in the p–n junctions. This occurs when solar cells are
partially shadowed.
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Figure 2. The experimental result of observing hotspots in a PV module. The temperature of the
hotspots is nearly 13 degrees higher than adjacent non-hot-spotted solar cells [15].

2.5. Detection and Characteristics of PV Microcracks

One of the most crucial but also challenging aspects of microcracks is their detec-
tion, as it requires complex technical equipment and expertise. Several methods for this
exist, one of which is the ultrasonic resonance vibrations (RUV) technique, which uses a
transducer to emit ultrasonic vibrations on the silicon wafer as described in [27,28]. This
method is sensitive to crack length and location. However, it does not identify the precise
location and is only used to determine whether to accept or reject a wafer. As a result, the
Photoluminescence (PL) technique was developed, which solves this issue by employing
various illumination patterns allowing for a more accurate detection of microcracks [29].
One PL setup proposed in [30] enables the use of homogeneous and arbitrary illumination
to extend the imaging applications for the characterization of silicon wafers and solar cells.
Their PL setup proposed in [30] is shown in Figure 3. More recently, PL images have been
acquired solely through sun illumination (outdoor testing) by using optical filtering and
modulation of PV [31]. The advantage of PL imaging is the fact that it can be implemented
during almost any point in the production process [32].
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Another technique for detecting microcracks is electroluminescence (EL), whereby
inducing an electrical current to the solar cell causes electrons to become excited in the
conduction band. This method is advantageous because it can be used on both small size
solar cells as well as full scale PV modules [33,34]. Recently, in 2019, we proposed a novel
technique [35], which uses EL with a three-stage processing method. The results, as seen
in Figure 4, which were validated using various solar cell samples, show that using this
technique makes it easier to identify microcrack size, location, and orientation compared
with other up-to-date PV detection methods.
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Figure 4. Before and after using the proposed EL detection method proposed by. Points 1 and 2 show
how shadows that might seem are cracks are eliminated [35].

In some cases, infra-red (IR) imaging is used for detecting electrical and thermal
failures in PV modules. By exposing panels to IR imaging, solar cells with poor performance
appear as bright hotspots compared to others due to heat dissipation. By applying light
or inducing an external current, the PV panel displays a temperature gradient that aids in
analyzing thermal images, indicating areas with potential problems. One of the issues of
this detection method is that it is difficult to apply in large-scale farms. An example of this
has been given by [36], where conventional hotspot detection methods using IR would take
up to 210 days for a 30 MW PV farm because these methods cannot detect faults fast and
continuously. That faults are detected continuously is especially important in this case, as
it is crucial for predicting defects at an early stage, so that the necessary action can be taken
to avoid or minize the impact on performance. As a result, the authors [36] proposed the
use of a detection system using a fish eye lens, which can simultaneously monitor 10 rows
of PV modules that are 100 m long.

Considering the demand of the industry, there is a need for achieving a certain level
of defect detection accuracy as well as methods that are quick and outdoor-compatible
that do not disrupt field operations. As a result, camera-based imaging has been gaining
a considerable amount of popularity for identifying module defects. One such emergent
method involves the fluorescence of the encapsulant excited by ultraviolet light (UVF),
which promises rapid cell cracking identification in the field. Fluorescent species develop in
the encapsulant as the degradation of the constituent polymer and/or additives occur [37],
as shown in Figure 5a. Before the thermal stress is applied, the entire area of the solar cell
nearly shows one dotted area corresponds to the actual crack. However, after the stress is
applied to the solar cell, the location of the real crack starts to be visible. The EL image was
taken to capture the cracks’ precise location, which nearly matches the area shown in the
UVF images. There is undergoing research in developing UVF models that can precisely
allocate cracks in solar cells. This technique does not require the disconnection of the PV
strings whilst doing the experimentation work, making it a favorable testing exercise for
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PV operators. Another high throughput and low-cost UVF detection system was proposed
by [38] that utilizes high-power UV sources and a consumer capture camera allowing for
1000 modules/hour. The inspection method was tested in 11 sites with modules ranging in
age from 1 to 20+ year(s) old, while being able to detect many faults and achieving a crack
detection accuracy of 91.7%.
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Figure 5. Solar cell cracks: (a) UVF images after outdoor exposure, but before stress testing, and
(right) images after either damp heat or thermal cycling [37]; (b) different microcrack orientations
indicated by red circles as described by [33].

Interestingly, the rise of fluorophores has been correlated with long-term encapsulant
yellowing [39,40], resulting in differences in UVF contrast along silicon cracks. While UVF
is currently less understood compared with EL and PL methods, it possesses various ad-
vantages by detecting cell cracks in their chronological order of occurrence and identifying
different module bills of materials in the polymer part of the PV modules. By being able to
differentiate between old and new cracks, UVF demonstrates its value for insurance claims,
but more importantly can be used as the basis of predicting crack growth [38]. This can also
be used together with IR thermography to find missing cell cracks, with the only complica-
tion being their need for unequal environmental conditions. Alternatively, a combination
of UVF with EL can differentiate cell cracks from crystal defects and hotspots [39]. Finally,
the combination of IR and EL can also be used instead.

In general, microcracks can be classified either based upon their direction or speed of
propagation. A crack that is smaller than 30 µm in width is conventionally referred to as
µ-crack (or microcrack) and, therefore, larger ones can be indicated as solar cell cracks [41].
In terms of their position, they can be classified as either facial, occurring on the surface of
the wafer, or sub-facial, being under it, even when just partially. It must also be mentioned
that microcracks are usually also classified in terms of their orientation as this can have a
very different impact on the power output of PV modules. A crack that causes an electrical
separation of an important part of the cell can significantly reduce the power output of
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the module [42]. As a result, by observing Figure 5b, microcrack orientation is commonly
defined with respect to busbars as:

• Diagonal crack (+45◦);
• Diagonal crack (−45◦);
• Parallel to busbars crack (vertical);
• Perpendicular to busbars crack (horizontal);
• Multiple directions crack.

Finally, considering the scope of this report, it is also important to cover technologies
and methods used for detecting faulty units installed in the fields. To date, the method of
detecting faults in installed units required technicians to individually inspect each unit.
However, with the rise of drone-based technology, there has been a considerable amount
of research proposing the use of thermal-camera-equipped drones for the monitoring of
PV installation sites [43–45]. While a considerable amount of research on this is based on a
technician controlling the drone himself, a new research article has proposed and tested an
automatic detection system using drones [46]. This autonomous solution involves drones
mounted with both RGB (Red, Green, Blue) and thermal cameras. This method was found
to be able to detect and estimate the precise location of defect PV modules among hundreds
or even thousands of modules. As shown in Figure 6, the proposed automatic-flight-path
planning algorithm removes the need for the manual control of the drones, which was
tested with high success on a 1 MW power plant in South Korea.
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3. Literature on the Performance Modelling of PV Systems

Before explaining the available literature on simulations concerning PV module failure,
it is critical to understand how they perform when implemented through actual experimen-
tal data retrieved from solar farms or similar installations. This will serve as a reference
point when analyzing and structuring the development of effective models. Consequently,
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the most recent and relevant studies examining defects in a wide range of implemented PV
samples and their findings are outlined below.

In an analysis of 3000 PV installations comprising of Mono-Si, Poly-Si and CdTe, maxi-
mum degradation rates were found to be −0.81%/year, −0.94%/year and −1.43%/year,
respectively, as shown in Table 2. The study indicates that degradation and performance
depend highly on the location of the installation. For example, CdTe installations suffer
higher degradation in the south than in the north or middle of the UK due to a higher and
more unstable day-to-day temperature as well as higher humidity [47].

Table 2. Summary of the annual degradation rate per PV technology [47].

PV Technology Annual Measured
Degradation Rate (%/year)

Degradation Rate
Confidence Interval (%/Year)

Mono-Si −0.81 −0.78 to −0.83
Poly-Si −0.94 −0.92 to −0.95
CdTe −1.43 −1.41 to −1.45

Photovoltaic cell degradation rate is a key aspect for financial projections, especially
focusing on the long-term performance of modules. As modelling performance of PV
systems becomes more advanced, the assumption of degradation rates being linear may not
be sufficiently accurate. In a Monte Carlo simulation model conducted by the NREL [48],
the effect of the shape of degradation rate curves has been shown to be significant when
quantifying the levelized cost of energy. As a result, identifying non-linearities in degrada-
tion paths with accuracy has a strong financial incentive and is essential for service lifetime
predictions. The most commonly occurring degradation mode is encapsulant discoloration,
which can usually be approximated with a linear decline, correlating to short circuit current
losses. However, it is possible for modules to display significant non-linear declines that are
difficult to detect. This is, for example, seen in the cases of hotspots caused by cracked cells
or solder bond failures and corrosion [49]. Generally, degradation percentages are stated
to have decreased in installations after the year 2000 and were found more frequent with
a wider range of modes occurring in hot and humid climates than desert and moderate
climates [47,50]. This can be correlated to delamination and diode/j-box problems that
are more common in this type of climate. The most important and challenging cause of
degradation in newer installations (Si crystalline) in the last 10 years is due to hotspots
followed by internal circuitry discoloration [50].

In one of our studies, we assessed the impact of polycrystalline PV microcracks using
4000 cracked solar cells, where we found the output power loss to be anywhere between
0.9% and 42.8%. The findings also suggest that microcracks are the main cause of hotspots,
having analyzed tested cracked panels (cells, busbars, and fingers) using thermal imaging,
showing an increase in temperature initiating from the crack locations, depending on the
crack size [51]. This is also evident in Figure 7.

As previously mentioned, the microcrack position and orientation significantly influ-
ence how it affects a module’s power output. In terms of crack orientations, Grunow et al.
found in their research that cracks parallel to and centered between busbars only yielded
a power drop of less than 4% [52]. On the other hand, if the cracks were parallel on both
sides of both busbars, a power drop of 60% occurred. Similarly, Köntges et al. concluded
that, if the crack is parallel to the bus bar, it results in a significant module power output
drop. However, it was emphasized that the power output stability of the PV installation is
closely related to the total cell area that can become electrically separated due to a crack.
Moreover, in one of their studies [46], they showed that artificially induced micro-cracks
do not reduce the power generation by more than 2.5%, with the exception when the crack
harms the electrical connection between cell fragments. If the microcracks in a solar cell
separate apart less than 8% of the cell area, no power loss occurs. These claims are also in
line with our recent research, showing that the effects of diagonal and parallel cracks on
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the PV power performance are only significant when they are present in several cells and a
certain amount of area [53].
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In general, vertical and multiple orientation microcracks have been deemed by the
literature as the most critical types causing significant power output drops [54,55].

Additionally, it has been shown that power drop in PV modules can be identified by
dark areas with microcracks in them [56,57]. Cell areas that are darker within an EL image
sample indicate that less or no current is passing through them, resulting in lower power
generation. However, Ref. [56] clearly displays the further need for research to precisely
figure out the relation between microcrack performance and their shape, location, and the
number of busbars.

However, a study described in [58] implies that snail trails indicate the presence
of microcracks. This study was concluded by testing 31 PV samples that have been in
operation since 2012. Their performance was compared to a commercial module of the
same technology, displaying that cell cracks can reduce energy production by 29% in some
cases. The degree of performance losses was found to be correlated to the amount of cell
cracks present, which is in line with our own research in [53]. Finally, while snail trails can
indirectly affect the performance of the PV modules, their evolution was found to be very
limited by analyzing their long-term behavior, thereby posing no further threat regarding
power losses.

Finally, a study that examined annual production data from 100,000 photovoltaic
systems, as well as comments relating to their performance, provides an accurate represen-
tation of the reliability of current PV systems [59]. It was considered to possess valuable
insights, as the analysis consists of a large sample size including performance data of
up to 5 years, as well as monthly production data. The conclusion reports that most of
the systems performed within 10% of what had been predicted, with a relatively low
occurrence of failures. However, in the first few years, considerable hardware issues were
found suggesting a need for stricter certificates, training, and standards for installations. In
general, the rapid detection of failures and performance impacting issues was found more
evident in utility level installations, where issues were taken care of within a few days, as
opposed to residential and commercial systems. This implies that the current method of
rapid detection is considerably costly, hinting to a need for its improvement.
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All stages where a PV module is subjected to stress loads can influence its lifetime
performance and these involve production, transport, installation, and operation in the field.
For example, the thermo-mechanical stresses induced during manufacturing may initially
not affect a PV module’s output. However, as it is subjected to environmental loads in the
field, the effect can become quite significant, affecting its reliability [60]. In addition, usually
for small-scale PV systems, the leading cause of degradation is the potential-induced
degradation (PID). In Figure 8a, we demonstrate the EL image of a solar cell before the PID
test and after a 96 h PID test and, as is evident in Figure 8b, the cracks gradually increased,
and the mismatching condition (black area) is more evident.
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with a duration of 96 h [61].

In terms of modelling cracks in PV modules, many aspects are desirable to produce a
realistic model. However, to that extent, very little is available in simulations, where no
known commercial software can be used to model PV cracks and their effect on the cell’s
output power performance. Hence, considering the aim of this review, a more prominent
focus has been placed on Finite Element Analysis (FEA) that can simulate the stresses
induced during on-site operation. First, the methods of modelling microcracks and cracks
caused by climatic, mechanical, and thermomechanical stresses are presented, including
their limitations. This is then followed by findings and conclusions obtained from studies
related to PV module long term performance. It must be noted that these models inherently
involve nonlinearities, of which geometric nonlinearity and contact nonlinearity must be
considered when performing FEA [62].

During the operation on the field, the PV panels are subjected to static and dynamic
loads [63]. Starting from static loads, the IEC 61215 standard mechanical load test comprises
three cycles of pressure and suction loads depending on climatic stress. This protocol can
be used to simulate static environmental loads, such as wind and snow, including stresses
induced from production and transport in the model. Unfortunately, the IEC 61215 standard
only covers static loading conditions, even though studies have shown that the dynamic
nature of some environmental loads can cause considerable damage to PV modules [64,65].
For this reason, IEC have published other protocols to cover the missing aspects of IEC
61215. One of these is the IEC TS 62782, which covers a dynamic cyclic mechanical load
testing, aiming to identify whether fragile parts, such as the cells can withstand ambient
dynamic stress conditions. Moreover, the recent issue of IEC TS 63209 aims to supplement
IEC 61215 baseline testing, by focusing more on the longer-term reliability of PV modules.

Finally, it is also important to consider thermal loads since PV modules are subjected
to extreme temperatures during operation that induce stress. This is tested using thermal
cycling and can be modelled again according to the IEC temperature cycling test. It needs
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to be mentioned that there are no well-defined tests in IEC 61215 standards for long-term
power degradation due to cell cracking [9].

Cracks that are often also invisible to the naked eye could cause electrically discon-
nected cell regions, resulting in a linear decrease in short-circuit current and higher series
resistance, therefore lowering power output. A report of IEA PVPS Task 13 characterized
cracks as the dominant cause of PV performance degradation in the first two years of
operation. Cracks strongly depend on how they have been initiated, but most simulation
studies neglect the history of Si cells (production and installation). Additionally, the effect
of cracks on the reliability and electrical characteristics of PV modules is still debatable [9].
At present, there is no simulation tool able to quantify the impact of cracks on the electrical
efficiency and durability of PV modules [11].

One method used to determine thermomechanical stresses from the manufacturing
process is Raman spectroscopy, while also controlling the solar cells for cracks using EL
imaging. In one study [66], the stress of PV cells was measured using this method, before
(after metallization and other cell processes) and after soldering and after the lamination
process. The results of the two later stages were compared to a Finite Element Model (FEM)
simulating the same stresses, for which they agreed very well. However, the FEM results
after the lamination were slightly overestimated due to the linear elastic material model
used for EVA [66].

The lifetime of PV modules is estimated to be around 25 years, during which the power
output is expected to drop around 20% [67]. During operation, PV modules experience
mechanical and thermal loads due to a coefficient of thermal expansion (CTE) mismatch
because of the dissimilar materials within the laminate inducing thermomechanical stresses.
A PV module’s layers are fragile compared to their lengths, and therefore, it is possible
to model it in shells, realizing each layer in a 2D simulation. This was conducted in [67]
for a PV module during its operation, which found that the performance of the laminate
is dominated by glass, as it covers most of the thickness of the module. The stress in the
cells is compressive as they are forced to contract as much as glass. This phenomenon
is more present in the cells under the interconnect regions due to copper’s high stiffness
and hardening (see Figure 9). Additionally, it was seen that the encapsulant plays an
essential role in decreasing the stress induced during thermo-mechanical movements
within the laminate.
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Figure 9. Cross section of a PV module [67].

The critical role and impact of the interconnection on the reliability of a PV module’s
performance has also been emphasized in [68]. The researchers in [68] identified its link
to the presence of cracks. In this study, FEA was employed to examine how different
dimensions of the interconnection geometry affect crack initiation and propagation rate.
The realization of this dynamic model was approached through the Extended Finite El-
ement Method (XFEM), which allows for local enrichment discontinuous functions and
numerical approximations to be combined [69]. Essentially, XFEM models a crack within
an enriched element with special displacement functions, meaning that there is no need
to define the crack location beforehand and model its geometry during the simulation
itself, unlike in the conventional FEM [70]. The results showed that the configuration of the
interconnection ribbon has a significant influence on both crack initiation and propagation
rate. Additionally, it was demonstrated that microcracks initiate at the edge of the Inter
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Metallic Compound (IMC) layer and that cracks have the tendency to propagate in the
shear direction.

A summary of the key findings from the above literature can be found in Tables 3 and 4.

Table 3. Summary of the key findings from the literature outlining the origin and mechanisms of
microcracks and hotspots.

Reference Cause/Origin Mechanisms Impacting Degradation/Failure Severity

[47] Degradation rates highly depend on location
of installation

Higher and more unstable temperature, as well as
higher humidity causes higher degradation rates.

[51] Findings suggest microcracks to be the main cause
of hotspots

Thermal imaging found an increase in temperature
initiating from crack locations. Output power was found

between 0.9% and 42.8%, depending on crack size.

[67,68] Dissimilar materials within the laminate cause a CTE
mismatch that induces thermomechanical stresses

These stresses are more present in the cells under the
interconnection. The configuration of the

interconnection ribbon was found to have significant
influence on both crack initiation and propagation.

[49]
The most common degradation modes is

encapsulant discoloration, which is approximated
with linear decline

However, modules can also display non-linear declines
that may be difficult to detect. Some of these invovle

hotspots caused by cells or solder bonds and corrosion.

[50]
The most important and challenging cause of

degradation in newer installations are hotspots
followed by internal circuitry discoloration

Degradation rates are considerably higher in hot and
humid climates than those in desert and

mdoerate climates.

Table 4. Summary of the key findings from the literature outlining how the severity of microcracks
with respect to power output can be recognized.

Reference Indicator Type Description of Indicator Impact Severity

[52] Crack orientation Cracks parallel to and centered between busbars Power drop of less than 4%

[52] Crack orientation Cracks parallel on both sides of both busbars Power drop of 60%

[53] Crack size If area separated by microcrack in a solar cell is
less than 8% No power loss

[46] Crack size Diagonal and parallel orientation cracks
Significant power loss only when
present in several cells and over

enough area

[54,55] Crack orientation Vertical and multiple orierntation microcracks Deemed as the most critical types
causing significant power output drops

4. Results and Discussions

After summarizing the literature available, which is necessary to understand the
factors affecting PV module performance, the possible approaches for its improvement will
be explored. This is split into two parts, first incorporating microcracks of a PV module into
a simulation and second, using it to determine the module’s performance output. Finally,
mitigation techniques and methods that can be used in conjunction with such a model are
also discussed to ultimately be able to improve the reliability of PV installations.

4.1. Modelling Solar Cell Microcracks

The act of modelling microcracks can be broken down into two further parts, which
can be relatively challenging. The first is accurately detecting and defining microcracks in a
way that can be implemented into a model. The second is converting these findings into
the necessary form of data and incorporating them into the model.

Starting from their detection, all currently relevant methods were mentioned in Sec-
tion 2, where each has its advantages depending on the application. In this case, there
is a need for accurate, but rapid, on-site microcrack detection. Therefore, using EL with
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our technique proposed in [35], combined with IR thermal imaging, we can achieve the
desired results. It must be mentioned that using such equipment is also not an unreasonable
expectation for commercial PV installations since obtaining such images is necessary in
order to comply with IEC standards. Using both will detect microcracks and hotspots,
yielding images representing them both geometrically and in terms of their position within
cells. This is crucial for microcracks since, if their characteristics are deduced and mapped
out virtually, they can then be imported into a computer-aided design (CAD) model used
for FEA. However, this poses some challenges starting from the clarity of the image, which
depends on the method of image processing used. In one of our papers [35], a processing
method was introduced aimed at a solar cell inspection manufacturing execution system,
which generates high-quality and low-noise EL images, allowing for easier identification
of microcrack size, location, and orientation. This is achieved by using a proposed OR
function, which involves six different methods to combine crack-free and cracked solar
cell samples. These processes calibrate image pixels bit-by-bit, which removes noise and
yields improved quality solar cell images, displaying the presence of cracks more clearly,
as shown in Figure 10. Once micro cracks are visible, the next step is converting them
into shapes in a two-dimensional drawing, which can then be incorporated into a CAD
model. The detection and geometric recognition of image contours in this specific desired
manner are possible with various methods, which can also be found as features integrated
into various CAD software. The obstacle in this scenario would be to achieve this in high
accuracy both in terms of the recognition yield and the position of the microcracks with
respect to the full-scale PV module. One available approach to solve this issue has been
proposed in [71], where an innovative image analysis technique is used to identify grains
and grain boundaries. This is shown to result in more accurate finite element meshes that
involve cracks, as their simulations demonstrate how grain boundaries and silicon bulk
properties influence the crack pattern.
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The following essential aspect of the model is the method with which microcracks are
simulated for propagation. This can be realized in an iterative manner, in which the mesh
in and around cracks is constantly redefined and regenerated. One such approach has been
demonstrated in [72], where quadratic node elements are used in ANSYS to obtain the
singular stress field and necessary meshing around the crack tips. Once this is generated,
loads can be applied, and the nodal displacement, i.e., propagation, can be calculated.
Alternatively, as mentioned in the previous section, XFEM can be used, which offers a
dynamic approach to this issue, as shown in [68].

4.2. Modelling PV Performance Output

To successfully model the performance output of a PV module, given a specific
environmental stress load and the simulated propagation of its microcracks, two variables
need to be defined. First, the effect of cracks on performance, according to their orientation
and severity, needs to be determined. Second, the eventuality of hotspots arising in some
module regions needs to be assessed, considering the possible influence of microcracks,
as indicated by some instances of the literature, and any other external factors, such
as temperature.

Starting from determining the possible impact of microcracks, and assuming their
propagation, it is clear from Section 3 that not all cracks have a significant effect. As a result,
classifying them in terms of their potential impact is crucial. However, establishing this can
be complex, as it depends on various factors. Nevertheless, from the literature discussed
in the previous section, it can be deduced that the key characteristics that determine the
impact significance of a crack are its orientation and position within the cell(s) as well as
its severity. Analyzing these with sufficient understanding should theoretically allow for
accurate estimations of the impact of a crack on performance. In one of our studies [33], a
statistical approach was taken to achieve such categorization, using two techniques: the
T-test and the F-test. Additionally, it was possible to determine their theoretical output
performance by analyzing the I–V and P–V curves of the examined PV modules.

Another method to determine the PV performance, which has been described in a
recent study [73], combines EL images and Griddler, a solar cell FEM simulation program.
This software is used to map out open-circuit voltage, Voc, and short-circuit current density,
Jsc, in addition to the maximum power output. Analyzing these additional parameters
can help obtain a clearer picture of the cells’ performance, particularly for predicting and
detecting hotspots. In this case, all three parameters were investigated for both uniform
and nonuniform distribution of cracks, with various irradiance levels. For cracks to be
classified as uniform, they must be evenly distributed across the solar cell surface. This is
the case when they evenly affect all areas between the busbars or in the form of a diagonal
line-crack across the cell. Investigating the open-circuit voltage map, generated by Griddler,
of nonuniform crack distribution, it was concluded that cracks could locally reduce Voc,
as indicated by the darker areas in Figure 11b [73]. This image is taken from the Griddler
software after processing the original EL image shown in Figure 11a.

Additionally, Figure 11c depicts the short-circuit current density with negative values
in the two cracks indicated, which implies a reverse current is flowing that will consequently
become a hotspot. This was also seen when examining uniform distribution crack samples,
which depicted a uniform decrease in Jsc and, hence, did not display any overheating. All in
all, this suggests that uniformly distributed cracks have less of an impact on output power
when compared to nonuniformly distributed cracks. This was also validated by a com-
parative investigation of different samples, which showcased considerably higher losses
at higher irradiance levels. To provide reasoning behind this conclusion, nonuniformly
distributed crack samples were investigated under an electron microscope, for which all
cases displayed discontinuity in finger connections and affected rear busbars that conse-
quently influenced power output. These findings are a big step forward in understanding
and classifying cracks in terms of their potential impact. This report was shown to be
important in successfully predicting PV cell performance. While other recent studies have
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also examined crack distributions [51,74,75], they fail in pointing out their distinguishing
differences and then analyzing their consequent impact on solar cell performance.
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Griddler provides a visualization of how cracks impact cells and creates simulations
by analyzing EL images of PV solar cells. This aids in better understanding and formulating
predictions of the overall PV cell performance. The simulation involves the mapping of
P–Voc and Jsc–V curves by comparing desired EL images with an appropriate set of PV
solar cell EL images used as a reference. Of course, it must also be mentioned at this
point that the Griddler Team offers a module version where a collection of individual cells
and/or also full-scale modules can be imported and simulated. This software has been
considered more relevant when compared to other modelling methods used, such as the
two-model diode [26]. The reason is that it allows the individual representation of the
solar cell planes through the FEM, providing more customizability in terms of the model
simulation itself. This allows for a more accessible but also relatively accurate estimation of
power loss, which then also offers the ability of scaling. As a result, the software is helpful
for research purposes and can also become applicable for commercial usage. Aside from
other features, it allows to modify inputs, surroundings, and designing grid patterns, and
it also provides the option to import DXF files from CAD. This element could potentially
provide the means for integrating three-dimensional CAD models within multi-physics
simulation processes, which could significantly improve prediction accuracy and allow
for more complex estimations. One such potential method would be exploring crack
propagation when exposed to various environmental stresses using a three-dimensional
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CAD model and exporting the results in a DXF drawing format. In this case, the biggest
challenge faced remains in the complexity of successfully simulating crack propagation on
a three-dimensional level.

4.3. PV Hotspot Mitigation Techniques

There are currently examinations on why and how PV hotspots occur, particularly
in large scale PV installations. Some researchers propose that PV hotspots are present
due to the accelerated change in the night-to-day temperature [75], especially in coastal
areas [76]. For example, Dhimish et al. [77] remarked that a flawless hotspot string within
a PV module could lead to a 25% loss in output power, while the temperature could also
progress by up to 65 ◦C. The tested PV sub-strings were operated indoors in this study
under standard test conditions (STC). Others have marked that PV hotspots are inducted
due to cracks in the solar cells [9,78]. In addition to elevated cell temperatures, the hotspots
can cause a significant drop in the output power of the impacted PV modules and, in some
instances, could even break (short-circuit) the bypass diodes [79,80].

The best practice to detect PV hotspots involves the usage of thermal imaging cameras.
Nevertheless, some new studies [81,82] have introduced machine learning models to
diagnose PV hotspots based on measured PV performance data, such as the output current,
voltage, and dynamic series resistance.

Although all the methods mentioned above refer to field diagnostics (i.e., only used
to detect hotspots reactively), to date, only a small number of procedures have been
developed for hotspots mitigation. Varied approaches have used the principle of dual
metal-oxide-semiconductor field-effect transistors (MOSFETs) to employ the connection of
pair MOSFETs, one in parallel while the other in series with the PV module, as shown in
Figure 12a [32]. Both MOSFETs serve as a switch, assuring a passive current delivery from
the PV module by turning ON/OFF the MOSFETs at a high-frequency rate (>50 kHz).
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Another concept, shown in Figure 12b, is the bipolar junction transistor (BJT)-based
bypass, introduced by d’Alessandro et al. [83]. This mitigation technique is based on the
operation of two MOSFETs to enable/restrain the BJT transistor automatically. In addition,
an antiparallel Schottky diode can also be used to regulate the BJT transistor under critical
partial shading conditions [84,85]. The main limitation of these mitigation concepts is that
a conventional switching device (microcontroller) must be used. Additionally, they cannot
be combined within a PV sub-string, becoming complicated and costly to use in large-scale
PV installations.

In a recent study [86], the authors demonstrated advanced mitigation techniques to
avoid PV mismatched conditions, including hotspots and shading. The foundation of the
proposed circuit is fundamentally based on an input buffer that allows high impedance
input voltages and an operational amplifier circuit that controls the current flow using a
current limiter circuit. In Figure 13, we show that, using this mitigation technique, the
temperature of the hotspots drops from nearly 19 to 13 ◦C. Hence, the hotspots were
fully recovered.
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5. Comparative Study

We compared our work with other recent literature review studies [6,9], for which
the summary can be found in Table 5. From this comparison, it became clear that, while
the other reviews explored in more detail certain specifics, our work was able to provide
enough detail for both microcracks and hotspots. This is in line with the scope of this report,
which is to be able to provide the bigger picture of long-term PV performance output.
With this, the use of complex models, such as multi-physics simulations, is executed more
effectively, ultimately leading to a higher overall prediction accuracy.

Table 5. Comparative study of our work compared with previously published work.

Comparison [9] [6] Our Work

Outline and analysis of
environmental factors causing

performance drop

Some factors sporadically
mentioned throughout

Environmental factors are
outlined and analyzed

Environmental factors
are outlined

Analysis of main performance
drop causes Yes, only for microcracks Only mentioning of various

failure modes

Yes, microcracks and hotspots
that were found to be the most
critical were analyzed in detail

Description and comparison
of detection methods to

analyze the cause of
performance drop

No Yes Yes, for both in a relatively
detailed manner

Suggestions for further work
to aid in more PV

performance predictions

Investigations to predict and
quantify the long-term impact
and propagation of cracking

under different
meteorological conditions

Further work in forecasting
and modelling of

environmnetal parameters
with respect to solar plants

To investigate further the
modelling of microcracks
through processes such as

XFEM used in combination
with Griddler to determine PV

performance output

6. Conclusions

This paper commenced by outlining the causes of PV module failure, which are in the
form of climatic stresses. Their impact on performance heavily depends on the site location
and time of year. Next, mechanical failure modes were introduced, for which microcracks
and hotspots were found to have a high impact on performance. To develop a better
understanding, both were further investigated in terms of their nature and root causes.
Additionally, a plethora of microcrack detection methods was explored together with their
advantages and disadvantages. The literature found that combining the techniques of
UVF with IR or EL, or EL with IR results in a more accurate microcrack detection. Next,
the findings of the relevant literature focusing on the PV solar installation performance
were summarized to understand better its mechanics and how it is influenced. During
this investigation, it was discovered that the position, orientation, and severity of a mi-
crocrack determines how it impacts a PV solar cell’s output power. Therefore, microcrack
categorization using these characteristics is required to achieve accurate estimations of PV
yield performance.

Similarly, various attempts of modelling the performance of PV cells were assessed
to pinpoint gaps in the literature and then explore how they can be filled. As a result, it
was discovered that one of the biggest hurdles in accurately modelling performance is
modelling microcracks. While adopting processes such as XFEM can potentially provide a
solution, it is an area that definitely requires further research. The successful realization of
such models would produce substantial contributions to the industry. Finally, modelling the
performance itself has had numerous contributions recently and is therefore progressing
rapidly. Moreover, the adoption of software such as Griddler can provide significant
benefits to the industry.
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