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Abstract: In this manuscript, a hybrid system depending on the optimal location of electric vehicle
parking lots (PL) and capacitors under voltage profile care and power loss is proposed. The pro-
posed hybrid scheme is the joint execution of both the atomic orbital search (AOS) and arithmetic
optimization algorithm (AOA). Commonly it is called the AOSAOA technique. In the paper, the
allocation of the parking lot and capacitor is introduced to congestion management with reactive
power compensation. To optimally regulate that parking lot size, the AOSAOA technique is adopted.
Furthermore, parking lot and capacitor allocation are introduced to congestion management and
reactive power compensation. With this proper control, the perfect sitting of capacitor and EV
parking lots under the grid, including the deterioration of real and reactive power loss and voltage
profiles are optimally chosen. Furthermore, the implementation of the proposed AOSAOA model is
developed by the MATLAB/Simulink platform, and the efficiency of the proposed model is likened
to other techniques.

Keywords: electric vehicles parking lot; voltage and power loss; atomic orbital search; arithmetic
optimization algorithm

1. Introduction

Today, in countries that rely heavily on imported crude oil, key anxieties regarding
climate change and increasing oil prices have pushed energy efficiency to become a basic
standard. At present, the transportation sector accepts a large part of oil consumption, a
large part of which is utilized for road vehicles [1]. As a result, oil prices are rising day by
day, bringing burdens to the lives of ordinary people. With the protection of energy and
the environment, the worldwide focus in the future will be on alternative transportation,
such as electric vehicles (EV) [2]. The invention of rechargeable batteries was applied to
electric vehicles that used electric motors and distributed electricity in the 19th century. By
charging the battery when necessary, people will feel comfortable driving such electric cars
in the city. The top probable position also allows the frame to alleviate voltage problems
at different nodes while reducing current leakage from capacitive components. With
the increasing popularity of electric vehicles [3], it is necessary to improve the charging
infrastructure and provide new affordable models. Since cleaner solutions help people
live in a healthy environment, the government provides incentives acceptance of electric
vehicles and prolongs investment in infrastructure [4].
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Today, electric vehicles have become the hopeful option of powered motor vehicles
for general transportation, so charging points need to expand locally in the future. Electric
vehicles will be related through a power distribution network that uses charging stations.
According to [4], a multi objective optimization method is implemented for modeling
difficult assignments. However, in [4], the authors considered the vehicle-to-grid (V2G)
under its work but they did not consider the impact of the use of electric vehicles on
congestion management. Furthermore, in [5], the allocation of electric vehicle parking was
proposed with a detailed probability model of EVPL on the distribution network. In [6],
a parking-based allocation system was utilized to catch the best parking location in the
Nordic region. Additionally, the impact of EVPL demand on power distribution network
losses was studied in depth in [7]. In [8], the restricted distribution of the electric vehicle
distribution network was studied. In [9], GA and particle swarms were used to perform the
reliability-driven distribution optimization (PSO) of electric vehicle charging points. In [10],
the authors proposed a comparable work. A loading system was recommended in [11] to
change the maximum load to off-peak hours. Regarding the problems of voltage violation
and minimizing power loss, dissimilar load plans are expected. S. Pazouki et al. [12]
proposed the simultaneous optimal planning (placing and sizing) of charging stations and
distributed generations to address new challenges. They used a genetic algorithm for a
simulation study on a 33-bus radial distribution network. The simulation results show
the effects of the installation of charging stations in the presence/absence of distributed
generations on total costs, reliability, loss, voltage profile, and emission. K. Karmaker
et al. [13] proposed an electric vehicle charging station (EVCS) based on solar and biogas
to reduce the burden on the national grid. This proposed EVCS integrates a combination
of a solar PV module, three biogas generators, 25 lead-acid batteries, a converter, and
charging assemblies. They analyzed the economic, technical, and environmental feasibility
of the proposed EVCS using Hybrid Optimization of Multiple Energy Renewable Pro
software [14]. This proposed method was investigated on a 33-bus system to validate
the optimal sitting and sizing of RES and EV charging stations simultaneously. M. Atwa
et al. [15] proposed a methodology for the optimal allocation of different types of renewable
distributed generation units to reduce annual energy loss in the distribution system.

India and other developing economies have also adopted these collection strategies.
J. Teng et al. [16] designed optimal charging/discharging scheduling for battery storage
systems (BSSs) that minimizes the distribution systems’ losses. Using the genetic algorithm-
based method, the results demonstrated the validity of the proposed mathematical model
and optimal charging/discharging schedule. M. Mazidi et al. [17] proposed a method in
which the reserve requirement for compensating renewable forecast errors was provided by
both responsive loads and distributed generation units. The reserve requirement for com-
pensating renewable forecast errors was provided by both responsive loads and distributed
generation units. J. GeunKim and M. Kuby [18] developed a linear programming model
for optimizing the locations of refueling stations by considering a vehicle’s driving range
and the necessary deviations of drivers. It shows the maximization of total flows refueled
on deviation paths and the decrease of the captured demand flows with an increase in
deviation distances, which led to the fragmentation of the global auto market, such as
India and Southeast Asia. Two- and three-wheelers are attractive short-term targets. In
China, Europe, the United States, and the rest of the world, it is closely followed due to
active government measures and continues to lead electric vehicles across the board. It can
be clearly seen from the literature review that the distribution grid voltage curve is kept
within limits by the smart charging of electric vehicles. V2G apps have yet to do that job.
Using the best location for electric vehicle parking lots, it turns out that execution does not
rely solely on incentives. Therefore, economically and the geologically convenient charge is
a must, as are homes, shopping malls, workplaces, and charging station parking lots. The
key feature implies the time variable that consumers value the most. The loss can also be
reduced using multiple generators. 22Kmeans clustering technology was abandoned to
analyze the best PL citations at the same time that the ECCRP mathematical formula was
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described, and a probability-based method was developed to optimize EVPL appointment
and size [19]. All CS designs, as a planning model for the distribution network overlay, are
concerned with the optimal configuration of CS under the overlay grid. The current work
attempts to propose [20] a classification that outlines certain planning models for difficult
CS placement as the overlap of the distribution.

2. Recent Research Work: A Brief Review

In the literature, based on the use of various technologies and aspects of the optimal
configuration of electric vehicle charging points, various research works can be carried
out. Some of them seek feedback: S. Sachan et al. [21] proposed a new method of occa-
sionally charging electric vehicles. In the study, it is recommended to allocate parking lots
and condensers congestion management and reactive power compensation. To do this,
they performed an analysis by assessing the inverse Jacobian matrix of current research.
Biogeography-based optimization technology is used to optimize parking lot size. The
expected technology effectiveness was tested on a custom IEEE 34-bus distribution network.
Surbhi Aggarwal and Amit Kumar Singh [22] studied the installation of rapid charging
stations, a case study on a 24-bus system. This work demonstrates the location of charging
stations through dissimilar nominal powers of 5, 25, 50, and 100 MW in different systems
of test cases on the load bus line, taking into account the violation of the voltage amplitude
limits (0.95 < V < 1.05) ratings. Appropriate site selection and size adjustments were made
for the DG, and four different test cases were considered, among which charging stations
were pre-installed to overcome network loss and maintain system stability. Mohd Bilal
and Mohammad Rizwan [23] demonstrated a new hybrid technology to study the best
location for electric vehicle charging stations. In addition, this article performs a thorough
inspection of the vehicle’s facilities to the network. The proposed hybrid method con-
tains Particle Swarm Optimization and Hybrid Gray Wolf Optimization. With the mix of
these algorithms of ideal properties and development capabilities, M. Ahmadi et al. [24]
proposed the difficulty of the optimal allocation of parking lots of electric vehicles and
programming of the optimal operation of electric vehicles under an intelligent distribution
network. Different factors involving technical and economic aspects were considered in the
questions posed to achieve real solutions. In terms of technical issues, it was considered to
lessen network losses and lessen voltage drop between feeders, as well as meet network
requirements wholly. In addition, in the questions posed, the total cost of purchasing power
and the total cost of loading and unloading the electric vehicle parking lots around the
Pearl River Delta was considered based on price.

L. Chen et al. [25] proposed an electric vehicle charging station (EVCS) and explained
a new optimized allocation and size adjustment under the Allahabad power distribution
system in India. Their key impression considers the reduction in reactive power loss index,
improvement in voltage power index, reduction in actual power loss index, and initial cost
to optimize EVCS configuration to obtain the smallest installation. To solve the nonlinear
optimization mixed-integer difficulty, a new meta-heuristic algorithm is proposed, called
the balanced Mayfly algorithm. The modification is to improve precision and solve the
problem of algorithm scanning. Charles Raja S [26] demonstrated a two-layer hybrid
programming method that improves system reliability using optimizing vehicle charging
stations (VCS) that integrate plug-in hybrid electric vehicles and renewable distributed
power generation (RDG) at the same time. In the presence of RDG volatility, there are
extensive requirements among customers to ensure continuity of supply. Therefore, based
on various emergency analyses, a non-linear objective function was developed to lessen
the lack of power supply (ENS) provided to customers. Two notable contributions stand
out from existing efforts. First, identify the best location for selecting both the RDG and the
charging station. Considering the simultaneous integration of VCS and RDG, a method
based on the hybrid Nelder Mead Cuckoo Search algorithm is adopted to minimize ENS,
smoothly reduce power loss, and increase the voltage range in the system. P. Rajesh and
F.H. Shajin [27] proposed an innovative method for charging stations (CS) with optimal
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planning and capacitors in the new technology. To accomplish a better balance between the
exploration and development of the Dragonfly (DA) algorithm, Gaussian and quantum
mutation strategies are used in DA performance. This is the novelty of the work we have
shown. Therefore, it is called the quantum effect Gaussian mutation Dragonfly Algorithm.
Here, this algorithm is recommended to allocate parking spaces and capacitors and reactive
power compensation for congestion management.

Background of Research Work

A review of current research work portrays the optimal configuration of charging
stations of an electric vehicle as an important influencing factor. With the quick expansion
of EV charging technology, numerous charging facilities are being used at electric vehicle
charging stations (EVCS). Charging through dissimilar charging powers may meet the
charging needs of different electric vehicles and affect the temporal at the same time and
spatial distribution of electric vehicle charging requirements, posing challenges to the
rationality and economics of the EVCS allocation plan. To improve the charging efficiency
of electric vehicles and alleviate the aforementioned pain points, optimal EVCS planning is
becoming an extremely important issue. The optimized configuration scheme of EVCS can
meet the charging needs of different electric vehicle owners at the minimum social cost,
thus promoting the development of the electric vehicle industry. Genetic Algorithms (GA),
Heuristic algorithms, Particle Swarm Optimization (PSO), GAPSO Hybrid Algorithm, and
Chemical Reaction Optimization, in addition to Differential Evolution (DE), are techniques
commonly used. In addition, the optimization model with a linear integer is utilized to
regulate the location of the EVCS and is competently resolved through an optimization
solver. Furthermore, in real life, EVCS always mixes and installs multiple charging facilities
to meet diversified charging needs. This phenomenon complicates the electric vehicle
charging needs, which is why it is great to seek an efficient method to optimize the planning
of electric vehicles with multiple charging facilities. These above-mentioned shortcomings
are produced in the existing system that carries on this research work.

3. System Modeling of EV

In this article, we consider a smart grid that powers commercial consumers. These
buildings are equipped with wind energy and photovoltaic units related to the grid. In
addition, electric vehicle charging stations have been set up in the parking area of the
workplace and are powered by photovoltaic and wind generators. The goal of the proposed
system is to measure the optimal size of electric vehicle parking lots and capacitors on
the power distribution system. When the load suddenly has a high demand, the DC bus
capacitor is located on the DC side to stabilize the DC bus voltage. An overview of the
electric vehicle parking lot (PL) based on the proposed approach is shown in Figure 1. The
major part of the electric vehicle charging station (EVCS) is the DC bus, where all the electric
vehicles (EVs) are situated for charging. The modeling and mathematical formulations of
the sources are described as follows.

3.1. Modeling of EV

The vehicle model includes a driver, vehicle dynamics, and a power system. A driver’s
model with input is the actual vehicle speed compared to the reference speed. The output
of the driver model is the positions of the brake pedal and the accelerator pedal. The power
system receives the instruction from the driver’s pedal position and fulfills it through EM
and ICE.

The combined active power of the internal combustion engine (ICE) and energy
management (EM) acts as a result of the power system and input model of the vehicle’s
dynamics, namely drag, force, traction, rolling resistance, and gravitational force presented
by the slopes of the road [28]. Figure 1 show an overview of an EVCS with parking spaces.
The deviation of EV is estimated based on Equation (1)
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EVd(t) =
1

σ∗
√

2Π
e−(t−µ∗)/2σ∗2

, 0 < t < 24 (1)

where σ∗ is the standard deviation and its value is 3.1, and µ∗ is the mean value and its
value is 16.97. The arrival of the EV is estimated based on Equation (2)

EVa(t) =
1

σ∗
√

2Π
e−(t−µ∗)/2σ∗2

, 0 < t < 24 (2)

where the value of µ∗ and σ∗ are 17.01 and 3.2. The EV distance is estimated using the
following Equation (3).

EVd(d) =
1

dσ∗
√

2Π
e−(ln d−µ∗)/2σ∗2

, d > 0 (3)
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Here, d shows the travel distance and the values of µ∗ and σ∗ are 3.2 and 0.9.

3.2. Mathematical Formulation of PV System

Solar cells are basic elements for generating PV systems. Solar cells are coupled in
series or in parallel to create a solar cell matrix with the required rating. Figure 2 show
the circuit of the solar energy system. In the photovoltaic energy subsystem, sunlight
stored with a solar power panel becomes electrical energy [29]. Y. Song, Y. Zheng, and
D. Hill (2016) proposed a convexified model, converted using convex relaxation techniques
from the conventional model [30], which is applied for 15-bus distribution networks and
reduces the total energy and charging cost. In this model, high computational efficiency
and optimal solution can be achieved [31]. S. Fazeli, S. Venkatachalam, R. Chinnam, and
A. Murat (2020) proposed an embedded two-stage stochastic model which determines the
types of EV supply and optimal layout [32]. H. Zhang et al. developed an algorithm using
a Gaussian operator and mixed an algorithm for different variations. These algorithms
are applied in practical locating planning projects and reduce social costs [33]. L. Gong
et al. proposed an optimal charging technique based on a dynamic spike pricing policy
with distribution transformer normal operation for reducing the charging cost. They used
a genetic algorithm (GA) to reduce charging costs with effective peak sharing [34]. Using
Equation (4), the power generated through the photovoltaic system was calculated

Ppv = Rtηpv Apv (4)

where Ppv represents the power output of the photovoltaic panel, Rt represents the solar
radiation in the inclined plane module, ηpv represents the efficiency of the photovoltaic
panel, and Apv is the area of the photovoltaic panel. The following Equation (5) clarifies
the efficiency of photovoltaic panels,

ηpv = ηr−pvηPC

[
1− NT

(
TC − Tre f

)]
(5)

where photovoltaic panel implies ηpv, reference module implies ηr−pv, power condition
implies ηPC, photovoltaic panel temperature coefficient denotes NT , cell temperature (◦C)
implies TC as in Equation (6), and the cell temperature on reference conditions is Tre f .
Likewise, Tre f is placed through 25 ◦C and takes on NT’s value of −3.7 × 10−3 ◦C−1 for the
temperature of mono and poly crystalline silicon.

TC = TA +

[
NOCT − 20

800

]
Rt (6)

where, TA implies temperature of ambient air and NOCT implies nominal cell operating
temperature.

The PV module current is articulated as Equation (7)

I∗ = I∗L − I∗sat

[
exp

{
q∗

V∗pv + I∗pv·R∗s
υkTc

}
− 1
]
−

V∗pv + I∗pv·R∗s
R∗sh

(7)

where I∗L signifies the created current for Light A, R∗sh and R∗s are series and shunt resistances
in Ω, k represents Boltzmann’s constant, υ signifies the ideal factor of p-n, V∗pv and I∗pv are
the solar cell output voltage and current, and I∗sat indicates the reverse saturation current
in A. I∗sat shows the reverse saturation current and I∗L shows the light-generated current
illustrated in Equations (8) and (9)

I∗L = [Isc + γ(Tc − T∗c )]
CT
C∗T

(8)
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I∗sat =
Iscγ(Tc − T∗c )

exp
[

Vocγ(Tc − T∗c )
VT

]
− 1

(9)

where Tc are the PV cell’s ambient temperature, CT implies irradiance, γ is the temperature
coefficient under short circuit current, VT is the thermal voltage, and Voc is the open-circuit
voltage at standard temperature.
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3.3. Modeling of Parking Lot and Capacitor

Electric vehicle charging infrastructure plays a very important role in electric vehi-
cle parking locations, including capacitors, because in electric vehicle parking, as active
power loss reduces, system performance improves reliability and efficiency. Charging
infrastructure includes all the tools and procedures used to transfer electricity from the grid
to the vehicle. A charging area with an acceptable charging time system can improve the
performance of electric vehicles and reduce public charging requirements. The following
Equation (10) shows the power loss.

P∗L =
n

∑
i,j=1

[
υij(P∗i P∗j + Q∗i Q∗j ) + ςij(Q∗i P∗j − P∗i Q∗j )

]
(10)

Here, P∗i and Q∗i specifythat bus i is active and has reactive power injections, P∗j and
Q∗j implicate that bus j is active with reactive power injections, and n denotes the number
of buses. The υij and ςij can be expressed by (11)

υij =

(
xij

V∗i V∗j

)
cos(βi − β j) (11)

ςij =

(
xij

V∗i V∗j

)
sin(βi − β j). (12)

Here, the voltage of buses i and j is shown as Vi and Vj, the bus admittance matrix
is represented as Yij, the load angles of buses i and j are βi and β j, ςii and υii are the
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susceptance and conductance values, N is thenumber of buses. Where, V∗i and V∗j imply i
and j bus voltage and xij denotes the impedance matrix.

∂P∗L
∂P∗i

= 2υiiP∗i + 2
n

∑
j 6= i
j = 1

(
υijP∗j − ςijQ∗j

)
= 0 (13)

P∗i = − 1
υii


n

∑
j 6= i
j = 1

(
υijP∗j − ςijQ∗j

)
 (14)

Also
P∗i = P∗EV

i + P∗Gi − P∗Di (15)

The EVs, PL size, and the size of the capacitor are presented in Equations (16) and (17).

P∗EV
i = P∗Di − P∗Gi −

1
υii


n

∑
j 6= i
j = 1

(
υijP∗j − ςijQ∗j

)
 (16)

Q∗EV
i = Q∗Di −Q∗Gi −

1
υii


n

∑
j 6= i
j = 1

(
υijQ∗j + ςijP∗j

)
 (17)

where P∗Gi implies the grid power in bus i and P∗Di specifies bus I power demand. The active
and reactive power of bus i and j are estimated using Equations (18) and (19).

P∗i = V∗2i G∗ii +
n

∑
j = 1
j 6= 1

∣∣∣V∗i V∗j Yij

∣∣∣ cos
(

θij − βi + β j

)
(18)

Q∗i = −V∗2i B∗ii −
n

∑
j = 1
j 6= 1

∣∣∣V∗i V∗j Yij

∣∣∣ sin
(

θij − βi + β j

)
. (19)

Here, P∗i implies the bus i active power and Q∗i implies the bus i reactive power. Where
G∗ii implies the conductance of bus i, θij implies the angle magnitude of self-admittance at
line i to j and B∗ii implies the susceptance at bus i. The indexes of sensitivity in the form of
the voltage angles and magnitudes are illustrated by[

∆P∗

∆Q∗

]
=

[
J∗11 J∗12
J∗21 J∗22

][
∆β
∆V

]
(20)

[
∆β
∆V

]
=

[
U∗1 U∗2
U∗3 U∗4

][
∆P∗

∆Q∗

]
. (21)

∆P∗ is denoted as active power deviation, ∆Q∗ is represented as reactive power
deviation, ∆V signifies the voltage deviation, ∆β denotes the deviation of load angles of
bus i and bus j as βi and β j where, J∗ shows matrices and U∗1 , U∗2 , U∗3 , and U∗4 are the
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voltage variation impacts regarding power on every distribution network bus which is
illustrated by the following Equations (22)–(25).

U∗1 =



∂β2

∂P∗2

∂β2

∂P∗3
. . .

∂β2

∂P∗n
. . . .
. . . .

∂βn

∂P∗2

∂βn

∂P∗3
. . .

∂βn

∂P∗n

 (22)

U∗2 =



∂β2

∂Q∗2

∂β2

∂Q∗3
. . .

∂β2

∂Q∗n
. . . .
. . . .

∂βn

∂Q∗2

∂βn

∂Q∗3
. . .

∂βn

∂Q∗n

 (23)

U∗3 =



∂V∗2
∂P∗2

∂∗2V∗2
∂P∗3

. . .
∂V∗2
∂P∗n

. . . .

. . . .
∂V∗n
∂P∗2

∂V∗n
∂P∗3

. . .
∂V∗n
∂P∗n

 (24)

U∗4 =



∂V∗2
∂Q∗2

∂V∗2
∂Q∗3

. . .
∂V∗2
∂Q∗n

. . . .

. . . .
∂V∗n
∂Q∗2

∂V∗n
∂Q∗3

. . .
∂V∗n
∂Q∗n

 (25)

After that, the subsequent four sensitivity indexes are denoted in Equations (26)–(29).

I∗1i =

n
∑

k=1

∂βk
∂P∗i

N
(26)

I∗2i =

n
∑

k=1

∂V∗k
∂P∗i

N
(27)

I∗3i =

n
∑

k=1

∂βk
∂Q∗i

N
(28)

I∗4i =

n
∑

k=1

∂V∗k
∂Q∗i

N
(29)

Here, I∗1i denotes the current in the first bus, I∗2i represents the current in the second
bus, I∗3i denotes the current in the third bus, I∗4i represents the current in the fourth bus, and
N denotes the count of distribution network nodes. The active and reactive power flow
among the nodes is indicated via the factor of contribution from the electric vehicle parking
lot, including the capacitor. Rated power amid bus i and bus j is demonstrated using the
following Equations (30) and (31).

P∗ij = P∗bij + ∆P∗ij (30)
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∆P∗ij =
Nb

∑
N=1

∂P∗ij
P∗EV

N
∆P∗N +

Nb

∑
N=1

∂Q∗ij
Q∗EV

N
∆Q∗N . (31)

The above Equation (31) can be rewritten as (32).

∆P∗ij =
Nb

∑
N=1

CFP∗EV
N (ij, N)∆P∗N +

Nb

∑
N=1

CFP∗EV
N (ij, N)∆Q∗N . (32)

The active with reactive power factor contribution for the EVs parking lot, including
the capacitor, is illustrated in Equations (33) and (34).

CFP∗EV
N (ij, N) =

∂P∗ij
∂P∗EV

N
(33)

CFP∗EV
N (ij, N) =

∂Q∗ij
∂Q∗EV

N
. (34)

Equations (33) and (34) can be substituted in Equation (30), resulting in (35) and (36).

CFP∗EV
N (ij, N) =

Nb

∑
j=1

∂V∗j
∂P∗EV

N
×

∂P∗ij
∂V∗j

+
Nb

∑
j=1

∂β j

∂P∗EV
N
×

∂P∗ij
∂β j

(35)

CFQ∗EV
N (ij, N) =

Nb

∑
j=1

∂V∗j
∂Q∗EV

N
×

∂Q∗ij
∂V∗j

+
Nb

∑
j=1

∂β j

∂Q∗EV
N
×

∂Q∗ij
∂β j

(36)

CFP∗EV
N (ij, N) denotes and depicts the real power contribution factor and CFQ∗EV

N (ij, N)
shows the reactive power contribution factor of the capacitor and EVs parking lot.

3.4. Objective Function

The objective function is the optimal location of electric vehicle parking lots and
capacitors to reduce energy loss. The system power loss is indicated in Equation (10), and
the parking power limit can be expressed as Equations (37) and (38).

PEV
min ≤ PEV

i,t ≤ PEV
max (37)

QEV
min ≤ QEV

i,t ≤ QEV
max (38)

where PEV
min is the minimum active power of the EV and QEV

min is the minimum reactive
power of the EV.

Power balance constraints are given below in Equation (39).

n

∑
i=1

P∗EV
i =

n

∑
i=1

PD∗i + P∗L − PG∗i (39)

The power limits can be verified with Equation (40).∣∣∣P∗ij,L∣∣∣ ≤ ∣∣∣P∗ijmax,l

∣∣∣ (40)

4. Proposed Approach of Atomic Orbital Search and Arithmetic Optimization
Algorithm (AOSAOA)

The proposed hybrid scheme will be the joint execution of both the AOS and AOA.
AOS depends on certain principles of quantum mechanics and the quantum atomic model
under a common configuration of electrons [35]. AOA uses the distribution behavior of
major arithmetic operators in mathematics, involving (multiplication, division, subtraction,
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and addition) [36]. Commonly it is referred to as the AOSAOA technique. The structure of
AOA is shown in Figure 2.

4.1. Step by Step Process of AOA

Step 1: Initialization
Determine the initial positions of solution candidates in the search space.
Step 2: Random generation
The initialization procedure generates input parameters randomly using the following

Equation (41),

X =


S11 S12 . . . S1n
S21 S22 . . . S2n

: : : :
Sn1 Sn2 . . . Snn

. (41)

Here, X specifies the input parameters of the system.
The minimal objective function is skilled with the optimal process.
Step 3: Fitness Function
Evaluate the fitness values of initial solution candidates as in Equation (42).

Φ = Min
n

∑
i=1

Ci. (42)

Step 4: Determine the binding state, binding energy, and lowest energy level of
the atom.

Step 5: For the kth imaginary layer, determine the binding energy and binding state
of the layer.

Step 6: Distribute candidates’ solutions in the imaginary layers.
Step 7: Generate a random integer as the number of imaginary layers, which are

around the nucleus of an atom.
Step 8: Determine the lowest energy level for the candidate in the kth layer.
Step 9: For the ith candidate solution in the kth layer, generate random updating

parameters.
Step 10: Determine the photon rate for the ith candidate solution in the kth layer.

Determine the binding state and binding energy of the atom and determine the lowest
energy level for the candidate in the atom.

Step 11: Termination
If the number of subjects in the census is equal, check the end method. If not, go to

step 4. If the end criteria are not met, go to step 3. If you are satisfied with the finished
condition, then find the right solution. Figure 3 display the flow chart of AOA.

4.2. Steps of Arithmetic Optimization Algorithm

Arithmetic is the fundamental component of numerical theory, and it is one of the
most important components of modern mathematics, as well as analysis, geometry, and
algebra. Arithmetic operators (i.e., subtraction, division, addition, and multiplication) are
common calculation methods used to read numbers.



Energies 2022, 15, 4202 12 of 23Energies 2022, 15, 4202 13 of 24 
 

 

 
Figure 3.Flowchart of AOA. 

4.2. Steps of Arithmetic Optimization Algorithm
 Arithmetic is the fundamental component of numerical theory, and it is one of the 

most important components of modern mathematics, as well as analysis, geometry, and 
algebra. Arithmetic operators (i.e., subtraction, division, addition, and multiplication) are 
common calculation methods used to read numbers. 

  

Figure 3. Flowchart of AOA.

4.3. Step by Step Process of GRFA

Step 1: Initialization phase
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In AOA, the process of optimization starts with candidate solutions (X) indicated in
Matrix (43). These are randomly generated and the best solution for the candidate for each
duplication is considered the most complete or best solution.

X =


S11 S12 . . . S1n
S21 S22 . . . S2n

: : : :
Sn1 Sn2 . . . Snn

 (43)

Here, X Shows the systems input parameters.
Step 2: Fitness Function
Evaluate the fitness values of the initial solution candidates.
Step 3: Exploration phase
In this section, the behavior of AOA is introduced, and Figure 3 show the flowchart of

AOA. According to arithmetic staff, mathematical calculators using a multiplication (M)
operator or even division (D) obtain higher resolutions or distributed values (see various
rules) that bind them to the testing method. Due to their high dispersion, these operators
(M and D) are not able to easily approach the target.

Step 4: Exploitation phase
At this stage, the AOA exploitation strategy is introduced. Arithmetic staff and

arithmetic calculators using add (A) or subtraction (S) find very dense results referring to
the exploitative method. Due to their low dispersion, these operators (A and S) can easily
approach the target.

Step 5: Termination
If the number of subjects in the census is equal, check the end method. If not, move to

step 4. Go to step 3 if the end criteria are not met. If you satisfy the finish condition, find
the right solution.

5. Results and Discussion

A hybrid scheme was proposed based on an optimal location electric vehicles parking
lot (PL) and the capacitor’s on-grid profile of voltage and power loss. With this proper
control, the perfect placement of the capacitor on the grid and parking lot of EVs on the
grid, depletion of reactive and real power loss, and voltage profile are optimally improved.
Furthermore, the implementation of the proposed AOSAOA model was developed by the
MATLAB/Simulink platform, and the efficiency of the proposed model was likened to
other techniques.

The proposed method was tested on 31 buses with 23 kV in a distribution system
consisting of 415 V permanent networks (J. Grainger and S. Civanlar) [37]. S. Deilami
et al. [38] connected to several low-voltage home loads, and curves in daily loads were
completed using a set of high sensitivity options. K. Clement-Nyns et al. [39] proposed
integrated charging where the grid load factor is amplified, and power loss is reduced by
flexible and quadratic planning techniques. D. Thukaram et al. [40] proposed a method
tested to analyze the electrical levels of several distribution networks at a rate of R/X. The
application of this method is for reactive power optimum location and planning network
reconfiguration.

Figure 4 show PEV charging with different penetrations of no PEV, 16% PEV, and
32% PEV. Here, the no PEV is presented. The no PEV flows from 0.85 p.u at the period of
1 h, and it increases up to 0.87 p.u. at the period of 7 h. The 16% PEV flows from 0.84 p.u at
the time period of 1 h, and it increases up to 0.89 p.u. at the time period of 7 h. The 32%
PEV flows from 0.83 p.u at the time period of 1 h, and at the time period of 12 h, it increases
up to 0.98 p.u, and then it reduces to 0.85 p.u at the time period of 24 h. Figure 5 show the
PEV charging with different penetrations of no PEV, 47% PEV, and 63% PEV. Here, in the
subplot, the no PEV is presented. The no PEV flows from 0.919 p.u at the time period of
1 h, and it increases up to 0.92 at the time period of 5 h. The 47% PEV flows from 0.918 p.u
at the time period of 1 h, and it reduces up to 0.81 at the time period of 5 h. The 63% PEV
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flows from 0.919 p.u at the time period of 1 h, and at the time period of 12 h, it increases
up to 0.95 p.u, and then reduces to 0.91 p.u at the time period of 24 h. Figure 6 show the
PEV penetration of the weakest power voltage of no PEV, 16% PEV, and 32% PEV. Here, in
subplot (a), the no PEV is presented. The no PEV flows from 0.93 p.u at the time period
of 1 h, and at the time period of 12 h, the no PV flows up to 0.97 p.u, and then reduces to
0.95 p.u at the time period of 24 h. The 16% PEV flows from 0.92 p.u at the time period of
1 h, and at the time period of 12 h, it increases up to 0.98 p.u, and then reduces to 0.96 p.u
at the time period of 24 h. The 32% PEV flows from 0.94 p.u at the time period of 1 h, and
at the time period of 12 h, it increases up to 0.97 p.u, and then reduces to 0.96 p.u at the
time period of 24 h. Figure 7 show the PEV penetration of the weakest power voltage of
No PEV, 47%% PEV and 63% PEV. Here, in the subplot, the no PEV is presented. The no
PEV flows from 0.919 p.u at the time period of 1 h, and it increases up to 0.92 at the time
period of 5 h. The 47% PEV flows from 0.918 p.u at the time period of 1 h, and it increases
up to 0.937 p.u. at the time period of 5 h. The 63% PEV flows from 0.929 p.u at the time
period of 1 h, and at the time period of 12 h, it reduces to 0.918 p.u, and then increases up
to 0.948 p.u at the time period of 24 h.
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Figure 8 show the PEV penetration of total power loss of no PEV, 16% PEV, and 32%
PEV. Here, in the subplot, the no PEV is presented. The no PEV flows from 29 kW at the
time period of 1 h, and at the period of 8 h, the no PEV flows up to 6 kW, and then reduces
to 3 kW at the time period of 12 h. The 16% PEV flows from 29 kW at the time period of 1 h,
and at the period of 8 h, it reduces to 12 kW, and then reduces to 3 kW at the time period of
12 h. The 32% PEV flows from 30 kW at the period of 1 h, and at the time period of 12 h, it
reduces to 3 kW, and then increases up to 24 kW at the time period of 24 h. Figure 9 show
the PEV penetration of total power loss of no PEV, 47% PEV, and 63% PEV. Here, in the
subplot, the no PEV is presented. The no PEV flows from 24 kW at the period of 1 h, and it
decreases to 3 kW at the period of 12 h. The 47% PEV flows from 27 kW at the period of 1 h,
and it reduces to 4 kW at the time period of 12 h. The 63% PEV flows from 26 kW at the
period of 1 h, and at the period of 12 h, it reduces to 8 kW, and then increases up to 20 kW
at the period of 24 h.
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Figure 10 show the PEV penetration of total power consumption of no PEV, 47% PEV,
and 63% PEV. Here, in the subplot, the no PEV is presented. The no PEV flows from
830 kW at the period of 1 h, and it decreases to 300 kW at the time period of 12 h. The
47% PEV flows from 820 kW at the time period of 1 h, and it reduces to 370 kW at the time
period of 12 h. The 63% PEV flows from 830 kW at the period of 1 h, and at the time period
of 12 h, it reduces to 450 kW, and then increases up to 700 kW at the time period of 24 h.
Figure 11 show the PEV penetration of total power consumption of no PEV, 16% PEV, and
32% PEV. Here, in the subplot, the no PEV is presented. The no PEV flows from 820 kW at
the time period of 1 h, and it decreases to 280 kW at the time period of 12 h. The 16% PEV
flows from 830 kW at the period of 1 h, and it reduces to 340 kW at the period of 12 h. The
32% PEV flows from 840 kW at the time period of 1 h, and at the period of 12 h, it reduces
to 290 kW, and then increases up to 730 kW at the time period of 24 h.
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Figure 12 show the fixed charge–rate coordination integrating capacitor of no PEV,
16% PEV, and 32% PEV. Here, in the subplot, the no PEV is presented. The no PEV flows
from 0.93 p.u at the time period of 1 h, and it increases up to 0.976 p.u at the time period of
12 h. The 16% PEV flows from 0.956 p.u at the time period of 1 h, and it increases up to
0.981 p.u at the time period of 12 h. The 32% PEV flows from 0.95 p.u at the time period of
1 h, and at the time period of 12 h, it increases up to 0.99 p.u, and then reduces to 0.95 p.u
at the time period of 24 h. Figure 13 show the fixed charge-rate coordination integrating
capacitor of no PEV, 47% PEV, and 63% PEV. Here, in the subplot, the no PEV is presented.
The no PEV flows from 0.928 p.u at the period of 1 h, and it increases up to 0.978 p.u at the
period of 12 h. The 47% PEV flows from 0.94 p.u at the time period of 1 h, and it increases
up to 0.982 p.u at the period of 12 h. The 63% PEV flows from 0.948 p.u at the time period of
1 h, and at the time period of 12 h, it increases up to 0.98 p.u, and then reduces to 0.958 p.u
at the time period of 24 h.
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Figure 14 show the PEV penetration of total power loss of no PEV, 16% PEV, and 32%
PEV. Here, in the subplot, the no PEV is presented. The no PEV flows from 24 kW at the
time period of 1 h, and it decreases to 6 kW at the time period of 9 h. The 16% PEV flows
from 24 kW at the time period of 1 h, and it reduces to 8 kW at the time period of 9 h. The
32% PEV flows from 25 kW at the time period of 1 h, and at the time period of 12 h, it
reduces to 2 kW, and then increases up to 20 kW at the time period of 24 h. Figure 15 show
the PEV penetration of total power loss of no PEV, 47% PEV, and 63% PEV. Here, in the
subplot, the no PEV is presented. The no PEV flows from 24 kW at the time period of 1 h,
and it decreases to 2.5 kW at the time period of 12 h. The 47% PEV flows from 25 kW at
the time period of 1 h, and it reduces to 4 kW at the time period of 12 h. The 63% PEV
flows from 24 kW at the time period of 1 h, and at the time period of 12 h, it reduces to
10 kW, and then increases up to 20 kW at the time period of 24 h. Figure 16 show the fixed
charge—the rate of total power consumption of no PEV, 16% PEV, and 32% PEV. Here, in
the subplot, the no PEV is presented. The no PEV flows from 820 kW at the time period of
1 h, and it reduces to 260 kW at the time period of 11 h. The 16% PEV flows from 825 kW at
the time period of 1 h, and it reduces to 320 kW at the time period of 11 h. The 32% PEV
flows from 830 kW at the time period of 1 h, and at the time period of 12 h, it reduces to
260 kW and then increases up to 780 kW at the time period of 24 h.
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Figure 17 show the PEV penetration of total power consumption of no PEV, 47% PEV,
and 63% PEV. Here, in the subplot, the no PEV is presented. The no PEV flows from 820 kW
at the period of 1 h, and it decreases to 280 kW at the period of 10 h. The 47% PEV flows
from 825 kW at the period of 1 h, and it reduces to 300 kW at the period of 10 h. The 63%
PEV flows from 830 kW at the period of 1 h, and at the time period of 12 h, it reduces to
260 kW, and then increases up to 780 kW at the period of 24 h.
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The proposed analysis with uncoordinated and coordinated levels is shown in Figure 18.
Figure 18 show the bar chart proposed method satisfaction level with comparison. When
uncoordinated, all customers are satisfied, but the satisfaction level of service is low. When
coordination is applied, the PEV customer satisfaction is only three. The success of this
approach is to satisfy both the client and the customer, and a limited amount of PEV
connection proposed.
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Table 1 show the PEV charging on the distribution system. When uncoordinated, the
car charging process starts immediately but randomly without following system parameters.
The distribution system will deal with many problems, such as overload, high power loss,
and unacceptable power outages. When coordinated, in order to overcome the harmful
effects of un insulated charges of PEV on the distribution system, a real-time method of
coordinating 5 min PEV charging is suggested in this paper. Once the car is connected to
the charger, the charging process will start only after the central controller decision. The
AOSAOA algorithm used optimizes PEV arrivals, and all system barriers are satisfied.

Table 1. PEV charging on the distribution system.

Methods PEV (%) ∆V (%) Increase (%) Satisfaction Ratio

No PEV Uncoordinated

0 7.35 0 -
16 7.61 6.97 -
32 8.95 14.59 -
47 17.72 33.85 -
63 19.16 6.96 -

Coordinated

16 7.43 13.67 18/4
32 7.47 12.32 15/7
47 8.61 17.53 8/14
63 9.91 5.53 3/19

Coordinated with capacitor and
OLTC switching

16 4.96 5.53 22/0
32 4.99 11.86 22/0
47 6.32 17.28 22/0
63 7.34 23.03 22/0

Note: Table 1 show achieving the satisfaction of PEV customer and utility sides together.

Table 2 show the charging variation limit and charging power limit. In 100 EV, the
charging power variation limit is 250 kW, and the charging power limit is 500 kW. In 200 EV,
the charging power limit is 1000 kW and the charging power variation limit is 750 kW. In
300 EV, the charging power limit is 1875 kW, and the charging power variation limit is 1000
kW.

Table 2. Charging power limit and variation limit.

EV Charging Power Limit Charging Power Variation
Limit

100 500 kW 250 kW

200 1000 kW 750 kW

300 1875 kW 1000 kW

6. Conclusions

In this manuscript, the location determination of an electric vehicles parking lot and
capacitors in grid care of voltage profile and power loss by atomic orbital search and
arithmetic optimization algorithm optimizer was proposed. The proposed technique per-
formances were analyzed in the MATLAB/Simulink working platform. The performance of
the proposed and existing techniques were graphically illustrated. The proposed approach
was analyzed under the perfect location of capacitors and parking of electric vehicles on
the network. The AOSAOA approach optimized the EVPL’s participation in various energy
and ancillary services markets, including the effects of capacity payments. The benefit of
EVPL was obtained using the proposed approach and its performance was higher than the
existing approach in terms of the analysis of the decrease in the loss of real and reactive
power and the change of the voltage profile. By utilizing the proposed hybrid technique,
the system provides an optimal solution through the least calculation time. Analysis of
total power loss and total power consumption of EVs in PL, the analysis of PV power at
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different PEVs, and fixed charge-rate were also examined. To analyze the performance of
the projected approach, the simulation results were analyzed and compared with methods
such as PEV uncoordinated, coordinated, and coordinated with the capacitor.
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