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Abstract: The aim of this work is to propose a methodology to obtain an effectiveness factor for
biofilm in a microbial electrolysis cell (MEC) system and use it to reduce a partial differential equation
(PDE) biofilm MEC model to an ordinary differential equation (ODE) MEC model. The biofilm
mass balances of the different species are considered. In addition, it is considered that all the
involved microorganisms are attached to the anodic biological film. Three effectiveness factors are
obtained from partial differential equations describing the spatial distributions of potential and
substrate in the biofilm. Then, a model reduction is carried out using the global mass balances of the
different species in the system. The reduced model with three uncertain but bounded effectiveness
factors is evaluated numerically and analyzed in the sense of stability and parametric sensibility to
demonstrate its applicability. The reduced ODE model is compared with a validated model taken
from the literature, and the results are in good agreement. The biofilm effectiveness factor in MEC
systems can be extended to the reduction of PDE models to obtain ODE models that are commonly
used in optimization and control problems.

Keywords: microbial electrolysis cell; modeling; biofilm; effectiveness factor; biohydrogen

1. Introduction

Bioelectrochemical systems (BES) have recently gained significant interest due to
their potential for energy recovery from renewable soluble organic matter. In particular,
microbial electrolysis cells (MEC) provide a new alternative to treat wastewater and produce
hydrogen simultaneously [1].

Through reactions catalyzed in the anode electrode by electroactive microorganisms
within an active biofilm, the removal of organic compounds from agroindustrial wastewa-
ters is carried out during the oxidation of organic matter under anaerobic conditions [1,2].
Protons, electrons, and CO2 are generated in this process [1]. The electrons circulate from
the anode surface to the cathode by applying a small additional external electrical potential
(0.3–1.0 V) between both electrodes [2]. Protons (hydrogen ions) are transferred to the
cathode electrode through a membrane, after which the electrical current (electrons) is used
to reduce the protons to biohydrogen [1,2].

Unfortunately, despite the recent attention and growing research interest in using
MECs for wastewater treatment, their development has not yet moved beyond laboratory-
and pilot-scale implementations, and their adoption by the industry remains limited [3–5].
This is partly due to the significant challenges posed by the step towards the industrial
scale [6–10]. For instance, the impact of MEC operating conditions [11], the optimization
of the process design for its integration into more complex systems, the establishment of
critical performance ranges, and many other operational and empirical issues; as well as

Energies 2022, 15, 4179. https://doi.org/10.3390/en15114179 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15114179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-4825-3790
https://orcid.org/0000-0001-5700-182X
https://orcid.org/0000-0003-0447-4572
https://doi.org/10.3390/en15114179
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15114179?type=check_update&version=1


Energies 2022, 15, 4179 2 of 18

biological, physical-chemical, and bioelectrochemical considerations; and its integration in
fundamental modeling are still important challenges for experts [12–14].

Certainly, the mathematical modeling of MEC systems constitutes an effective strategy
for improving the understanding of their dynamic behavior and even becomes an essential
tool for successfully scaling up from laboratory to pilot- and industrial-scale levels [15,16].
Indeed, model-based design, control, and optimization approaches may help to extend
BES technologies toward industrial uptake [7]. Several contributions have been made [7,8]
ever since the first BES mathematical model was reported for a microbial fuel cell (MFC)
system [16]. However, only a few reviews have been devoted to MFC modeling [17–19],
and even fewer have addressed MEC systems [14].

A BES mathematical model can be classified according to its mathematical formulation.
From a practical point of view, MFC models can be categorized into two main groups,
namely, mechanism-based models and application-based models [17]. The most reported
MEC models [14] are mechanism-based models [15], and only a few are application-based
models [13,20]. At their turn, mechanism-based MEC models can be further classified
according to the mathematical formulation of their mass balances, electrochemical phe-
nomena, or biofilm growth [14,15]. Other categories can be related to the complexity of the
model, for instance, spatial dimension (1D, 2D, or 3D), time dependence, or steady state
models. In this regard, most MEC models have been proposed as either ordinary differential
equation (ODE) systems [21–25] or partial differential equation (PDE) systems [12,15,26–28].
Generally, both model types also include algebraic equations (AE), resulting in ordinary
differential algebraic equations (ODAE) and partial differential algebraic equations (PDAE).
Tables 1 and 2 summarizes the structure and variables of reported mechanism-based
MEC models.

Table 1. Microbial electrolysis cell model classification based on ordinary differential algebraic
equations structure.

[21] [22] [23] [24] [25]

Structure 5A+8OD 3A+5OD A+4OD 3A+3OD 2A+5OD
I A A A A A

H2 A A A A
CH4 2A A A
MT A A
Mo OD OD OD OD

Substrate 2OD OD OD OD
EM OD OD OD OD OD
FM OD
MM 3OD 2OD 2OD OD 2OD

A = algebraic equation, OD = ordinary differential equation, MT = total mediator, Mo = oxidized mediator,
EM = exoelectrogenic microorganisms, FM = fermentative microorganisms, MM = methanogenic microorganisms.

The significant issues regarding ODE models are the oversimplification or nonconsid-
eration of spatial variation. Despite providing a spatial variation in substrate and potential
at steady state, reported PDE models do not take into account the variation in biofilm
thickness. To the best of the authors’ knowledge, there is only one MEC contribution
(3AE+4ODE+2PDE) that models the variation in biofilm thickness [26].

On the other hand, multidimensional PDE models tend to require long solution times
and large computational resources, and, despite recent advances and improvements in
multiprocessing capabilities and programming, the use of such approaches is minimal.
Therefore, the current trend is to simplify 3D models [8]. Reaction-diffusion biofilm models
accurately describe biofilm and could be recommended for rigorous performance analysis
and design [7]. In this regard, the reduction of a PDE MEC model should include biofilm
dynamics but reduce to an appropriate ODE MEC model suitable for real-time process
monitoring and control applications.
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Due to the incorporation of the hydrodynamical effect in the modeling of biomass
detachment in anaerobic digestion processes [29], by means of the parameter α, several
contributions including this phenomenon have been reported in ODE MEC models. The
concentration of microorganisms in biofilm is mainly a function of growth kinetics. How-
ever, additional biofilm mass retention terms could be included, for instance: (i) constant
parameter [22,24]; (ii) continuous AE [30]; and (iii) piecewise constant AE [30], where the
maximum value is an upper-bounded constant related to the maximum mass retention
(i.e., Xmax).

Biofilm growth and retention are modeled with constants or AEs. The approach
has the advantage of simplicity and is a reliable alternative for optimization and control
applications [25,31]. However, scaling up is limited if hydrodynamics does not hold. On
the other hand, the dynamic description of biofilm on PDE models provides information
about concentration and potential in biofilm, which could be important in scaling up [15,28].
However, the use of robust PDE models is still limited in scale-up design and, in some
cases, prohibitive in process optimization and control applications. Therefore, an ODE
model with a biofilm variable state can be easier to implement than biofilm PDE models [8].
In this sense, an effectiveness factor (EF) for MEC biofilm could address two apparently
conflicting goals: (i) the description of mass transfer diffusion and electrical properties
in biofilm from the PDE MEC model and (ii) a simple description of biofilm in the ODE
MEC model.

PDE models are rarely used for design, optimization, or control purposes due to the
difficulty of finding a computationally inexpensive solution [32]. To address this problem,
an alternative approach is the use of the aforementioned EF concept [32–34]. Then, the re-
action rate in a catalyst is expressed as function of reaction rates at surface/bulk conditions
and the effectiveness factors [32]. Indeed, the EF is a useful tool for the study of heteroge-
neous reaction systems. Moreover, the EF has been reported in chemical and biochemical
engineering literature for: catalyst particles [32], immobilized enzyme catalysts [35], im-
mobilized growing cell systems [36], biofilm growth and maintenance [37–40], biocatalytic
membrane reactors [41], and hollow fiber membrane bioreactors [42,43]. Microbial growth
kinetics have been modeled with: (i) zero-, first-, and second-order kinetics [37–39,41];
(ii) Monod kinetics [37,39,41,44]; and (iii) Michaelis Menten kinetics [35,40,42,43]. To the
best of the authors’ knowledge, there is no contribution in bioelectrochemical systems
concerning the effectiveness factor concept.

Table 2. Microbial electrolysis cell model classification based on partial differential algebraic
equation structure.

[12] [15] [26] [27] [28]

Structure A+7PD3 A+2PD2+3PD3 3A+4OD+2PD1 A+2PD3 A+5PD3

I 3PD3 PD3 A A PD3

H2 A A A
CH4 A

Substrate PD3 2OD+2PD3 OD+PD1 PD3 OD+2PD3

EM OD OD
MM OD

Potential PD3 2PD2 PD1 PD3

Hydro 2PD3 2PD3

L f OD
A = algebraic equation, OD = ordinary differential equation, PD = partial differential equation, EM = exoelectro-
genic microorganisms, MM = methanogenic microorganisms, Hydro = hydrodynamics, L f = biofilm thickness.
PDi where i = 1, 2, 3 stands for one, two, or three dimensions.

The aim of this work is to propose a methodology to obtain an effectiveness factor
for biofilm in MEC systems and use it to reduce a PDE biofilm MEC model to an ODE
MEC model. Therefore, the present work develops a methodology to describe the complex
combined effect of local mass transfer and potential on biofilm composed of a growing
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microbial consortium. It aims to obtain the equation of the effectiveness factor, which in turn
allows us to capture the dynamic behavior of the catalytic biofilm. The numerical values
obtained from the PDE MEC model are used to determine a bounded range of uncertain
parameters that represent the complex combined effect of the biofilm of nonhomogeneous
substrate and potential profile space-time dependence. Such parameters can be used in the
ODE MEC model. Hence, the proposed methodology looks for an uncertain ODE MEC
model in which uncertain parameters also contain biofilm catalytic variability. The resulting
model can be used for real-time process monitoring and robust control.

2. Dynamical PDAE Biofilm Model

According to [26], the biofilm model is based on a set of two PDEs which are coupled
to four ODEs. The model (2PDE+4ODE) is depicted in Figure 1. The following assumptions
are considered for the two PDEs: (i) the biofilm is a continuum and it is homogeneous;
(ii) acetic acid (C2H4O2) is the only substrate; (iii) competition between methanogenic
and exoelectrogenic microorganisms for the carbon source is the only one that occurs,
while an inert fraction does not consume substrate; (iv) substrate and potential gradients
only take place in the biofilm through the z axis, and thus, axial diffusion, as well as
back diffusion, are negligible; (v) substrate is transferred by diffusion only (Fick’s law);
(vi) the distribution of the substrate in the biofilm rapidly reaches a steady state once the
concentration of substrate in the liquid phase changes; (vii) the distribution of the potential
in the biofilm rapidly reaches a steady state once the applied potential in the anode changes;
and (viii) physical and transport parameters are constant (i.e., density, conductivity, and
effective diffusion).

Under these assumptions, the first PDE describes the substrate dynamics in the biofilm
as follows [26]:

De
∂2Sbio

∂z2 − ρx

[
µm(Sbio)φm + µe

(
Sbio, Ebio

a

)
φe

]
= 0 (1)

with boundary conditions:

∂Sbio

∂z

∣∣∣∣∣
z=0

= 0; Sbio|z=L f = S

where Sbio and Ebio
a are the local substrate concentration and the local potential through the

biofilm, respectively, S is the substrate concentration in the liquid phase, ρx is the biofilm
density, De is the effective diffusion of the substrate in the biofilm, φm and φe are the mass
fractions of the exoelectrogenic and methanogenic microorganisms, respectively, and φi is
an inert fraction (φm + φe + φi = 1). Notice that the first boundary condition in (1) implies
no substrate diffusion across the anode electrode interface. The second boundary condition
corresponds to no substrate concentration gradient at the interface between the liquid
phase and the biofilm surface.

Again, under the former assumptions, the second PDE describes the potential variation
Ebio

a through the biofilm [26]:

κbio
∂2Ebio

a
∂z2 − F

γ

[
k5µe

(
Sbio, Ebio

a

)
+ k6rres

(
Ebio

a

)]
ρxφe = 0 (2)

with boundary conditions:

∂Ebio
a

∂z

∣∣∣∣∣
z=L f

= 0; Ebio
a |z=0 = Ea

where Ea is the potential at the anode surface, κbio is the biofilm conductivity that can be
seen as the sum of the effects related to the electron transfer mechanisms, F is the Faraday
constant, and γ is the conversion time factor. Notice that the first boundary condition
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in (2) corresponds to no potential losses at the interface between the anode and biofilm
surfaces. In contrast, the second boundary condition implies that electrons conduct only on
the biofilm matrix.

Figure 1. Biofilm schematic representation of the microbial electrolysis cell including involved
boundary conditions.

Due to the mass and charge transfer, active microorganisms in the biofilm are exposed
to different substrate concentrations and potentials. Therefore, their growth and oxida-
tion rates depend on their positions inside the biofilm. The reaction rates (i.e., specific
growth rates and respiration rate) in the biofilm for exoelectrogenic and methanogenic
microorganisms are [26]:

µm

(
Sbio

)
= µm,max

Sbio

Sbio + KS,a +
(Sbio)2

KI

(3)

µe

(
Sbio, Ebio

a

)
= µe,max

Sbio

Sbio + KS,e

1
1 + exp{− F

RT (Ebio
a − EKA)}

(4)

rres

(
Ebio

a

)
= bres

1
1 + exp{− F

RT (Ebio
a − EKA)}

(5)

To find the average reaction rates, the previous expressions are integrated along the
biofilm as follows [26]:

µm(S
bio) =

1
L f

∫ L f

0
µm(Sbio)dz (6)

µe(S
bio, Ebio

a ) =
1

L f

∫ L f

0
µe(Sbio, Ebio

a )dz (7)

rres(Ebio
a ) =

1
L f

∫ L f

0
rres(Ebio

a )dz (8)

Global Balance

The time-dependent mass balance is also based on a previous work [26] and describes
an MEC system consisting in an ideal continuous stirred-tank reactor with two chambers.

dS
dt

=
F
Va

[Sin − S]− Aa

Va
[µm(S

bio)L f ρxφm + µe(S
bio, Ebio

a )L f ρxφe] (9)
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dL f

dt
= k1µa(S

bio)L f φm + k4µe(S
bio, Ebio

a )L f φe − bdetL2
f − rres(Ebio

a )L f φe (10)

dφm

dt
= k1µm(S

bio)[φm − φ2
m]− binφm − k4µe(S

bio, Ebio
a )φeφm + rresφeφm (11)

dφe

dt
= [k4µe(S

bio, Ebio
m )− rres(Ebio

m )][φe − φ2
e ]− binφe − k1µm(S

bio)φmφe (12)

where S is the acetic acid concentration (as the only carbon source), L f is the biofilm
thickness, F is the volumetric flow, Va is the anode chamber volume, Sin is the inlet acetate
concentration, Aa is the anode active area, and ki for i = 1, 2, 3, 4 are yield coefficients.
Under the assumption that all the generated electrons go to the anode, the expected current
I (mA) is [26]:

I =
F

γ
Aa[k5µe(S, Ea) + k6rres(Ea)]L f ρxφe (13)

where k5 and k6 are yield coefficients. Then, the biofilm model consists of two PDEs (1)–(2),
local reaction rates (3)–(5), average reaction rates (6)–(8), the global balance (9)–(12), and the
expected current (13). Table 3 shows the parameters. For details, the reader is invited to
refer to [26].

Table 3. Set of parameters.

Symbol Description Value Unit Reference

F Faraday constant 96,487 C mol e−1 [45]
R Ideal gas constant 8.314 atm L mol−1 k−1 [45]

µm,max Maximum methanogenic growth rate 0.198 mmol S mg VS−1
a d−1 [29]

KS,m Half-rate constant of methanogenic 9.28 × 10−3 mmol S mL−1 [29]
KI Inhibition constant associated with S 0.256 mmol S mL−1 [29]

µe,max Maximum electricigenic growth rate 0.132 mmol S mg VS−1d−1 [29]
KS,e Half-rate constant of electricigenic 3 × 10−5 mmol S mL−1 [29]
EKA Half maximum rate potential −0.156 V [46]
bin Inactivation constant 0.1 d−1 [46]
bres Endogenous respiration reaction rate 0.05 d−1 [46]
bdet Detachment constant 60 cm−1 d−1 assumed
De Diffusion coefficient 0.753 cm−2 d−1 [46]
γ Biofilm retention constant 86,400 s d−1 estimated

kbio Biofilm conductivity 1× 10−3 mA V−1 cm−1 [46]
εcat Efficiency of the cathode 0.9 dimensionless assumed
kH2 Electrons transferred per mol 0.5 mmol H2 mEQ−1 assumed
fexp Fraction of energy-generating electrons 0.8 dimensionless assumed
ρx Biofilm density 1042 mg VS cm−3 [47]

k1 Yield coefficient 0.72 mmol CH4 mmol S−1 [48]
k2 Yield coefficient 0.602 mmol CO2 mmol S−1 [48]
k3 Yield coefficient 1.366 mmol CO2 mmol S−1 estimated
k4 Yield coefficient 13.7 mg VSe mmol S−1 [48]
k5 Yield coefficient 6.4 mEQ mmol S−1 estimated
k6 Yield coefficient 0.177 mEQ mg VS−1

e [46]

To solve numerically the previously reported model in (1)–(13), the numerical method
ode15s in MATLABr (MathWorksTM, Natick, MA, USA) was used. The discretization of
Equations (1) and (2) was firstly proposed and due to their boundary conditions, a double
boundary problem was solved with the numerical method bvp5c in MATLABr. Simul-
taneously, local reaction rates (3)–(5) were obtained. Then, average reaction rates were
calculated as indicated in Equations (6)–(8). Finally, the global mass balance (9)–(12) was
solved and the current (13) was calculated. The entire procedure was repeated for each
time step.
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3. Effectiveness Factor for an MEC Biofilm

The study of reaction-diffusion phenomena in a heterogeneous reaction system com-
monly involves the solution of PDEs for catalyst particles, where the concept of the effec-
tiveness factor (EF), η, is used as an alternative for avoiding the inherent computationally
expensive efforts. The main idea is to express the reaction rate in a catalyst particle as
a function of η. For biofilm systems, η has been reported for zero-order and first-order
kinetics [41] or Monod- [44] and Michaelis-Menten-type kinetics [40]. For more complex
kinetics, there is no analytical solution.

The effectiveness factor has been defined as: the ratio of the actual reaction rate to that
which would be observed if the total surface area throughout the catalyst interior were exposed
to a fluid at the same conditions as those prevailing at the outside surface of the particle [33,34].
Effectiveness factors can be defined for methanogenic and exoelectrogenic microorganisms
and for the respiration process as follows:

ηm =
µm(S

bio)

µm(S)
=

1
L f

∫ L f
0 µm(Sbio)dz

µm,max
S

S+KS,a+
S2
KI

(14)

ηe =
µe(S

bio, Ebio
a )

µe(S, Ea)
=

1
L f

∫ L f
0 µe(Sbio, Ebio

a )dz

µe,max
S

S+KS,e
1

1+exp{− F
RT (Ea−EKA )}

(15)

ηr =
rres(Ebio

a )

rres(Ea)
=

1
L f

∫ L f
0 rres(Ebio

a )dz

bres
1

1+exp{− F
RT (Ea−EKA )}

(16)

where Sbio is the local substrate concentration (1), S is the bulk substrate concentration (9),
Ebio

a is the local potential (2), and Ea is the anode applied potential (operating condition).

4. Numerical Implementation

To obtain the numerical values of the effectiveness factors (14)–(16), a set of operating
conditions for initial substrate concentration (S(t = 0)), inlet substrate concentration (Sin),
and anode potential (Ea) were established to simulate the dynamical model in (9)–(12).
Notice that the selected operating conditions for Sin and Ea have been reported in MEC
experimental implementations [49–51].

Table 4 summarizes the operating conditions used for the numerical implementation.
Volume, inlet flow, and active anode area were considered constant.

Table 4. Set of operating conditions and initial condition.

Symbol Description Value Unit

S(t = 0) Substrate initial condition 2, 3, 4, 5 g L−1

Sin Substrate inlet concentration 2, 3, 4, 5 g L−1

Ea Voltage applied 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 V

T Temperature 303 K
Va Anodic compartment volume 200 mL
F Incoming flow 200 mL d−1

Aa Anodic active area 30.0 cm2

L f ,0 Biofilm thickness initial condition 10 µm

Figure 2 shows the solution of the dynamical model in (1)–(12) and the current pro-
duction for different values of operating conditions (see Table 4). From the comparison of
substrate profiles (Figure 2a), it can be said that a more significant consumption of substrate
is obtained when higher voltage is applied. In addition, bigger values of biofilm thickness
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(Figure 2b), exoelectrogenic microorganism fraction (Figure 2c), and current (Figure 2d)
are obtained when higher voltage is applied. In contrast, smaller values are obtained
for the mass fraction of methanogenic microorganisms (Figure 2c) when higher voltages
are applied.

0 5 10 15 20
0

1

2

3

4

5

0 5 10 15 20
0

20

40

60

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
5

10

15

20

25

30

0 5 10 15 20
50

100

150

200

250

0 5 10 15 20
0

5

10

15

a b

c d

e fFigure 2. Numerical solution for the microbial electrolysis cell model in (1)–(13) under operating
conditions shown in Table 4: (a) substrate (Equation (9)), (b) biofilm thickness (Equation (10)),
(c) mass fractions (Equations (11) and (12)), (d) current (Equation (13)). Arrows indicate the direction
of increased applied voltage.

The mass fraction of methanogenic microorganisms is zero at steady state (Figure 2c)
in all numerical simulations. For the operating conditions (see Table 4), only exoelectro-
genic microorganisms survive. The MEC model in (1)–(12) predicts the noncoexistence
of microbial species in biofilm, although an inert fraction remains at steady state. The
coexistence of MEC microbial species has been discussed in [24].

The numerical evaluation of the average reaction rates (6)–(8) and reaction rates are
shown in Figure 3. It can be seen that the average reaction rate µm (6) and reaction rate µm
(Figure 3a,b, respectively) exhibit similar dynamical behavior. That is mainly due to the
average reaction rate of methanogenic microorganisms being affected by the diffusional
resistance offered by the biofilm; thus, µm < µm, which is expected. However, this effect is
almost negligible under saturated conditions (i.e., high concentrations).

Nevertheless, the average reaction rate µe (7) and reaction rate µe exhibit significantly
different dynamical behavior. That is mainly due to the average reaction rate of exoelectro-
genic microorganisms being affected by diffusional resistance in the biofilm and by the local
potential. Notice that µe presents similar dynamical behavior as µm in the sense of lower
magnitude in reaction rates being developed under lower bulk substrate concentration (S)
and low applied voltage (V) as well, which is expected too. The average reaction rate rres
(8) and reaction rate rres exhibit different dynamical behavior due to the dependence of the
local potential, i.e., rres is only a function of the applied potential, which, for this numerical
implementation, is constant (see Table 4).
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e f

Figure 3. Numerical solution for the MEC model in (1)–(13) under operating conditions in Table 4.
Average reaction rates for (a) exoelectrogenic microorganisms (Equation (4)), (c) methanogenic
microorganisms (Equation (3)), and (e) respiration processes (Equation (5)). Reaction rates into
the bulk for (b) exoelectrogenic microorganisms (Equation (7)), (d) methanogenic microorganisms
(Equation (6)), and (f) respiration processes (Equation (8)). Arrows indicate the direction of increased
applied voltage.

Figure 4a,c clearly show similar results for effectiveness factors ηe and ηr. In addi-
tion, the behavior of ηe and ηr are in good agreement with those obtained for µe and rres
(Figure 3c,e), respectively. These results indicate that the dominant phenomenon is conduc-
tivity (which is related to the local potential) upon mass transfer. In support information,
an additional numerical case is explored when the diffusional resistance offered by biofilm
is almost negligible.

It is important to point out that, as mentioned before, µm and µm are not a function of
the potential. Therefore, the effectiveness factor ηm approximates unity to the extent that the
saturating substrate operating conditions hold. It is essential to notice that from a practical
point of view, it is convenient to operate in such conditions to remove as much substrate as
possible, avoiding mass transfer limitations. On the other hand, despite mass transfer limi-
tations not being shown for methanogenic microorganisms, for all numerical simulations
of operation conditions (see Table 4), the fraction φm is zero at steady state. Interestingly,
the coexistence of microorganisms does not depend on mass transfer limitations.

From Figure 4 (at steady state), the lower and upper bounds ηlb and ηub represent
the permissible range for the effectiveness factors (14)–(16) for a set of parameters and
operating conditions. In the present example (data in Tables 3 and 4), these bounds result in
ηe = ηrres = (0.225, 0.260) and ηm = (0.725, 1).
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Figure 4. Numerical solution for the effectiveness factor for (a) exoelectrogenic microorganisms
(Equation (15)), (b) methanogenic microorganisms (Equation (14)), and (c) respiration process
(Equation (16)). Arrows indicate the direction of increased applied voltage.

5. Dynamical Reduced Model

The effectiveness factor for an MEC biofilm can be defined as an uncertain but bounded
parameter η̂i ∈ [ηlb,i, ηub,i] with i = e, m, r. The bounded values are ηlb,i = min(η∗i ) and
ηub,i = max(η∗i ), where ∗ stands for the value of ηi obtained at steady state from the
numerical evaluation of different operating conditions (see Table 4). Without loss of
generality, a nominal effectiveness factor can be defined as the average of range-bounded
values at steady state [52]. Therefore, the effectiveness factor for an MEC biofilm is redefined
as a function of the nominal value as follows: η̂i = η̂nom,i(1 + |∆i|/100), where ∆i is the
maximum percentage of variation between the nominal value η̂nom,i and the upper or lower
value at steady state. The values of ηlb,i, ηub,i, η̂ub,i, and |∆i| are obtained from Figure 4 at
steady state and are shown in Table 5.

Table 5. Values of effectiveness factor for a microbial electrolysis cell biofilm.

Symbol η̂lb,i η̂ub,i η̂nom,i |∆i|
exoelectrogenic microorganisms 0.225 0.260 0.242 7.21
methanogenic microorganisms 0.725 0.999 0.857 15.4

respiration processes 0.225 0.260 0.242 7.21

Then, a reduction of the MEC model in (1)–(12) is then defined by the following set
of ODEs:

dS
dt

=
F
Va

[Sin − S]− Aa

Va
[η̂mµm(S)L f ρxφm + η̂eµe(S, Ea)L f ρxφe] (17)

dL f

dt
= k1η̂mµm(S)L f φm + k4η̂eµe(S, Ea)L f φe − bdetL2

f − η̂rrres(Ea)L f φe (18)

dφm

dt
= k1η̂mµm(S)[φm − φ2

m]− binφm − k4η̂eµe(S, Ea)φeφm + η̂rrres(Ea)φeφm (19)

dφe

dt
= [k4η̂eµe(S, Ea)− η̂rrres(Ea)][φe − φ2

e ]− binφe − k1η̂mµm(S)φmφe (20)

Consequently, the dynamic MEC model in (1)–(12) with the biofilm model described
by the set of PDEs (1)–(2) and the set of ODEs (9)–(12) is reduced through an effectiveness
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factor for an MEC biofilm. The reduced MEC model, in a compact form, is defined
as follows:

Φ̇ = f (Φ, Π, η̂e, η̂m, η̂r), Φ(t0) = Φ0 (21)

It consists of the set of ODEs (17)–(20); state variables Φ = [S, L f , φe, φm]T ; the set
of parameters Π = [µmax,e, µmax,m, KS,e, KS,m, Ki, Eka, ρX, bdet, bres, bin, fexp, De, kbio,
k1, k2, k3, k4, k5, k6, ecat, kH2]; and operational conditions [Sin, Ea, T, Va, F, Aa] with
uncertain but bounded parameters η̂e, η̂m, and η̂r, where η̂e = η̂nom,e(1 + |∆e|/100),
η̂m = η̂nom,m(1 + |∆m|/100), and η̂r = η̂nom,r(1 + |∆r|/100).

The main assumptions of the reduced ODE MEC model are the following: (i) acetate
is the only substrate in the feed wastewater; (ii) the anodic chamber operates as an ideal
continuous stirred-tank reactor; (iii) all variables are considered spatially uniform; (iv) exo-
electrogenic and (possibly) methanogenic microbial populations are mostly attached to the
anodic biological biofilm; (v) in consequence, biomass growth in the anodic bulk phase is
negligible; (vi) microbial populations compete for the same substrate; (vii) there is instant
gas transfer from the liquid to the gas phase; and (viii) pH = 5.5 and temperature T = 25 ◦C
are constant. Figure 5 shows the schematic representation of the reduced ODE MEC model
in (21).

It is important to remark that even when suspended bacteria may affect biofilm growth,
mass transfer, and electricity generation in BES [53,54], the former assumptions (physically
plausible) imply the inhibition of methanogenic archaea growth (mainly because of the acid
pH) and favor that the only exoelectrogenic bacteria that survive are eventually attached to
the anode [55].

Experimental results in the literature reported that there are lower efficiency and
electricity generation when scaling up BES [3,6]. The reactor and electrode size influence
the efficiency of the MEC system and therefore the electricity generation [3,6]. Despite
ideal suppositions on the reduced ODE MEC model, the proposed EF approach could be
applied to a more complex PDE MEC system. In this sense, a detailed PDE MEC model
for current, potential, and nonideal flow patterns can be solved numerically for complex
geometries and then applied to the proposed EF approach on a representative ODE MEC
model. Thus, reactor-electrode size side effects on mass transfer and electricity generation
could be included in the alternative reduced ODE MEC model in a scale-up approach.

Figure 5. Biofilm schematic representation of the microbial electrolysis cell including effectiveness factor.

5.1. Equilibrium Points

In order to recognize the possible steady-state solutions for the model in (21), it
is necessary to compute the equilibrium points and then classify them in the sense of
stability criteria. Then, the following steps are performed: (i) to compute an equilibrium
point under parameters and operating conditions; (ii) to find the Jacobian matrix of the
nonlinear reduced model in (21); (iii) to compute the eigenvalues of the Jacobian matrix
at an equilibrium point; and (iv) to corroborate the criteria of stability. The equilibrium
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point is locally asymptotically stable if all eigenvalues have negative real parts. Otherwise,
if there is even one eigenvalue with a positive real part, the equilibrium point is unstable.
As an example of this procedure, Table 6 shows the numerical evaluation of the equilibrium
points under the set of parameters in Table 3 and operating conditions S(t = 0) = 2 [g L−1],
Sin = 2 [g L−1], and Ea = 0.3 [V], and the remaining operating conditions are shown in
Table 4.

Table 6. Equilibrium points ψ of reduced model in (21).

S∗ [g L−1] L∗f [µm] φ∗m [] φ∗e [] PM/NPM SP/NSP

ψ01 0.654 56.393 0 0.772 PM SP
ψ02 −0.012 69.138 0 0.805 NPM SP
ψ03 2 0 0 0.0 PM NSP
ψ04 2 0 0 0.772 NPM NSP
ψ05 2 0 −0.008 0.0 NPM NSP
ψ06 2 0 −4.508 1.016 NPM NSP
ψ07 2 −0.138 −0.008 0 NPM NSP
ψ08 0.01856 −15.92 −21.21 0 NPM NSP
ψ09 −2.013 22.65 0.5761 0 NPM NSP
ψ10 −7.129 34.16 0.6721 0 NPM NSP
ψ11 −23.8 −57.43 1.409 0 NPM NSP
ψ12 0.00005 −16.54 0 −133.2 NPM NSP
ψ13 −0.00073 −71.14 0 1.306 NPM NSP

PM = physical meaning, NPM = nonphysical meaning, SP = stable point, NSP = non stable point, ∗ stands for
steady state.

Notice that only the equilibrium point ψ01 exhibits stable behavior and has a physical
meaning. It is said that the MEC system is operating in a desirable condition of noncoex-
istence of microorganisms in which only exoelectrogenic microorganisms degrade the
substrate [24]. Equilibrium point ψ02 exhibits stable behavior, but this point does not have
physical meaning because this would imply a physically impossible negative value for the
substrate at steady state. Equilibrium point ψ03 is particularly interesting because it shows
that the MEC system exhibits washout and that the steady-state substrate concentration is
given by its inlet composition. However, ψ03 will not arise because it is an unstable equilib-
rium point. The analysis is similar for the other equilibrium points ψ04 to ψ13, from which
it can be deduced that the reduced MEC model in (21) has only one reachable locally stable
equilibrium point ψ01 under the set of parameters Π (Table 3) and the operating conditions
under consideration for this example.

5.2. Parametric Sensitivity Analysis

Departing from the reduced MEC model in (21), a sensitivity parametric analysis [52]
is performed to determine which parameters in Π affect the dynamical behavior of the
field f (Φ; π). For a set of parameters π, the approximate solution for the sensitivity
function is computed by the simultaneous solution of the MEC model in (21) and the linear
time-varying sensitivity equation Θ̇ f as follows [52]:

Φ̇ = f (Φ, π0), Φ(t0) = Φ0

Θ̇ f =

[
∂ f (Φ, Π)

∂Φ

]
π0

Θ f +

[
∂ f (Φ, Π)

∂Π

]
π0

, Θ f (t0) = 0 (22)

The parameters of Table 3 and operation conditions in Table 4 are used to numerically
solve Equation (22). In addition, in order to appreciate the parameter subset having the
most significant effect of the MEC model in (21), the following parameter values are
changed from Table 4: Sin = 1 [g L−1], Ea = 0.3 [V], and Aa = 5 [cm2]. The following
values for the effectiveness factor for an MEC biofilm are considered: η̂m = 0.98, η̂e = 0.25,
and η̂r = 0.25. Notice that such values belong to the uncertainty value range shown in
Table 5. The following initial conditions for the numerical solution of (22) are considered:
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Φ(t0) = [1 g L−1, 10 µ m, 0.3, 0.3]T and Θ0 = [1, 1, 1, 1]T . The numerical method ode15s in
MATLABr was used to solve numerically Equation (22).

Figure 6 shows the numerical solution of (22). Notice that at stable steady-state
conditions, the parameter subset having the most significant effect of the MEC model
in (21) is: KS,e, bin, µmax,e, and η̂e. Interestingly, only the effectiveness factor η̂e arises as the
important parameter in the parametric sensitivity analysis in comparison to η̂m and η̂r.
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Figure 6. Numerical solution of Equation (22) for: (a) substrate, (b) biofilm thickness, (c) mass fraction
of methanogenic microorganisms, and (d) mass fraction of exoelectrogenic microorganisms.

From Figure 6c, KS,e, η̂e, and µmax,e arise as the important parameters in the parametric
sensitivity analysis for S f (Φm) under transient condition. However, all solutions of S f (Φm)
converge to zero at steady state. Consequently, all parameters exert a significant influence
on the Φ∗m value when they change (∗ stands for steady state).

5.3. Open-Loop Dynamical Behavior

The performance of the reduced MEC model in (21) is evaluated and compared in an
open-loop simulation with the following ODE model reported by Pinto et al. [30]:

Ṡ = (Sin − S)D− qeXe − qmXm
Ẋe = µeXe − αXe
Ẋm = µmXm − αXm

Ṁox = −YMqe +
γ

VreacXe

IMEC
mF

(23)

where S is the substrate (acetate) concentration; Xe and Xm are the exoelectrogenic and
methanogenic microorganism concentrations, respectively; Mox is the oxidized mediator
fraction per exoelectrogenic microorganism; qe and qm are the acetate consumption rates by
exoelectrogenic and methanogenic microorganisms, respectively; µe and µm are the growth
rates; α is the dimensionless biofilm retention constant; D is the dilution rate (D = FinV−1

reac);
YM is the oxidized mediator yield; γ is the mediator molar mass; m is the number of



Energies 2022, 15, 4179 14 of 18

electrons transferred per mol of mediator; and F is the Faraday constant. The following
expressions are included:

Mtotal = Mred + Mox

qe = qmax,e
S

KS,e + S
Mox

KM + Mox

qm = qmax,m
S

KS,m + S

µe = µmax,e
S

KS,e + S
Mox

KM + Mox

µm = µmax,m
S

KS,m + S

α =

{
µeXe+µmXm

Xe+Xm
if Xe + Xm > Xmax

0 otherwise

(24)

where Mtotal is the total mediator fraction per microorganism; Mred is the reduced mediator
fraction per exoelectrogenic microorganism; qmax,e and qmax,m are the maximum acetate
consumption rates; µmax,e and µmax,m are the maximum growth rates; KS,e and KS,m are
the half saturation constants; and Xmax is the maximum attainable biomass concentration.
Table 7 summarizes the set of parameters used in the model in (23) and in the auxiliary
functions (24).

Notice that the biofilm in the model in (23) is limited by Xmax. Therefore, for the sake
of normalization, the biomass fraction for the model in (23) is defined as follow:

φe =
Xe

Xmax
, φm =

Xm

Xmax
(25)

The operating conditions for both models are: Sin = 2 g L−1, Ea = 0.5 V, Va = 50 mL,
and F = 50 mL. Additional operating conditions used in the reduced model in (21) are
Aa = 5 cm2, ηe = ηr = 0.25, and ηm = 0.95. The initial condition for the model in (23) is:
[2 g L−1, 200 mg L−1, 100 mg L−1, 0.25 mg Mox mg X−1]T . The initial condition for the
model in (21) is: [2 g L−1, 20 µm, 0.3, 0.3]T . The numerical method ode15s in MATLABr

was used to solve numerically the model in (21) and the model in (23)–(25).
Figure 7 illustrates the dynamical behavior of the state variables of the reduced model

in (21) and the model in (23). In the same figure, it can be seen that S in both models
converges to a near-steady state. Notice that the values for S predicted by the model in
(23) are smaller than the ones predicted by the reduced model in (21) for 0 < t < 20
[d] (see Figure 7a). Moreover, the model in (23) predicts a minimum substrate concen-
tration for 0 < t < 5 [d]. This is because there is an increase in the mass fractions of
methanogenic (Figure 7c) and exoelectrogenic (Figure 7d) microorganisms. In addition,
for t > 5 [d], the model in (23) predicts: (i) an increase in S (Figure 7a) and the mass
fraction of exoelectrogenic microorganisms (Figure 7d) and (ii) a decrease in the mass
fraction of methanogenic microorganisms. On the other hand, all the states of the reduced
model in (21) exhibit smooth dynamic behavior. Moreover, states S and Φm decrease,
and states L f and Φe slowly increase and finally reach a steady state. It should be noted
that the dynamic smoothness of the reduced model in (21) may be desirable in control or
real-time applications.

It is important to remark that the aim of the work was to propose a methodology to
obtain an effectiveness factor for biofilm in an MEC system and use it in the reduction of the
PDE biofilm MEC model to the ODE MEC model, but the experimental validation stricto
sensu is not provided here. Indeed, the numerical implementation includes operating
conditions from the literature [49–51]. Moreover, the reduced ODE model was compared
with the validated model taken also from [30] and the results were in good agreement.
Nevertheless, the parameters of the reduced model should be adjusted to be successfully
applied to lab-scale or pilot-scale implementations. This task is planned as future work.
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Table 7. Set of parameters for model in (23) and auxiliary functions in (24).

Symbol Description Value Unit

µmax,e Max. electricigenic growth rate 2.0 d−1

µmax,m Max. methanogenic growth rate 0.1 d−1

qmax,e Max. electricigenic reaction rate 14.0 d−1

qmax,m Max. methanogenic reaction rate 14.12 d−1

YCH4 Methane yield 0.28 ml CH4 mL S−1

KS,e Half-rate constant of electricigens 20.0 mg S L−1

KS,m Half-rate constant of methanogens 20.0 mg S L−1

KM Mediator half-rate constant 0.01 mg M L−1

Mtotal Mediator fraction 0.05 mg M mg X−1

Xmax Anode biofilm space limitation 512.5 mg X L−1

Rmin Lowest internal resistance 30.0 Ω
Rmax Highest internal resistance 2000.0 Ω
KR Constant 0.024 L mg X−1

YM Oxidized mediator yield 36.6 mg M mg S−1

ECEF Counter-electromotive force −0.35 V
YH2 Cathode efficiency 0.8 dimensionless

γ Mediator molar mass 663,400 mg M mol M−1

ηact Activation overpotential 0.05 V
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Figure 7. Open-loop numerical simulation of reduced model in (21) and Pinto’s model in (23) for:
(a) substrate, (b) biofilm thickness, (c) mass fraction of methanogenic microorganisms, and (d) mass
fraction of exoelectrogenic microorganisms.

6. Conclusions

In this work, an effectiveness factor for the microbial electrolysis cell model was
proposed. This effectiveness factor was defined for the biofilm respiration process and
methanogenic and exoelectrogenic microorganisms. Departing from a partial differential
equation and numerical data obtained from a set of operating conditions, a set of uncertain
but bounded ranges of effectiveness factor values was obtained. The stability and para-
metric sensibility of the reduced model were evaluated. Then, a reduced model based on
ordinary differential equations was obtained. The reduced model was analyzed in the sense
of stability and parametric sensibility. The reduced model was also tested in numerical
simulation using a validated model taken from the literature.

The proposed effectiveness factor was included in a microbial electrolysis cell model
described by a set of ordinary differential equations. The procedure is an alternative to
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address the tradeoff between (i) the local description of multipopulation microorganisms,
local mass, and local potential in the biofilm and (ii) a simple and reliable alternative de-
scription of biofilm in an ordinary differential equation representing a continuous microbial
electrolysis cell system.

The procedure could be extended to models comprising mass and charge transport in
biofilm, simulated in two or three dimensions and then coupled with global mass balances
for microbial electrolysis cell systems.
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