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Abstract: The power management strategy (PMS) is intimately linked to the fuel economy in the
hybrid electric vehicle (HEV). In this paper, a hybrid power management scheme is proposed; it
consists of an adaptive neuro-fuzzy inference method (ANFIS) and the equivalent consumption
minimization technique (ECMS). Artificial intelligence (AI) is a key development for managing
power among various energy sources. The hybrid power supply is an eco-acceptable system that
includes a proton exchange membrane fuel cell (PEMFC) as a primary source and a battery bank and
ultracapacitor as electric storage systems. The Haar wavelet transform method is used to calculate
the stress (σ) on each energy source. The proposed model is developed in MATLAB/Simulink
software. The simulation results show that the proposed scheme meets the power demand of a
typical driving cycle, i.e., Highway Fuel Economy Test Cycle (HWFET) and Worldwide Harmonized
Light Vehicles Test Procedures (WLTP—Class 3), for testing the vehicle performance, and assessment
has been carried out for various PMS based on the consumption of hydrogen, overall efficiency, state
of charge of ultracapacitors and batteries, stress on hybrid sources and stability of the DC bus. By
combining ANFIS and ECMS, the consumption of hydrogen is minimized by 8.7% compared to the
proportional integral (PI), state machine control (SMC), frequency decoupling fuzzy logic control
(FDFLC), equivalent consumption minimization strategy (ECMS) and external energy minimization
strategy (EEMS).

Keywords: ANFIS; ECMS; hybrid electric vehicle; Haar wavelet transform; hydrogen consumption;
power management scheme; system efficiency

1. Introduction

Freshwater, electricity and the atmosphere are interconnected factors that have emerged
as the most significant and prominent topics in engineering. In particular, global warming
and resource shortages are key challenges that have been addressed. As a result, manu-
facturing practices and engineering communities are rapidly transforming the approach
to energy-efficient applications; environmental and economic considerations are driving
the transportation sector’s development [1]. Transportation is mostly reliant on fossil fuels
and produces greenhouse gases. Here, several attempts have been made to enhance the
requirement of fuel cells (FCs) in transportation applications as a sustainable electric power
source that emits no greenhouse gas [2,3]. The usage of fuel cells in electric vehicles, trains,
aircraft, etc., helps to protect the environment, thereby providing a clean fuel source for
transportation [4]. Fuel cells are new energy conversion solutions that have many advan-
tages over traditional devices, including high energy efficiency, small size, environmental
safety, long lifespan and so on. The proton exchange membrane fuel cell (PEMFC) seems to
be the most suitable form for use in automotive applications because it has a high density
in producing electricity, leading to lower heat generation and resulting in a lower tempera-
ture, which is important in transportation applications. The key drawback of fuel cells in
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transportation applications is the low dynamic response. Since the fuel cell lags against
load variations, this means that they are unable to react appropriately to sudden changes
in load.

As a result, the fuel cell should be associated with the battery storage and ultracapacitor
(UC) [5,6], while the battery storage seems to have a high-power density, with some
limitations, such as lower energy capacity, a long charging period, a high price and a
short lifespan. The usage of a hybrid FC/B/UC network is the best strategy to overcome
the described issues. This type of combination allows the hybrid sources to exploit their
unique characteristics. The battery bank acts as an energy buffer, whereas the ultracapacitor
supplies transient peak power units. A power management scheme (PMS) is essential to
achieve certain hybridization and achieve the main goal of distributing load requirements
through power sources. By limiting the fuel cell performance to wider operating levels,
the PMS successfully maintains the consumption of hydrogen and enhances the energy
efficiency. To regulate the system load among these integrated input sources, a set of
conventional PMS was implemented [7].

They are PI control, state machine control (SMC), the equivalent consumption mini-
mization scheme (ECMS), fuzzy logic control (FLC) and the external energy minimization
scheme (EEMS), and several other modern optimization-based techniques have also been
developed. In Ref. [8], Wang et al. developed a power management technique for state
machine control (SMC) that contains the battery bank, fuel cell and ultracapacitors as a
multi-input network. In Ref. [9], power management with the proportional integral (PI)
technique was implemented by the authors to regulate the energy across photovoltaics
(PV), fuel cells (FCs), batteries and supercapacitors (SCs). Multiple operational modes
were operated for a hybrid device consisting of B/SC/FC in [10] using a rule-based energy
management technique. In Ref. [11], Jiang et al. proposed a dynamic programming (DP)
method for reducing hydrogen consumption in a hybrid power system with a fuel cell,
battery and supercapacitor to provide energy to the power train. The authors Li et al. [12]
implemented a novel power management technique with rule-based fuzzy logic control
with various multi-input sources, i.e., at first, the input sources consist of FC/B, and, later,
the input sources consist of B/SC/FC for powering an electric vehicle.

In Ref. [13], the authors present an adaptive neuro-fuzzy inference system (ANFIS) to
adequately manage the power between the FC and battery often used to provide power
to electric vehicles (EV). The authors Chen et al., in [14], proposed a power management
technique divided into two sections, a wavelet-based and a radial-based solution, to refine
the power output in an electric vehicle using neural networks. The authors designed
a novel energy management mechanism focusing on wavelet transform approaches for
controlling power among FC/B/SC to EVs. A Gray Wolf Optimizer (GWO) was designed
by authors Djerioui et al. considering FC/B/UC as a hybrid power system for electric
vehicle applications [15]. In a parallel HEV, an FLC-based technique was designed to
optimize the SoC, enhance fuel efficiency, minimize NOx emissions and ensure greater
drivability. For power split across accessible sources, an FLC-based intelligent energy
management agent (IEMA) has been developed. The author of Ref. [16] created an FLC to
optimize system operation using the energy demands and the speed of the vehicle, as well
as the SoC, as input variables.

A rule-based method was utilized in a parallel HEV to increase fuel economy in
Ref. [17]. In Ref. [18], FLC was used in a parallel HEV to establish a predictive EMS in terms
of speed as well as reinforcement learning. In consideration of SoC and torque limitations,
an FLC-enabled EMS for series HEVs has been designed. A dual FLC technique for a
parallel HEV is reported in Ref. [19], in which membership functions (MFs) are optimized
to use a genetic algorithm (GA) to improve performance when compared to the dynamic
programming (DP) approach. For controlling the power across FC/B/SC, the authors
implemented an equivalent consumption minimization scheme (ECMS) employing a se-
quential quadratic programming approach. ECMS is a greedy (immediate) optimization
method. The ECMS cost factor takes into account fuel consumption as well as the cost of us-
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ing battery energy. The equivalency factor is the weighting for these penalties. Pontryagin’s
Minimum Principle (PMP) can be used to generate ECMS. As a result, if the battery state of
charge does not exceed the limitations, ECMS provides the best fuel efficiency. However,
identifying the best equivalency factor necessitates a priori knowledge of the full driving
cycle. This type of information is not widely available. Adaptive ECMS (A-ECMS) is a
suggested method for estimating the appropriate ECMS equivalence factor for industrial
cases [20]. An A-ECMS is also utilized to keep the battery’s level of charge within the limits.
The equivalency factor is determined in A-ECMS by using an instant estimation algorithm
or even a prediction-based estimation approach. In Ref. [21], Marzougui et al. designed
a new power management technique incorporating three different aspects—a rule-based
algorithm, fuzzy-based control and flatness control—for FC/B to supply electric vehicles
(EV). Authors Fathy et al. suggested a novel energy management technique focusing on
the slap swarm methodology (SSA) for maintaining energy in FC/BSC by assessing the
consumption of hydrogen as the main objective function. In Ref. [22], Li et al. adopted
three methods to study the performance of energy management by combining the sources
of FC/SC for sourcing an excavator: firstly, the dynamic programming method is applied;
second, a model predictive control is designed, and third, Pontryagin’s Minimum Principle
(PMP) with reduced consumption of hydrogen is applied. Multiple metaheuristic architec-
tures for controlling the capacity of fuel cell hybrid power systems for supplying aircraft
were proposed by authors Zhao et al.

To reduce the cost of the overall system, the authors Yu et al. [23] introduced a
novel hybrid FC/B/SC-fed EV architecture. In Ref. [24], to deliver power to a hybrid
energy network, the authors developed a rule-based distribution method; in addition, to
measure the strength of the batteries and ultracapacitors, a Bayes Monto Carlo methodology
was also implemented. Authors Thounthong et al. implemented an adaptive energy
management system for FC/B/SC for electric vehicle applications. In Ref. [25], authors
Han et al. designed a two-level power management technique for solar (PV), fuel cell
and battery power that is integrated into a DC microgrid. In [26], the author examines
various approaches to energy management strategies used in maintaining electric power in
electric vehicles that are powered by fuel cells. The authors Bendjedia et al. investigated
three power management approaches to create a hybrid energy storage system (HESS) that
represents fuel cells plus an additional source for powering small vehicles.

Various energy management solutions for EVs driven by FC are reported in [27]. Bizon
et al. suggested a new optimization approach based on a two-dimensional mechanism
that characterizes the fuel economy of hybrid vehicles [28]. The authors Li et al., in [29],
combined the fuzzy logic and wavelet transformation approaches to optimize the energy
management of hybrid tramways. The research’s primary feature is the development
of an optimal EMS for minimizing the hydrogen demand and loss of FC functionality.
None of the individual algorithms completely address all optimization challenges. This
is in line with the No Free Lunch Scientific Theory, discussed in [30], which signifies that
novel optimization algorithms are indeed required in the field of research in the power
management of EVs. Measuring hydrogen consumption with a hybrid energy storage
system to the DC voltage bus is a key issue that might be addressed. It also consolidates all
DC/DC converters into a single unit. This research work describes a novel hybrid energy
management system that integrates an external energy minimization strategy (ECMS) with
an adaptive neuro-fuzzy inference system (ANFIS) and functions as an adaptive control
system. Regarding cost and lifespan cycle maintenance, this control system is simulated
with MATLAB/Simulink software to reduce hydrogen utilization in the FC, as well as to
maintain the battery levels (SoC percent) as high as possible. A hybrid power management
scheme is proposed for better fuel economy in a hybrid electric vehicle using FC/B/UC
and PMS configurations, as illustrated in Figure 1. The paper is structured as follows.
Section 2 presents the system optimization problem. Section 3 presents the modeling
and description of the hybrid power storage system. Section 4 explores various power
management strategies (PMS). Section 5 shows the proposed hybrid power management
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strategy (ECMS + ANFIS). Section 6 elaborates on the results and comparisons of power
management schemes. Section 7 presents the main conclusions that were obtained from
the realization of the present work.
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Figure 1. Configuration of energy management in a hybrid electric vehicle.

2. System Optimization Problem

To fulfill maximum power needs, hybrid systems rely on at least one to two sources of
energy. This system is combined with one or more renewable resources. Hybrid systems are
often designed to have an optimization technique working in conjunction with an adequate
power management system to reduce fuel usage and ensure system dependability and
functioning with an appropriate power management system (PMS), which assesses which
source provides the demand with its required power, as well as how much energy this
source might deliver [31]. To achieve this objective, hybrid system components such as fuel
cells, batteries as well as supercapacitors are combined for an optimal minimization and
control method to obtain the power level set by the PMS depending on the requirement of
load [32]. The PEMFC electrical energy, as well as the power storage systems—the Li-ion
battery bank and UC bank—will be changed to relative hydrogen usage. The corresponding
hydrogen usage for a particular load named “C” is determined by a combination of the
utilization of hydrogen in a fuel cell (CFC) and the usage of hydrogen in a battery (Cbatt) as
well as a supercapacitor (Csc). The following equation represents a mathematical model for
optimizing fuel usage:

PFC = min(CFC + k1·Cbatt + k2·Csc) (1)

Here, PFC represents the output power for a fuel cell, whereas k1 and k2 denote the
converter penalty coefficient for the consumption of hydrogen. Meanwhile, the battery
converter controls the DC power, and the ultracapacitor power can be ignored in the
optimization procedure [33–36]. Here, the UCs are drained or recharged using the same
power from a battery bank, distributing the total load between the fuel cell and also the
batteries across each phase. Then, the optimization problem is expressed as follows:

x = [PFC + k1·Pbatt] (2)
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Finding the optimal solution (x) minimizes (F):

F = [PFC + k1·Pbatt]∆T. (3)

Here, x represents the optimal solution, k1 denotes the penalty coefficient and ∆T
denotes the sampling time. The penalty coefficient is given as

k1 = 1− 2µ
(SoC− 0.5(SoCmax − SoCmin))

SoCmax − SoCmin
(4)

The estimated hydrogen usage of the battery (Cbatt) can be computed using the power
of the battery (Pbatt) and the state of charge of the battery. Now, under the conditions
of equality,

Pload = PFC + Pbatt (5)

with the constraints of boundaries

Pfc_min ≤ PFC ≤ Pfc_max (6)

Pbatt_min ≤ Pbatt ≤ Pbatt_max (7)

0 ≤ k1 ≤ 100 (8)

This might be the overall target value, and it is a fundamental issue for every hybrid
power system with hydrogen fuel and energy storage devices, but this multi-objective
optimization model has been addressed clearly in this paper.

3. Modeling and Description of Hybrid Power Storage System

A hybrid energy storage system (HESS) is a combination of PEMFC, Li-ion batteries
and a supercapacitor. These three sources are often considered as an FCHEV to ensure
reliable power sufficiency of the load. The configuration of the hybrid system analysis can
be seen in Figure 1. The fuel cell and rechargeable battery, as well as capacitors, are the
three sources of power in this setup. A DC/DC boost converter has been used with the fuel
cell to enhance its voltage level towards the desired level and sustain this at the outputs.
There are batteries, where a DC/DC bidirectional power device converts variable power to
a fixed voltage. Supercapacitors, similarly to some other capacitors, have been integrated
into bidirectional converters, which enable power to be exchanged in both directions.

3.1. Proton Exchange Membrane Fuel Cell (PEMFC)

A fuel cell is a power conversion device that converts chemical energy in hydrogen
fuel to electrical power without using heat or mechanical power. As per the chemical
process defined in Equation (9) [14], the basic working principle of a fuel cell is described
by a chemical process in which oxygen and hydrogen are linked together to form power,
heat and water.

2H2 + O2 → H2O + electricity + heat (9)

There are several types of fuel cell technology, which are categorized depending upon
their electrolytes. Another type of fuel cell that is widely used in vehicular applications
is the proton exchange membrane fuel cell (PEMFC) [15]. There are several new fuel cell
prototypes, each with a combination of benefits and drawbacks based on the topic under
study. Any model must be concise and accurate. Furthermore, this paper presents a simple
electrochemical concept that might be used to determine the behavior of such a fuel cell
both in dynamic and static conditions [16]. The hydrogen fuel design used in this study
is based on the interaction between both the fuel cell voltage level and hydrogen, water,
plus oxygen absolute pressures. The specifications of the fuel cell stack are illustrated in
Table 1. The fuel cell voltage is regulated via oxygen and hydrogen relative pressures, the
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chemical process temperature of membrane hydration and also the output current. The
mathematical model is given in [17].

VFC = ENernst −Vact −Vohmic −Vcon (10)

where ENernst represents the mean value of thermodynamic potential in every single cell
unit and it is calculated by Equation (11) [10].

ENernst = 1.229− 0.85× 10−3(T− 298.15) + 4.3085× 10−5T
[
In
(
PH2

)
+ 0.5× In

(
PO2

)]
(11)

Table 1. Specifications of a fuel cell.

Fuel Cell Model Input Parameters Specifications

Voltage 52.5 V

Number of fuel cells 65

Nominal efficiency of the fuel stack 50%

Operating temperature 45 ◦C

Nominal supply pressure 1.16 fuel (bar),1 air (bar)

Nominal composition (%)
[H2, O2, H2O (Air)] 99% H2, 95% O2, 21% H2O (air)

Response time of fuel cell voltage 1 s

Peak utilization of O2 60%

Voltage undershoot 2 V

Here,
Vact = Activation voltage drop;
Vohmic = Ohmic voltage drop;
Vcon = Concentration voltage drop.
Hence, for N number of cells connected in series, the stack voltage Vstack is described as

Vstack = N·VFC (12)

The fuel cell’s polarization curves indicate the voltage of the battery as a factor in
the output current under several temperatures plus hydrogen pressure levels. The overall
polarization patterns for FCs increase as the optimal temperature and hydrogen pressure
reduce. As much as this is provided by oxygen and fuel to sustain a chemical reaction
mechanism, a fuel cell can produce a constant amount of power. Proton exchange mem-
brane fuel cells are widely used in automotive applications due to their high-power density
and low and moderate operating temperatures [18]. Furthermore, its effectiveness when
reacting under peak load is restricted because of certain chemical processes that occur
in FCs [19]. As an outcome, such sources are integrated into the batteries as well as the
supercapacitor-based hybrid storage systems.

3.2. Supercapacitors

Supercapacitors are one of the recent advancements for power storage devices, espe-
cially in integrated devices. A capacitance (Csc) is linked to an equivalent series resistance
Rsc under this setup. The parameters of UC are shown in Table 2. The below formula is
used to determine the supercapacitor voltage (Vsc) as a result of the SC current (Isc):

Vsc = V1 − Rsc × Isc =
Qsc
ssc
− Rsc × Isc (13)
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where QSC denotes the quantity of electricity present in the cell, and the power of the
supercapacitor is calculated by using Equation (14),

PSC =
QSC
CSC
× ISC − RSC × I2

SC (14)

Table 2. Specifications of supercapacitors.

Supercapacitor Model Input Parameters Specifications

Surge voltage 307 V
Capacitor number in series 6
Capacitor count in parallel 1

Rated voltage 291.6 V
DC series resistance equivalent 0.15 ohms

Rated capacitance 15.6 F
Molecular radius 0.4× 10−9 m

Operating temperature 25 ◦C

Utilizing supercapacitors as a storage system in such an electric vehicle implies the
construction of such a stacking of cells, where NS cells are interconnected in series and Np
cells are parallelly connected. Equations (15) and (16) determine the capacity and resistance
of the supercapacitor stack.

CSC = Celem·
NP

NS
(15)

RSC = Relem·
NS

NP
(16)

Equations (17) and (18) determine both the current and voltage of a stack as a measure
of such component’s current and voltage [20].

VSC = NS·Velem (17)

ISC = NP·Ielem (18)

3.3. Battery

The battery is designed with a modest controlled power supply in series with such a
fixed resistance [21]. Li-ion battery specifications are given in Table 3. Equation (1) defines
the battery voltage Vbat (18).

Vbatt = E− Rbat·Ibat (19)

Table 3. Specifications of Li-ion battery.

Input Parameters for the Battery Model Specifications

Minimal voltage 48 V
Esteemed capacity 40 Ah

Determined capacity 40 Ah
Fully charged voltage 56.88 V

Minimal discharge current 17.4 A
Internal resistance 0.012 ohms

Nominal voltage capacity 36.25 Ah
Exponential region 52.3 Volts, 1.96 Ah

Response time of battery voltage 30 s

The controlled source voltage is calculated by using Equation (19).

E = E0 −K
Q

Q0 −
∫

i·dt
+ A· exp

(
−B

∫
i·dt
)

(20)
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where E represents no-load voltage (V), E0 denotes a constant voltage of the battery (V), K
denotes the polarization voltage (V), Q indicates the capacity of the battery (Ah), whereas A
denotes the amplitude of the exponential zone (V) and B denotes the inverse time constant
of the exponential zone (Ah)−1.

4. Power Management Strategies (PMS)

By using a reliable PMS, one can control the power response of HESS with load
demand. In this paper, a hybrid power management design is obtained, as shown in
Figure 2, and the requirements are listed in Table 4. Significantly, the PMS relies on
obtaining the reference power of fuel cells.
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Table 4. Power management design requirements.

Requirements of Power Management Strategies

Fuel cell power [Pfcmin–Pfcmax] 1–10 KW
Battery power [Pbattmin–Pbattmax] −1.2–4 KW

State of charge of battery [SoC min–SoC max] 60–90%
DC bus voltage [Vdcmin–Vdcmax] 250–280 V

Maximum slope of fuel cell current 40 A/S

A reliable power management scheme (PMS) should essentially ensure the following:

• Lower consumption of hydrogen (H2) (gm) of PEMFC;
• DC bus voltage regulation should be desired value;
• Tracking the battery and SC set-point values;
• Corroborate the global constancy of the system structure;
• The system should operate at a high level of efficiency;
• The long life cycle of a hybrid energy storage system (HESS).

These are attained by using a reliable PMS. The proper PMS controls the power
response of HESS with load demand. In this work, the power management design require-
ments are as listed in Table 4. Significantly, the PMS relies on obtaining the reference power
of fuel cells. Various types of PMS are considered in detail. Managing the power of HESS,
which comprises the PEMFC, Li-ion batteries and SC, is reported as follows.

4.1. Classical Proportional Integral (PI) Control Method

The amount of the HESS’s energy is identical to the load energy. This PI strategy
controls the SoC of the battery by using a PI regulator, as illustrated in Figure 2.

Fuel cell reference power is attained by regulating the battery power by using a PI
controller. As a result, the rated output of the PI controller is estimated by the predetermined
rate (proportional) and predefined rate (integral) of its input. If the battery’s SoC is higher
than the actual rate, then the FC’s power is reduced, and the battery supplies the load
with maximum power. If the battery’s state of charge (SoC) is less than the set-point, the
fuel cell provides power to the load. The major role of the PI controller is that when the
battery’s SoC exceeds the average SoC (SoC*), the controller permits the battery to power
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the demand, and the gains of PI are to be tuned online to obtain a better response [22]. A
block diagram of the PI scheme is illustrated in Figure 2. The transfer function of the PI
controller is given in Equation (21) [22],

Pbatt =

(
KP +

Ki

S

)
·(SoC∗ − SoC) (21)

Here, the output current of the FC (IFC) is determined in terms of fuel cell out-
put power (PFC), which remains obtained from the controller and output voltage of the
FC (VFC).

4.2. State Machine Control Approach

Figure 3 shows the control technique for the state machine scheme. This scheme is
executed in eight states. In this strategy, the power of the FC can be determined through
the load power (Pload) and SOC of the battery bank. The reference power of the fuel cell is
the output of the SMC strategy.
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By dividing the output of SMC by the voltage of the FC and efficiency of the boost
converter, the FC reference current is attained [23]. While switching the states from one
to another, hysteresis control is required for the SMC strategy, which may affect the PMS’
response to changes in load demand, and the pattern is shown in Figure 4.
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4.3. Frequency Decoupling Fuzzy Logic Control Scheme (FDFLCS)

This method permits the structure of the fuel cell to accommodate a load request with
a lower frequency while the battery and supercapacitors supply the load demand with a
higher frequency. The control technique is shown in Figure 5. The vital advantage of this
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scheme is that the Li-ion battery’s mean energy is closer to zero, ensuring a narrow range of
SoC [24]. A filter is used for frequency decoupling, and a fuzzy logic controller is required
to maintain the battery’s state of charge within a certain range.
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4.4. External Energy Maximization Strategy (EEMS)

In FCHEV, for upgrading the performance of HESS, it is important to interchange
the energy optimally within the FC, SC and also the battery. This is achieved by reducing
the fuel cells’ hydrogen consumption (H2) by maintaining the limits of the state of charge
of the SC and battery. In this EEMS technique, the hydrogen consumption (H2) is mini-
mized by raising the battery and SC demand. The EEMS technique requires the battery
and SC cost function; it does not require the determined battery energy calculation. In
Figure 6, it is shown that the EEMS algorithm’s inputs are the voltage of the DC bus and
battery SoC or supercapacitor, while the outputs are the charge/discharge voltage (∆V)
for the supercapacitor and battery reference power. Thus, a comparison of the battery
and load power for the FC’s reference power via the FC current (I∗FC) is derived. The SC
charge/discharge voltage is obtained by estimating the actual DC bus voltage through
the sum of (Vdc.ref), a, the reference voltage of the DC bus and the SC’s voltage. In the
process of this EEMS optimization problem, the SC charge/discharge voltage (∆V) and
power of the battery (Pbatt) have to be assessed. The minimized objective function is the
power supplied via both secondary sources during a certain period of intermission, which
is described in Equation (22) [25].
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Minimize

J = −
(

Pbatt. ∆T +
1
2
·Cr·∆V2

)
(22)

Based on the battery’s power output, the EEMS optimization procedure is carried out
and the key parameter is represented by inequality constraints, and the constraints are
subject to

Pbatt.∆T ≤
(

SoC− SoCmin
)
·Vbatt·Q (23)
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whereas the power of the battery and voltage of the DC bus parametric inequality con-
straints are formulated as follows:

Pmin
batt ≤ Pbatt ≤ Pmax

batt (24)

Vmin
DC ≤ VDC ≤ Vmax

DC (25)

Here, Pbatt.∆T denotes the delivered battery power over a sampling time (∆V). Cr
represents the rated capacitance of SC. Vmin

DC and Vmax
DC denote the bus voltage minimum

and maximum limits. Vbatt represents the optimum voltage of the battery, and the rated
capacity of the battery is denoted by the letter Q.

5. Proposed Hybrid Power Management Strategy (ECMS + ANFIS)
5.1. Equivalent Consumption Minimization Strategy (ECMS)

To reduce hydrogen usage and extend the life of a fuel cell, Adaptive-ECMS is intro-
duced for the duration of a cell’s life. The primary concept of ECMS is to convert electricity
usage through energy storage devices to corresponding hydrogen consumption with a
combination of equivalent and actual hydrogen consumption from fuel cells being kept as
low as possible, which is shown in Figure 7. Similarly, various limits have been placed to
ensure that the energy sources continue to function effectively. The optimization function
is as follows [26,27]:

minfw(t) = mFC(t) + mBA(t) + mSC(t)
Imin
FC ≤ IFC ≤ Imax

FC
Imin
SC ≤ ISC ≤ Imax

SC

−dIFC ≤ IFC(t)−IFC(t−1)
T ≤ dIFC

(26)Energies 2022, 15, x FOR PEER REVIEW 12 of 25 
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IFC* represents fuel cell reference current. Here, fw(t) denotes utilization hydrogen
consumption at sample time (t), mFC(t) represents the usage of hydrogen in fuel cells,
whereas mBA(t) indicates that the hydrogen demand is comparable to the battery and
mSC(t) indicates that the hydrogen demand is identical to the ultracapacitor, while IFC and
ISC indicate the current flowing through the fuel cell as well as the UC correspondingly.
Several other respective penalty parameters are incorporated into the optimization problem
of Equation (9), which are given in Equation (10), to enable the fuel cell to obtain its
optimum efficiency location within the efficient power boundary. Meanwhile, the charge
sustenance of the energy storage systems is maintained, which means supporting the state
of charge of the UC and battery to be approximately equal to their initial conditions.

fw(t) = KFCmFC(t) + KBAmBA(t) + KSCmSC(t)
= KFCmFC(t) + KBAλBAPBA(t) + KSCλSCPSC(t)

(27)

Here, KBA and KSC are penalty factors that cover a range of SoC for energy storage
sources such as UC and batteries and the difference between the maximum and minimum
SoC. Meanwhile, KFC represents the cost factor for hydrogen fuel efficiency and λBA and λSC
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indicate comparable factors. PBA(t) as well as PSC(t) denote the power of the battery bank
and UC bank. The penalty factor for fuel cell efficiency is expressed as in Equation (28) [27]:

KFC =


(

1− 2 ∗ η−ηopt
ηmax−ηmin

)2
η ≥ 0.4(

1− 2 ∗ η−ηopt
ηmax−ηmin

)4
η < 0.4

(28)

where n indicates instant efficiency; nopt represents adequate efficiency, which is 0.4283
approximately; nmax denotes the maximal efficiency of 0.4283, and the base efficiency is
denoted by nmin. Whenever the performance of a fuel cell system declines under 0.4, a
significant penalty rate (KFC) is estimated to discontinue or maintain the fuel cell to supply
energy based on the driving conditions of HEV depending on the batteries and SC state of
charge levels. KFC are 2 and 4 for two circumstances that are governed by the drive cycle
generation capacity. KFC regulates the pursuit of optimal efficiency and the limitations of
the high-performance region (efficiency beyond 0.4). The KBA cost rate for the SoC of the
battery is given in Equation (29) [28,29]:

KBA =


(

1− 2∗(u−Bint)
Bmax−Bmin

)4
Bmin ≤ u ≤ Bmax(

1− 2∗(u−Bint)
Bmax−Bmin

)20
u < Bmin, u > Bmax

(29)

Here, u denotes the battery’s current state of charge. Bmt denotes the battery SoC.
Meanwhile, Bmax and Bmin represent the lowest and highest SoC of the battery. KBA resets
the lithium battery SoC to its original state. Once the battery capacity SoC crosses Bmin and
Bmax, a higher KBA amount is established as a penalty factor to prevent the battery from
proceeding to charge and drain. The parameter of UC (KSC) comprises SoC constraints and
the maximum power index (Seff and Speak). Seff functions similarly to KBA to keep the SoC
level of UC within a specified tolerance. Let the UC provide a maximum output, which is
employed by Speak. To minimize on/off loops of the fuel cell and charging/discharging
phases caused by massive changes in amplitude in both the SoC of the battery and SC in a
short amount of time, the SoC of the UC and battery pack are identical, which is estimated
by Seff. The differential calculations for KSC, Seff and Speak are given as follows [30]:

KSC = Seff∗Speak (30)

Seff =


(

1− 2 ax+b−Sopt
Smax−Smin

)4
Smin ≤ x ≤ Smax(

1− 2 ax+b−Sopt
Smax−Smin

)20
x < Smin, x > Smax

(31)

Speak =

{
1 0 ≤ Iload ≤ 30

−0.01 ∗ Iload + 1 Iload < 0, Iload > 30
(32)

Here, x represents the instant SoC of the ultracapacitor capacity, whereas Sopt indicates
the absolute SoC, Smax and Smin denote the upper and lower limit of SoC, and also the
DC bus desired demand is denoted by Iload. The supportive transform terms between UC
and battery SoC are represented by a and b, respectively, and their respective levels are
specified by the battery’s allowable SoC.

5.2. Adaptive Network-Based Fuzzy Interface System (ANFIS)

Power management methods have emerged for an automated learning experience
to assist industrial uses such as fuzzy approaches, which are more common in system
control. The ANFIS is a vital approach, which integrates both the artificial neural network
(ANN)-based learning ability and also a rule-based fuzzy logic control technique based
on inference capacity to build a full set over all different types of neural networks in the
feed-forward type using a supervisory learning functionality [31,32]. The ANFIS strategy
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accomplishes a hybrid training process based on appropriate information and parameters
of input/output and connections.

Figure 8 illustrates that the ANFIS architecture comprises a single hidden layer. Layer
1 indicates the input node, layer 2 comprises the fuzzification nodes, layer 3 comprises the
result nodes (hidden), layer 4 comprises the defuzzification nodes and layer 5 represents
the output node [33]. Furthermore, a node can be updated, and it will be classified as
dynamic and static. Dynamic nodes include layers 2 and 4, whereas the stable nodes are
layer 1 and layer 3. The ANFIS control technique uses the SoC of a Li-ion battery with three
membership functions (MFs) and also utilizes the vehicle energy load, which is represented
by Pload, as inputs to anticipate the fuel cell’s output power [34,35]. The ANFIS outcome is
the estimated proportional gain from the PEMFC level. The ANFIS measures and adjusts
the norms rapidly while using proportional variables.
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Figure 9 illustrates the result region of the ANN approach: the label of the Z-axis is SoC,
the X-axis is the load power (Pload) and the Y-axis is the fuel cell power (PFC). The purpose
of adopting ANFIS, particularly for non-linear systems and networks that necessitate rapid
selection in real time, is that the operation will be performed because of a learning result
that has already been pre-obtained through an existing attempt. The genetic PMS can be
adopted throughout the framework in airplanes, boats or automobiles, depending on the
specific application. The PMS with a fuel cell and energy storage network (battery, UC) can
also be used in planes, ships as well as electric vehicles, although the major objective of
operating the PMS is a primary objective. The electric vehicles’ main criteria are durability
and mitigating fuel consumption and enhancing the battery and UC usage. The EMS
contains two parameters, which are illustrated in Figure 9. The first set of data are the SoC
of the battery, which determines the battery capacity and wealth status. The optimal state is
approximately 65 to 85% [36]. Another intention is to maintain the battery charging process
(SoC within conventional ranges to prolong its duration). The power output of the vehicle
might be the next EMS signal. To ensure operation stability, the maximum fuel cell capacity
is constrained to 1–10 KW. The closed-loop management system of the ANN approach is
derived from past expert data. The ANFIS training process determines the effectiveness of
the output signal. ANFIS is conditioned to have the appropriate membership functions
(MFs) throughout this environment by training samples across the state of charge, peak
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load and fuel cell energy, enabling the ANN model to estimate a linear relationship with
endpoints (input and output).
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Figure 9. The MATLAB simulation output surface of the ANFIS.

The input/output samples’ specialized information is applied to enhance the control
system’s performance with a minimal number of errors. To limit training problems, (1000)
epochs are performed till the error rate is below 0.0001 for the training samples; this signifies
the ANN-based output signal and is close to perfect. Figure 10 shows the flowchart of
ANFIS training and testing.
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5.3. Proposed Algorithm

The proposed algorithm is a hybridized algorithm (ECMS+ANFIS), and the flowchart
is illustrated in Figure 11. It states a multi-objective PMS for the better reduction of
hydrogen consumption as well as efficiency and with reduced stresses on hybrid sources
when compared to PI, SMC, ECMS and EEMS.
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5.3.1. Collection of Equivalent Factor Samples

The corresponding factors, as is widely known, are directly linked to the driving
cycle information and system condition, and they play an important role in saving fuel. A
continuous optimization technique may be used to derive the ideal equivalent component
Sopt from the acquired control trajectory. The Smin and Smax bounds of the analogous
factor are established. In the allowable range [Smin, Smax], S decreases and increases
with optimal value of equivalent samples. with When the vehicle’s power demand is
low, the cost of consuming electricity is smaller. The corresponding factor increases as the
vehicle’s power requirement increases, indicating that the engine can produce more power.
Whenever the battery’s state of charge (SoC) is lower, the greater corresponding factor is
used. It indicates that the discharge tendency is inhibited, resulting in a reduction in the
motor’s power output, preventing the batteries from over-discharging.

5.3.2. Optimal Control Trajectory Acquisition

A simultaneous hybrid electrical bus’s energy optimization is a non-linear optimiza-
tion challenge with various restrictions. As explained previously, the optimization issue
can be solved using a variety of techniques. The DP technique is used to resolve hard
issues by utilizing recursion calculation, which does not depend on differential equations,
to find the best power distribution in the hybrid engine. The entire optimization issue
may be broken down into various simple subproblems in this work, such as constrained
segments across time. Once all possible case changes with various control variables have
been computed in each segment, the solution of each pathway and the associated cost will
be noted. Following the completion of the above computation, the ideal solution may be
found by minimizing an objective function. Due to precise gird points for both the state
and the controlling vector, the globally optimum outcome is provided.

6. Results and Comparisons
6.1. Hydrogen Consumption, Overall Efficiency and Stress Analysis

Different power managing methods for hybrid storage structures were implemented.
Each power management scheme was implemented with the same initial conditions: state of
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charge of battery = 70%, temperature of battery = 30 °C, voltage of supercapacitor = 270 V,
temperature of supercapacitor = 25 °C, voltage of fuel cell = 52 V, temperature of fuel
cell = 40 °C. The model of FC/B/SC comprised 12.5 KW, 30–60 V PEMFC, a 48 V,40 Ah
Li-ion battery and 15.6 F, 291.6 V-6 series-connected supercapacitors. The battery storage
was controlled by two DC/DC converters. The converter operated for discharging the
battery in a 4 KW boost mode and for charging the battery in a 1.2 KW buck mode. The
comparison of the various power management strategies based on hydrogen consumption,
overall efficiency and stress on the fuel cell, battery and supercapacitor is tabulated in
Table 5. The consumption of hydrogen in (Ipm and grams), is illustrated in Figure 12
(HWFET—Drive Cycle) and Figure 13 (WLTP—Class 3 Drive Cycle) and Figures 14–17, and
the overall efficiency of all power management schemes was calculated. For the fuel cell,
battery and supercapacitor energy, the stress assessment was performed using the Haar
wavelet approach at 270 V DC. A wavelet toolbox is available in MATLAB. The power
degradation in low-frequency and high-frequency apparatuses was evaluated via Haar
wavelet decomposition. The component with a high frequency has a zero-mean value, and
the standard deviation (σ) of this module provides a better insight into how a separate
storage system is managed. The amount of hydrogen consumption used (in grams) is given as

ConsH2 =
N
F

∫ 1800

0
ifc· dt (33)
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Figure 12. System efficiency and hydrogen consumption for each scheme (HWFET—Drive Cycle).

Here, F = Faraday fundamental (A.s/mol).
Global efficiency is expressed as

Efficiency (n%) =
Pload

Pin
FC + Pin

batt + Pin
cap

. (34)

Here; Pin
FC, Pin

batt, Pin
cap = Power of FC/B/UC.
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6.2. SoC of Battery and Supercapacitor Voltage

In the classic PI strategy, to attain the reference SoC, there is a faster discharging of the
battery in which the load is controlled by the primary source—the fuel cell—and recharging
the battery. In the case of state machine control, if the SoC of the Li-ion battery bank reaches
its minimum limit, then the fuel cell charges the supercapacitors over their reference voltage
(270 V), forcing the DC bus to regulate the charge of the batteries. Meanwhile, in the case
of the frequency decoupling fuzzy logic strategy, constant power is supplied by the fuel
cells, which allows the battery to recharge compared to other strategies. An equivalent
consumption minimization scheme and external energy minimization scheme perform
better because higher battery power is used. The variation in the fuel cell voltage and
current is shown in Figures 18 and 19.
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Figure 19. Variation in fuel cell input current.

The battery and UC’s time response plots are shown in Figures 20–24. The Li-ion
battery and UC’s states of charge are approximately the same, indicating that the system
would be in a fully charged condition when the primary input is disconnected from the
operation. The battery and UC currents are increased at this point. This means that the UC
and batteries are being used to match the increasing load requirement, and their interface
voltages are being decreased as a result. At the same time, the battery and UC circumstances
are then modified as the load changes.

Energies 2022, 15, x FOR PEER REVIEW 20 of 25 
 

 

 

Figure 18. Variation in fuel cell input voltage. 

 

Figure 19. Variation in fuel cell input current. 

The battery and UC’s time response plots are shown in Figures 20–24. The Li-ion 

battery and UC’s states of charge are approximately the same, indicating that the system 

would be in a fully charged condition when the primary input is disconnected from the 

operation. The battery and UC currents are increased at this point. This means that the 

UC and batteries are being used to match the increasing load requirement, and their in-

terface voltages are being decreased as a result. At the same time, the battery and UC 

circumstances are then modified as the load changes.  

This means that the power supplied by both the battery bank and UC bank for sup-

plying the required load is superior when compared to the power supplied by the FC, 

resulting in the lowest hydrogen consumption. 

 

Figure 20. Battery voltage–time response. 
Figure 20. Battery voltage–time response.



Energies 2022, 15, 4185 20 of 25

Energies 2022, 15, x FOR PEER REVIEW 21 of 25 
 

 

 

Figure 21. Time response of battery current. 

 

Figure 22. Time response of battery state of charge (SoC). 

 

Figure 23. Time response of ultracapacitor voltage. 

 

Figure 24. Responses of ultracapacitor current. 

  

Figure 21. Time response of battery current.

Energies 2022, 15, x FOR PEER REVIEW 21 of 25 
 

 

 

Figure 21. Time response of battery current. 

 

Figure 22. Time response of battery state of charge (SoC). 

 

Figure 23. Time response of ultracapacitor voltage. 

 

Figure 24. Responses of ultracapacitor current. 

  

Figure 22. Time response of battery state of charge (SoC).

Energies 2022, 15, x FOR PEER REVIEW 21 of 25 
 

 

 

Figure 21. Time response of battery current. 

 

Figure 22. Time response of battery state of charge (SoC). 

 

Figure 23. Time response of ultracapacitor voltage. 

 

Figure 24. Responses of ultracapacitor current. 

  

Figure 23. Time response of ultracapacitor voltage.



Energies 2022, 15, 4185 21 of 25

Energies 2022, 15, x FOR PEER REVIEW 21 of 25 
 

 

 

Figure 21. Time response of battery current. 

 

Figure 22. Time response of battery state of charge (SoC). 

 

Figure 23. Time response of ultracapacitor voltage. 

 

Figure 24. Responses of ultracapacitor current. 

  

Figure 24. Responses of ultracapacitor current.

This means that the power supplied by both the battery bank and UC bank for
supplying the required load is superior when compared to the power supplied by the FC,
resulting in the lowest hydrogen consumption.

6.3. Distribution of Power to Load by Using Drive Cycle Data

The overall hybrid storage system is tested with the following drive cycles: HWFET
and WLTC—Class 3.

• Highway Fuel Economy Driving Schedule (HWFET—Drive Cycle)

Figure 25 illustrates the Highway Fuel Economy Test (HWFET or HFET) cycle, which is
a vehicular dynamometer operating program designed by the United States Environmental
Protection Agency (EPA) for determining the fuel economy of light-duty cars [40 CFR 600,
Section B]. The HWFET is employed to calculate the vehicle fuel economy rating, whereas
the FTP-75 is employed to obtain the urban fuel economy rating.
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Figure 25. Drive cycle data—HWFET.

• Worldwide Harmonized Light Vehicles Test procedures (WLTP–Class 3 Drive Cycle)

Shown in Figure 26, the Worldwide Harmonized Light Vehicle Test Cycles (WLTC)
are automotive testing machine measurements used to evaluate energy consumption and
emissions from light-duty cars. Class 3 represents automobiles operated in Europe as well
as Japan, as it has the highest power-to-mass ratio. Class 3 vehicles are divided into two
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subclasses based on their higher speed: Class 3a with a maximum speed of 120 km/h and
Class 3b with a maximum speed of 120 km/h.
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A hybrid energy source (FC/B/UC) supplies the power to load, which is shown in
Figure 27. During a period of time, a span of 350 s, regarding the performance of the system
at t = 0, the system starts with no load demand, so load power is zero. Here, the battery
is charged by the fuel cell. At the time of 40 s, there is a distribution of the power supply
to the battery and supercapacitor, and also the power of the fuel cell increases gradually.
Later, at 45 s, the level of supercapacitor voltage reduces to the 270 V reference value. At
time t = 60 s, the power of the fuel cell rises predominantly, whereas the supercapacitor
provides extra transient demand beyond the maximum power of the primary source. Thus,
the secondary sources are charged by extra fuel cell power. At 330 s, there is a lower load
demand; hence, the power of the primary source also reduces gradually while recharging
the battery container; a comparison of each PMS is given in Table 5.
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Table 5. Overall performance of each PMS scheme.

Drive
Cycle Criteria for PMS PI SMC FDFC ECMS EEMS ANFIS-Based ECMS

HWFET
(Highway Fuel

Economy Test Cycle)

State of charge of the
battery (%) 70–51 70–54 70.54 70–54 70–59 70–58

Consumption of H2 (g) 31.63 32.06 32.97 35.97 30.17 22.93

Overall efficiency (%) 73.77 78.52 74.77 72.51 74.15 80.47

Stress on battery (σ) 22 21.91 24.6 24.6 22.4 23.7

Stress on fuel cell (σ) 20.42 22.59 22.04 23.42 18.6 15.8

Stress on ultracapacitor (σ) 35.92 34.7 37.84 37.84 35.9 36.76

WLTC (Worldwide
Harmonized Light
Vehicle Test Cycles)

State of charge of the
battery (%) 70–52 70–54 70.53 70–53 70–59 70–59

Consumption of H2 (g) 31.5 30.83 33.29 38.13 33.19 22.74

Overall efficiency (%) 76.16 77.28 71.83 72.11 78.19 81.29

Stress on battery (σ) 28 24.81 27.9 29.4 24.46 24.38

Stress on fuel cell (σ) 24.23 23.19 21.84 27.17 19.23 19.82

Stress on ultracapacitor (σ) 36.12 32.45 31.93 34.92 37.1 31.15

7. Conclusions

An ANFIS-based ECMS-integrated control strategy for power management in hybrid
electric vehicles is proposed in this paper to conserve maximum fuel, with the main power
source as a PEMFC and secondary sources as a battery bank (BB) and ultracapacitors (UC).
The ECMS is a cost function-based optimization approach where the SoC of the battery is
regulated by the penalty coefficients of battery power. The power of UC is overlooked in
this optimization approach. The voltage profile of the DC bus is regulated by converters
of the battery bank such that, once the UCs are drained, they are restored with the same
power from the battery bank. The load demand is balanced via a battery and FC over a load
cycle. The ANFIS-based controller efficiently monitors the fluctuating energy demand but
also continues to maintain a DC bus voltage profile with a limited error signal as well as a
rapid trackability level compared to that of a conventional control system. Since continuous
monitoring enhances the battery’s lifespan, the performance of HEVs will be superior and
more reliable. The performance analysis was conducted in terms of the consumption of
hydrogen, SoC, global efficiency and stress on individual sources. The state machine control
technique (SMC) attains an efficiency of 78.52%, and the stress (σ) on the supercapacitor
and battery is 34.7 and 22.59. In the case of the frequency decoupling and fuzzy logic
technique, the stress σ is 22.04 and the battery SoC is 70–57%, but there is moderate fuel
consumption of 32.1897 (g) of H2 with an overall efficiency of 74.77%. Regarding the
equivalent consumption minimization strategy (ECMS), there is higher stress (23.42) on
fuel cells with an efficiency of 72.51%. Meanwhile, in the external energy maximization
control technique (EEMS), there is the lowest fuel consumption of 30.1774 (g) of H2 and
higher usage of the Li-ion battery, whose SOC is 70–59%, while the stress on the fuel cell is
low. In the hybrid PMS, fuel consumption is 22.93 (g), with reduced stress (σ) on the fuel
cell, which is 15.8.

For all the control strategies, the value of the DC link is maintained at around (270 VDC).
Energy management in hybrid vehicles must adopt a multi-scheme EMS since each ap-
proach is chosen as per key variables. For instance, depending on the actual lifespan of the
input sources, EMS can indeed be employed to optimize the source lifespan or reduce the
stress on FC/B/UC. Further, ANFIS with ECMS has been validated across different drive
cycles, i.e., HWFET and WLTC—Class 3.
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