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Abstract: Real-time monitoring devices are popularly utilized in modern power grids. To ensure
long-term operations of the monitoring systems under complex outdoor conditions, a reliable and
stable power supply is essential. In this paper, a general analysis of domino wireless power transfer
(WPT) systems with load-independent outputs is proposed to realize a constant power supply for the
monitoring equipment. In addition, the methodology of analyzing the self-oscillating points of the
proposed domino WPT systems is deduced. The availability and feasibility of the proposed analysis
and control method are verified by both simulation and experiment results based on a four-coil
WPT system.

Keywords: domino wireless power transfer; monitoring equipment; self-oscillating control; load-
independent output

1. Introduction

Online monitoring devices are widely adopted for high-voltage transmission lines
(HVTLs) to ensure safe operations, since the electric parameters, wire temperatures, weather
conditions, and lifetime detections of the auxiliary equipment for HVTLs are monitored
by those devices [1–3]. To ensure sustainable operations of the monitoring systems under
rainy and snowy weather, reliable power supplies are crucial. Renewable energy sources,
such as solar and wind power with energy storage systems, are utilized to supply power.
However, the weather-dependent characteristics (e.g., solar energy is unavailable at night)
and the massive volume of the equipment have significantly constrained the application
value. To solve this issue, the current transformer (CT) mounted on the transmission line
is selected to harvest the energy [4–6]. The CT can be connected directly to a monitoring
device with the same potential as HVTL. However, this method cannot currently be used to
power the low-voltage-side monitoring equipment due to insulation requirements. To this
end, magnetic coupling wireless power transfer (WPT) is one of the promising technologies
to be used [7–10]. It can provide an appropriate creepage distance and excellent isolation
performance. In addition, the cost, volume, and operational complexity of the charging
system can be significantly reduced.

The concept of the magnetically coupled resonator, which forms as the transmitter and
receiver-side coils compensated with a series of capacitors to transport power wirelessly,
was first proposed by Nikola Tesla a century ago [11,12]. Based on the energy transfer
mechanisms, WPT can be realized in radiative and non-radiative ways. Radiative WPT
is selected as an excellent way to transfer information over a long distance through an
antenna in the form of an electromagnetic wave. However, due to the omnidirectional
radiation, the energy transfer efficiency is quite low. Alternatively, non-radiative WPT relies
on the near-field magnetic coupling of the resonator, which can be classified as short-range,
mid-range, and long-range applications. The classification is based on the ratio of the
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power transfer distance d to the coil radius r [13]. The short-range system is defined as d/r
less than 3 [14]. Otherwise, the system is regarded as mid-range or long-range.

Conventionally, the two-stage WPT system is used for the high-voltage power grid
monitoring equipment. The two side coils are symmetrically installed on the ends of
the high-voltage suspension insulator string. The CT is mounted on the transmission
line to harvest the energy through the magnetic field, and the variable-controlled power
converter, which generally consists of a rectifier, a dc/dc converter, and a high-frequency
dc/ac inverter, is used to realize a high-frequency current flow to the resonators. Then, the
energy is transmitted from the transmitter coil to the receiver coil through electromagnetic
induction. To facilitate the analysis, the CT with the converter is regarded as a DC voltage
source with a dc/ac inverter in the following session. For the traditional two-stage WPT
systems, the power transfer efficiency is greatly limited by the transmission distance
between the two side coils. To improve the power transfer distance, the coil sizes are
required to be designed as enormous to enhance the mutual inductance between the two
inductors. However, it could be difficult for the coil installation. Alternatively, domino
WPT systems are put forward to be used to reduce the coil size while still maintaining
a high transfer efficiency. The intermediate coils as domino structures have been widely
adopted between the transmitter and receiver coil in the recent decade [15–18]. The block
diagram of the traditional two-stage and domino WPT system for high-voltage power grid
monitoring equipment is depicted as shown in Figure 1. The relay coils can enhance the
magnetic field between its adjacent units and make robust the coupled regime. In [19],
the research team achieved the transfer of 60 watts with 40% efficiency over distances of
two meters by using the relay coils located nearby the transmitter and receiver loop, and
in [20], the domino WPT system with seven relay coils can achieve 70% efficiency at the
transfer distance of 0.7 m. It is noticed that the characteristics of the domino-resonator
are not only to improve the power transfer capability over a long distance but also to
achieve load-independent output regulation [21–23]. Therefore, it is beneficial to provide
an efficient and stable charging process for the monitoring devices.
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As one of the emerging applications, using the domino WPT systems for power supply
to the monitoring equipment on the HVTLs is developing rapidly. In [24], an optimization
method is proposed to improve the quality factor and coupling effect of domino WPT
systems, and 16.7 W output power with 15% efficiency is realized over a 1.5 m transmission
distance. In addition, the magnetic field distribution of insulator strings in the HVTL
system is simulated. The results show that the cross-coupling effect between the HVTL and
the domino WPT system can be ignored, which significantly reduces the complexity of the
system modeling. In [25], the rotating multi-coil receiver structure has been adopted for the
domino WPT system by realizing a 20 W power system with a transmission distance above
1.12 m. In [26], the transmission distance of the WPT system is proved to be enhanced by
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increasing the system operating frequency higher than the resonant frequency, and [27]
realized a high transfer distance under a 600 kHz operating frequency. In reference [28],
the compensation structure of the receiver-side circuit is changed to ensure a stable output,
while still maintaining an appropriate transmission distance.

However, using the WPT systems to supply the power to the monitoring device also
has some limitations: First, the power of the WPT system depends on the gird system. If
the current in the HVTL is too low, the WPT system may not have enough power to ensure
the normal operation of the monitoring device. Second, when the power supply system
has an open circuit fault, the WPT system will be out of work. Third, the WPT system
operating performance would be influenced by the outdoor environment, such as the coils
would be distorted on rainy or snowy days.

2. Review of Output Control Methods and Self-Oscillating Control Schemes

Output regulation is one of the most critical factors in guaranteeing stable load charg-
ing requirements. A great deal of research has been devoted to regulating the system
output. Generally, an output power controller, such as a dc/dc converter, is installed on
the receiver side to control the system output performance [29–31]. However, the high
cost of the auxiliary device and control complexity is non-negligible. In [32], the voltage
differential signal of the primary side circuit is used to track the working frequency au-
tomatically. However, it is only suitable for parallel-series (PS) compensation schemes.
In [33], sub-resonant frequency control is proposed to realize a constant current (CC) output
by adjusting the system operating frequency. However, the CC control reliability is limited
by a specific range of variation for the mutual inductance. In [34], pulse width modulation
(PWM) with a phase lock loop (PLL) control strategy is proposed. Although it can achieve
output voltage regulation well, the two coupled control loops complicate the realization.

To overcome the above issues, the self-oscillating control strategy has been well
investigated in [35–38]. The researchers have funded an interesting phenomenon, in that
the fundamental component of the receiver-side current is always in-phase or reverse-phase
with the system input voltage under the load-independent output voltage mode in the
two-stage S-S compensated WPT systems [36]. This is because the equivalent impedance
associated with load resistance is a pure imaginary part when the system equivalent series
resistances (ESRs) are ignored. This indicates the system will automatically operate at
the load-independent CV mode by synchronizing the switching signals of the inverter to
be consistent with the zero-crossing compensation signal of the receiver current, as the
imaginary part of the equivalent impedance will be zero. One of the outstanding merits
of the self-oscillating control strategy is for more straightforward implementation, as only
the phase detection of the receiver-side current is needed. In addition, it can achieve
better dynamic performance under varying load conditions and self-adaptability with the
parameter deviations, especially for the domino WPT systems, as the parameters of the
system elements, e.g., inductors and capacitors, are more sophisticated than the traditional
two-coil systems. The self-oscillating control diagram for the proposed domino WPT
systems is shown in Figure 2. A current sensor is installed on the receiver-side circuit
to detect the current. The detected current is then transmitted to a zero-compensation
block (e.g., operational amplifier), where the sine-wave signal will turn into the square-
wave signal. The square-wave signal will transfer from the receiver side to the transmitter
side through wireless communication. The initial driving signals (e.g., square wave drive
signals) are employed for the inverter to start the oscillating. Then, the switching signal
will be shifted to the self-oscillating control signal to ensure the system can provide a
constant voltage output to the monitoring equipment. However, the above-mentioned
control schemes are generally utilized for the two-coil WPT systems, and the performance
of the domino WPT system is rarely discussed.
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3. System Modeling and Analysis Method
3.1. System Description of Three-Coil WPT Systems

To facilitate the analysis, a three-coil WPT system was built first. The topology of the
system, which comprises an AC power source (i.e., vt), three-coupled resonators, and a
load (i.e., RL), is depicted as shown in Figure 3. The domino-resonator is composed of
compensated capacitors, three-coupled coils, and equivalent series resistances (ESRs) that
are defined as C1, C2, and C3; L1, L2, and L3; R1, R2, and R3, respectively. The mutual
inductances of each adjacent coil are defined as M1 and M2. The currents on each unit are
defined as it, i2, and ir. ω is the system operating angular frequency. In addition, the effects
of unwanted cross-coupling between the non-adjacent coil can be eliminated through the
specified coil design or suitable distance [39]. Based on the schematic diagram in Figure 3,
a T-type equivalent circuit is built, as shown in Figure 4.
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According to the T-type model, the equivalent impedance can be defined as:

Z1 = j
(

ωL1 −
1

ωC1
+ ωM1

)
+ R1 (1a)

Z2 = j
(

ωL2 −
1

ωC2
+ ωM1 + ωM2

)
+ R2 (1b)

Z3 = j
(

ωL3 −
1

ωC3
+ ωM2

)
+ R3 (1c)

Zm1 = −jωM1 (1d)

Zm2 = −jωM2 (1e)
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3.2. Load-Independent Voltage Gain Characteristics

To analyze the load-independent voltage output characteristics for the proposed three-
coil WPT system, the relationship between the system input voltage and the system output
voltage needs to be figured out. Applying Kirchhoff Voltage Law (KVL) and Kirchhoff
Current Law (KCL) on the circuit in Figure 4, we obtain:

vt = itZ1 + i2Z2 + ir(Z3 + RL) (2a)

im1 =
i2Z2 + ir(Z3 + RL)

Zm1
(2b)

im2 =
ir(Z3 + RL)

Zm2
(2c)

it = im1 + i2 (2d)

i2 = im2 + ir (2e)

vr = irRL (2f)

Based on (2a)–(2f), the relationship between vt and vr can be defined as:

vt =

(
A
RL

+ B
)

vr (3)

where

A =
[(Z3 + Zm2)[Z2Z1 + (Z2 + Z1)Zm1] + Z3Zm2(Zm1 + Z1)]

Zm1Zm2

B =
[Z2Z1 + (Z2 + Z1)Zm1 + Zm2(Zm1 + Z1)]

Zm1Zm2

Based on (3), the load-independent voltage output can be achieved by controlling the
operating frequency to satisfy:

(Z3 + Zm2)[Z2Z1 + (Z2 + Z1)Zm1] + Z3Zm2(Zm1 + Z1) = 0 (4)

Combining with (1), (4) can be expanded as:

j
(

ωL3 − 1
ωC3

)(
−ω2L1L2 +

L2+M2
C1

+ L1
C2
− 1

ω2C1C2
−ω2L1M2 + ω2M1

2
)

+j
(

ωL1 − 1
ωC1

)(
ω2L3M2 − M2

C3
+ ω2M2

2
)
= 0

(5)

In general, the circuit parameters for each relay unit are designed as the same (i.e.,
L1 = L2 = L3 and C1 = C2 = C3). Therefore, (5) can be further simplified, and the load-
independent CV angular frequencies (i.e., ω1, ω2, and ω3) can be expressed as:

ω1 =
1√

L1C1
(6a)

ω2 =

√√√√ωo2
(

1−
√

k1
2 + k22

)
1− k1

2 − k22 (6b)

ω3 =

√√√√ωo2
(

1 +
√

k1
2 + k22

)
1− k1

2 − k22 (6c)

where the system resonant angular frequency ωo can be expressed as:

ωo =
1√

L1C1
=

1√
L2C2

=
1√

L3C3
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and the coupling coefficient k1 and k2 are shown as:

k1 =
M1√
L1L2

k2 =
M2√
L2L3

The corresponding output-to-input voltage gain Gv can be represented as:

Gv =
vr

vt
=

∣∣∣∣ Zm1Zm2

[Z2Z1 + (Z2 + Z1)Zm1 + Zm2(Zm1 + Z1)]

∣∣∣∣ (7)

It has been proved that the system input voltage is in-phase or reverse-phase with
the receiver-side current at the load-independent frequency for the two-coil WPT systems.
However, the above phenomenon for the domino WPT systems is not clear. To facilitate the
analysis, (3) can be re-represented as:

vt = (A + BRL)ir (8)

Since A is an imaginary number and B is a real number, vt is in-phase with ir when
A = 0 and B > 0, and vt is reverse-phase with ir when A = 0 and B < 0. In addition, A = 0 is
the solution for the load-independent frequencies deduced in (4). Therefore, the inverter
can be automatically operated at the load-independent frequencies by synchronizing the
switching signals of the inverter to be consistent with the zero-crossing compensation signal
of the receiver current. To realize the self-oscillating control scheme, the phase detection of
the receiver-side current is needed, and the required information can be transmitted from
the receiver-side circuit to the transmitter side circuit through wireless communication.

3.3. Load-Independent Frequency Prediction for N-Coil WPT Systems

From the analysis mentioned above, the load-independent characteristics for three-coil
domino WPT systems are analyzed. Next, the topology is extended to N-coupled resonators
(i.e., N = n + 1). A T-type equivalent circuit of the N-coupled resonators is plotted, as shown
in Figure 5.
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Here,

Z1 = j
(

ωL1 −
1

ωC1
+ ωM1

)
+ R1 (9a)

Zn = j
(

ωLn −
1

ωCn
+ ωMn−1 + ωMn

)
+ Rn (9b)

Zn+1 = j
(

ωLn+1 −
1

ωCn+1
+ ωMn

)
+ Rn+1 (9c)

Zmn = −jωMn (9d)

The limited condition for (9b)–(9c) is n ≥ 2. Similarly, by applying the KVL and KCL
on the circuit, the relationship between the vt and vr can be defined as:

vt =

(
C
RL

+ D
)

vr (10)
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where

D =
[ f (An) + f (Bn)]

∏n
i=1 Zmi

f (An) = (Zmn−1 + Zn) f (An) + Zn f (Bn−1)

f (Bn) = Zmn[ f (An−1) + f (Bn−1)]

f (A1) = Z1

f (B1) = Zm1

and

C =
[ f (Cn) + f (Dn)]

∏n
i=1 Zmi

f (Cn) = (Zmn + Zn+1) f (An)

f (Dn) = Zn+1 f (Bn)

f (·) is a function to describe the relationship between the impedance. Based on (10), the
load-independent voltage output for domino WPT systems can be deduced by satisfying:

f (Cn) + f (Dn) = 0 (11)

In this way, the system output-to-input voltage gain Gv is only dependent on the sys-
tem parameters in the expression 1/D regardless of the variation in load conditions. Hence,
the load-independent operating frequencies for the N-coil WPT systems can be acquired.

4. Simulation Verification

To verify the effectiveness of the theoretical analysis, a four-coil S-S compensated WPT
system was built on PSIM. 12. 04. To simplify the analysis, the self-inductance for each coil
is set as the same value (i.e., L1 = L2 = ... = L4). Similarly, the corresponding compensated
capacitors are the same (i.e., C1 = C2 = ... = C4), and the mutual inductances between
different coils are the same (i.e., M1 = M2 = M3). The receiver-side circuit is adopted as a
passive load without a rectifier structure. Generally, the quality factors (Qi = ωLi/Ri) for
the coils are high for realizing desirable transfer efficiency. Hence, the ESR for each circuit
can be ignored. In addition, to reduce the unwanted cross-coupling effect, the coils are set
at a long distance, which is displayed as a relatively low mutual inductance value. The
system parameters are designed to ensure the system resonant frequency is nearly 100 kHz,
which is one of the typical operating frequencies that has been adopted for inductive-type
WPT systems. The system’s main parameters are shown in Table 1.

Table 1. Simulation parameters of the proposed domino WPT system.

Name Value

Input voltage (Vdc) 5 V
Self-inductance (Li) 49.2 µH

Compensated capacitance (Ci) 51.5 nF
Mutual inductance (Mi) 1.83 µH

Load resistance (RL) 15 Ω
Resonant frequency 100 kHz

By solving (10), it can be obtained that the system has four load-independent CV
output frequencies (i.e., f 0 = 97.11 kHz, f 1 = 98.86 kHz, f 2 = 101.15 kHz, and f 3 = 103.14 kHz).
To verify the above-mentioned analysis, the load is shifted from 15 Ω to 7.5 Ω and the
simulation time is 40 ms. The main waveforms of the input voltage (i.e., vt), input current
(i.e., it), output voltage (i.e., vr), and output current (i.e., ir), are shown in Figure 6a–d,
respectively.
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Figure 6. The waveforms of vt, it, vr, and ir at the four load-independent CV output frequencies (a) f 0,
(b) f 1, (c) f 2, and (d) f 3.

It can be seen from Figure 6 that the output voltage can maintain constant versus load
shift under the above four load-independent frequencies. In contrast, the fluctuation of the
output current is significant. The input voltage is in-phase with the output current in f 1
and f 3, as shown in Figure 6b,d, respectively, while the input voltage is reverse-phase with
the output current in f 0 and f 2, as shown in Figure 6a,c, respectively. It should be noticed
that the above simulations are carried out by setting the system operating frequencies to
the pre-calculated values.

5. Experimental Verification
5.1. Experimental Setup

As for the composite pin insulator model (FPQ35-35/5T), the length of the insulator is
around 0.61 m. The transmitter coil, receiver coil, and relay coil are embedded into four
insulator sheds spaced at near 0.2 m intervals. Therefore, a four-coil domino WPT system
with a total transfer distance of around 0.6 m and the interval between each adjacent coil at
near 0.2 m is built. Since the power requirements for different types of monitoring devices
range from a few tenths of a watt to tens of watts, the low output power scenario is adopted
in this experiment. The schematic of the experimental setup is shown in Figure 7, and the
photograph of the experimental setup is shown in Figure 8. A DC power source is adapted
to supply the power of the system, and the DC voltage is converted to the AC voltage
through the full-bridge inverter (GS61004B-EVBCD). The square-wave switching signal is
realized by a function generator. The resonators are compensated as series topology. The
main waveforms, amplitudes, and the phase angle between the input voltage and output
current are captured through the oscilloscope. The main parameters of the system are listed
in Table 2.
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Table 2. Main parameters of the proposed domino WPT system.

Symbol Value Symbol Value

Vdc 5 V R3 0.3 Ω
L1 49.2 µH L4 49.18 µH
C1 51.58 nF C4 51.5 nF
R1 0.3 Ω R4 0.3 Ω
L2 49.16 µH M1 1.83 µH
C2 51.52 nF M2 1.79 µH
R2 0.3 Ω M3 1.77 µH
L3 49.22 µH RL 15 Ω
C3 51.6 nF

5.2. Experimental Results

Due to the influence of the unequal parameters and ESRs, three self-oscillating fre-
quencies (i.e., f 0, f 1, and f 2) were observed. The calculated and experimental measured
results of the three self-oscillating frequencies and the corresponding voltage gains are
shown in Table 3. The errors caused by system parameter deviation are unavoidable in
practice. The experimental waveforms of input voltage (i.e., vt), transmitter current (i.e.,
it), output voltage (i.e., vr), and receiver current (i.e., ir) at the three load-independent
frequencies are shown in Figure 9. It can be seen that the input voltage is in-phase with
the receiver current at f 1, and it is reverse-phase with the receiver current at f 0 and f 2. The
transient waveforms of vt, it, vr, and ir for f 1 are depicted as shown in Figure 10. To verify
the effectiveness of the load-independent CV output characteristics, the load is switched
from 15 Ω to 7.5 Ω under the system operating frequency at f 1. The variation in system
parameters for the load resistance shifted is shown in Table 4. It has been reported that the
system cannot achieve ideal constant CV output due to the existed ESRs in practice [40,41].
In this case, the output voltage varied from 2.83 V to 2.69 V, with deviations of about 4.9%,
representing that the system nearly operates at the load-independent CV output mode. In
addition, the system efficiency is changed from 15% to 24%. Nevertheless, efficiency is not
the main focus of this article because the power level is quite low.

Table 3. Load-independent frequencies and corresponding voltage gains.

f 0 f 1 f 2

Frequency (kHz)
Calculated Measured Calculated Measured Calculated Measured

97.42 96.24 98.96 99.21 102.85 102.20

Voltage gain 0.16 0.11 0.70 0.64 0.59 0.55
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Table 4. Variation in system parameters for the load resistance shifted from 15 Ω to 7.5 Ω.

Vt (RMS) It (RMS) Vr (RMS) Ir (RMS) Pout η

RL= 15 Ω 4.39 V 0.83 A 2.83 V 0.19 A 0.54 W 15%

RL
′ = 7.5 Ω 4.40 V 0.91 A 2.69 V 0.36 A 0.97 W 24%
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6. Conclusions and Future Discussions

In this paper, the concept of utilizing a domino-resonator as the power supply system
for the monitoring devices on the high-voltage transmission lines is introduced. In addition,
a general analysis of domino WPT systems with load-independent output features is
proposed to realize a constant output voltage supply to the monitoring equipment. A
four-coil domino WPT system is established to validate the effectiveness of the proposed
method in practice.

Despite the realization of the CV output for domino WPT systems having been re-
ported in many ways, the concept of using the self-oscillating control on the domino WPT
systems is rare. In addition, how to implement this control scheme for domino WPT
systems with high stability, such as avoiding wireless communication, should be further
studied. Furthermore, the cross-coupling effects may not be entirely eliminated in practice.
Hence, the influence caused by the unwanted cross-coupling also needs to be considered.
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