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Abstract: Modeling the photovoltaic (PV) energy output with high accuracy is essential for predicting
and analyzing the performance of a PV system. In the particular cases of building-integrated and
building-attached photovoltaic systems (BIPV and BAPV, respectively) the time-varying partial
shading conditions are a relevant added difficulty for modeling the PV power conversion. The
availability of laser imaging detection and ranging (LIDAR) data to create very-high-resolution
elevation digital models can be effectively used for computing the shading at high resolution. In this
work, an artificial neural network (ANN) has been used to model the power generation of different
BIPV arrays on a 5 min basis using the meteorological and solar irradiance on-site conditions, as
well as the shading patterns estimated from a digital surface model as inputs. The ANN model
has been validated using three years of 5-min-basis monitored data showing very high accuracy
(6–16% of relative error depending on the façade). The proposed methodology combines the shading
computation from a digital surface model with powerful machine learning algorithms for modeling
vertical PV arrays under partial shading conditions. The results presented here prove also the
capability of the machine learning techniques towards the creation of a digital twin for the specific
case of BIPV systems that complements the conventional monitoring strategies and can be used in
the diagnosis of performance anomalies.

Keywords: BIPV; PV modeling; machine learning; ANN in PV modeling; partial shading of PV arrays;
digital twin in PV

1. Introduction

The decarbonization of the energy sector and the reduction in carbon emissions are
included in almost all current energy policies and roadmaps worldwide, with the aim of
limiting climate change. Solar photovoltaic (PV) energy is going to play a major role in
this energy transformation scenario. Solar PV would supply 25% of the total electricity
demand with an estimated installed capacity of 8519 GW by 2050 [1]. Urban areas require
an uninterrupted supply of energy, which consumes a very large portion of the primary
energy. Therefore, this expected increase in PV deployment will drive a growth in building-
integrated photovoltaic (BIPV) and building-attached photovoltaic (BAPV) systems [2,3].
In particular, BIPV modules and systems produce energy and, at the same time, provide
additional construction functions; thus, they could reduce the cost of refurbishment and
renovation of existing buildings.

Reliable and fast modeling of the electrical performance of PV arrays is crucial for
evaluation, operation, forecasting and detection of anomalies. Therefore, a significant effort
in modeling PV systems has been made in recent years and several tools have become
available to simulate the physical processes involved in the PV energy conversion [4].
However, modeling the electrical performance of PV and BIPV systems in the urban context
is very challenging, mainly because of the partial shading conditions that the complex
urban topology may cause. The process of BIPV planning and the methods and tools for
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designing and modeling BIPV systems are currently being analyzed and reviewed within
the IEA PVPS Task 15 [5,6].

BIPV systems typically become shaded, either completely or partially, by neighboring
buildings, trees and other urban elements. Partial shading is, therefore, a major issue
because of the reduction in power output. Consequently, the proper characterization
of the shadows along the year is required for both the selection of the most convenient
building surfaces and accurate performance modeling [7]. The use of geographic infor-
mation systems (GIS) enriched with additional remote sensing information (e.g., LIDAR
data) can be effectively used in the generation of solar cadasters and shadow studies in
urban areas [8–10]. A thorough review of BIPV-related methods and tools can be found
elsewhere [5,11,12].

Machine learning techniques have recently come up in the energy sector for different
applications. Thus, artificial neural networks (ANNs) and other deep learning methods can
be used for estimating the PV energy output without the prior knowledge of the PV system
parameters [13]. On the other hand, machine learning forecasting techniques have been
recently reported in many works as a powerful way to forecast PV power [14–19]. In partic-
ular, ANNs have shown high accuracy in modeling the PV output compared with some
conventional methods [20,21]. Moreover, machine learning and deep learning techniques
have recently attracted the attention of many researchers for developing methods aimed
at fault diagnosis in PV systems [13,22,23]. Further, the computation efficiency of ANNs
is being driven to the digital twin (DT) concept, consisting of a digital reproduction of a
PV physical system that can be used, among other purposes, for detecting performance
anomalies [24,25]. Approaches based on the DT concept are also being proposed for smart
buildings applications [26]. In the case of BIPV applications, a few studies can be found
for predicting hourly PV power with ANNs using basic meteorological variables as input,
reporting root mean square errors of 4% to 11% [27].

This work presents the use of a single ANN to model five small BIPV systems installed
on three façades of the same building using accurate computation of the shading produced
by the surrounding buildings and trees and meteorological data. Information on solar
irradiance and module temperature, as well as additional variables regarding the angle of
incidence of the solar radiation, the azimuth of the façades and the shading (i.e., the fraction
of the photovoltaic array surface that is illuminated) was monitored and used as input to
the ANN model. Partial shading is a challenge in modeling the BIPV system power and
requires detailed and precise knowledge of the shaded area at every timestamp. Therefore,
LIDAR data of the surrounding area of the selected building were applied to a GIS tool to
build a Digital Surface Model (DSM). A DSM is a high-resolution and detail digital model
that captures both the natural and artificial features (e.g., buildings) of the surrounding
terrain. The DSM was used as input to a methodology for effectively computing the shades
on every façade of the building, with very high spatial resolution, at each timestamp. In
the building under study, the east façade is surrounded by deciduous trees that produce
inhomogeneous shading patterns on the arrays, making the modeling of the BIPV arrays
by either conventional methods or physical models very challenging [28]. The use of
LIDAR data for creating a DSM is a very effective way for computing the shades over every
façade with high spatial resolution [8]. The modeled ANN, which was trained with two
years of monitored data, reached a very good accuracy and performance in modeling the
subsequent years of power generation in the building on a 5 min basis. Thus, the main
novelty of this work is to use accurate shading estimations at 5 min timestamps with ANN
to predict accurately the PV power at every façade for three complete years, evidencing
thus the strengths of this kind of model to implement digital twin approaches for PV
in buildings.

2. Description of the BIPV Arrays under Study

Building 42 of CIEMAT headquarters (geographic co-ordinates: 40.4555◦ N and
3.7300◦ W) is located in a university area of Madrid (Spain). This building was refurbished
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in 2016, which included the installation of five PV arrays made up of monocrystalline
silicon modules on the upper part of its south, west and east façades [29]. Figure 1 shows
two pictures of this building with the different BIPV systems. Three identical PV arrays
of 7sx2p modules (i.e., seven modules in series and two strings in parallel) were placed at
the east façade, while one PV array of 7sx4p modules and another one of 8sx2p modules
were installed in the south and west façades, respectively. Table 1 summarizes the technical
details of the whole BIPV installation.

Figure 1. Pictures of Building 42 showing the three façades with the five arrays: west and south
façades (a), and east façade (b).

Table 1. Technical data of the monitored BIPV system.

Array Azimuth (◦) Configuration Module Model Power (W) Inverter Model Inverter Power (kW)

South 172.3 7sx4p SunPower
E18-325 305 Fronius IG Plus 100 V-3 8

West 262.3 8sx2p SunPower
E20-327 327 Fronius IG Plus 50 V-1 4

East 1 82.3 7sx2p SunPower
E20-327 327 Fronius IG Plus 50 V-1 4

East 2 82.3 7sx2p SunPower
E20-327 327 Fronius IG Plus 50 V-1 4

East 3 82.3 7sx2p SunPower
E20-327 327 Fronius IG Plus 50 V-1 4

AC output power, voltage and current at the maximum power point, and module
temperature of each PV array, as well as the in situ meteorological variables, were monitored.
In particular, the global tilt irradiance (90◦ tilt angle) at the south, west and east directions
was monitored through calibrated reference cells placed at the top of a 3-m-high mast on
the rooftop of the building. A complete database of all these electrical and meteorological
variables was prepared on a 5 min basis.

3. Methodology
3.1. Computation of Shading Parameters

The first step in computing shadows on any part of a single façade in the building is to
prepare a digital surface model (DSM). A DSM is a high-resolution digital elevation model
of a given geographic area, which includes the elevation of buildings, trees, plants and
other elements nearby [30,31]. LIDAR data supplied by the Spanish Geographic Institute
(IGN) were used to create a DSM of the surrounding area of the building under study
(Figure 2). A line of large deciduous trees can be observed in front of the east façade of
the building in the DSM picture. A detailed description of the preparation of the DSM
can be found in a previous work done by CIEMAT [28]. A gridded representation of each
façade of the building was built from the DSM. The spatial resolution of the grid was 25 cm
in length by 50 cm in height; thus, it was possible to identify which parts of the gridded
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area (hereafter, elements) were occupied by the PV array. For each 25 × 50 cm element of
the PV array it was possible to determine shadow casting by computing the maximum
elevation in the DSM for every possible azimuth (with an angular resolution of 1◦) and
comparing it with the sun elevation throughout the year for a 5 min time interval. This
can be more effectively achieved by moving the DSM to the Sun azimuth and generating
a Boolean variable that takes value 1 if the element is fully illuminated by the sun and 0
if it is completely shaded [30]. Finally, for every time instant in a year, it was possible to
identify which elements of the PV array were illuminated and which ones were shaded.
Hence, the variable denoted as FS represents the percentage of area which is illuminated in
each array for every timestamp.

Figure 2. Digital Surface Model (DSM) of the CIEMAT area with the contour of the building under
study marked in red.

3.2. Artificial Neural Network (ANN)

A unique sequential neural network model with three hidden layers and one output
layer was prepared for modeling the five BIPV arrays using the TensorFlow package. Tensor-
Flow is a powerful open-source software library for numerical computation particularly
focused on machine learning algorithms [32]. The hidden layers contained 18, 12 and
6 nodes, respectively. The input layer contained five numerical variables and one single
categorical variable. The numerical variables were the plane on the array irradiance (POA),
the module temperature (Tm), the ambient temperature (Ta), the illuminated fraction of
array (FS) and the cosine of the incident angle (cosAOI). The categorical variable was the
façade orientation (i.e., south, west or north) expressed numerically by the azimuth angle of
the corresponding façade. Figure 3 shows the scheme of the ANN model. The dataset for
training and testing the model consisted of two complete years (2017 and 2018) of 5-min-basis
data of the meteorological variables and the output power of each array. POA, Tm, Ta and
power were monitored with the inverter of each BIPV system, while FS and cosAOI were
calculated for every timestamp from the DSM and the pvlib package [33], respectively.
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Figure 3. Artificial neural network scheme.

The 2017–2018 dataset was randomly sorted and divided into a 70% fraction for
training the ANN model and a 30% fraction for testing it. Figure 4 shows the performance
of this ANN in the training stage using the mean square error (MSE) as loss function. The
model converged quickly and both training and testing performances nearly reached 2% of
mean square error after 300 epochs.

Figure 4. Performance of training the ANN for 300 epochs.
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Figure 5 shows the scatter plot of the modeled versus measured power with the testing
dataset, which consisted of 30% of the 5-min-basis data monitored during 2017 and 2018. A
good correlation was found between predicted and experimental power values.

Figure 5. Scatter plot resulting from testing the ANN model.

In order to explore the relative importance of the input variables in the ANN model,
there are several methods and algorithms to quantify the explanatory contributions of the
predictor variables in the network. For instance, Olden’s algorithm is able to evaluate
artificial neural networks with multiple hidden layers based on the product of the input-
hidden and hidden-output connection weights summing the products across all hidden
neurons [34]. Figure 6 shows the relative importance of the input variables for the model
trained for predicting BIPV array output power. The parameters related to the array
orientation (façade azimuth) and the shading of the array (FS) were the most meaningful
ones according to Olden’s method.

Figure 6. Relative importance of the input variables of the ANN model.
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4. Results

The ANN model, after being trained and tested during the 2017–2018 period, was
used to estimate the power output of the five BIPV arrays at 5 min timestamps for almost
three years (from January 2019 to December 2021). Figure 7 shows the results of modeling
all these arrays with the ANN by means of the scatter plots of modeled versus experimental
output power. According to the results shown in the figure, one single ANN model is
able to estimate power differencing the orientation of the façade and take into account the
partial shading effect. The agreement was very good, although the arrays at the east façade
showed higher dispersion. Indeed, the presence of a row of deciduous trees 10 meters
away in front of the east façade produced a higher uncertainty in the shadow estimates
for this façade compared to the other two. This observation has been already presented
in a previous work where the physical modeling of the same arrays was studied [28]. In
addition, Figure 8 illustrates the ANN modeling capabilities with respect to the time of day
by comparing the monitored and the modeled output power for a few specific days in 2019;
as observed, the model precision and accuracy were significant.

Figure 7. Scatter plots of modeling PV power in BIPV arrays for the period from January 2019 to
December 2021.

In order to assess the performance of the ANN model, Table 2 lists several metrics:
mean bias error (MBE), root mean square error (RMSE), mean absolute error (MAE) and
coefficient of determination (R2).
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Figure 8. ANN modeling results of the BIPV monitored data for a few illustrative days.

Table 2. Error metrics in the assessment of the ANN model.

Array MBE (kW) RMSE (kW) MAE (kW) R2

South 0.02 0.19 0.12 0.99

West 0.00 0.11 0.07 0.99

East 1 −0.01 0.17 0.07 0.94

East 2 0.04 0.20 0.08 0.88

East 3 0.00 0.21 0.09 0.89

Since the energy generation of each BIPV array is different according to the façade
orientation, the modeling performance comparison should be complemented with a relative
error metric. Thus, the relative mean absolute error in modeling 5-min-basis power data for
the arrays was 6.0%, 8.2%, 11.1%, 15.2% and 15.9%, respectively, indicating that the arrays
installed in the east façade had higher uncertainties, and, among them, the one placed at
the northernmost part of the east façade (array East 3) showed the highest error. This is due
to the large number of high trees placed close to the northeast corner of the building (see
Figure 2). Nevertheless, in spite of the uncertainty due to the presence of nearby trees, the
modeling capability and accuracy of the ANN model is noteworthy. Therefore, this model
could be used in diagnosis for detecting abnormal working conditions of any BIPV array.

The impact of including the shadow cast in the ANN is significant and contributes
notably to the accuracy in the predictions. This is one of the main hypotheses of this work,
and part of the novelty as well. In order to prove this statement, a sensitivity analysis on
the role of the input parameter FS was performed in the East 1 array. ANN models with
and without using FS as input were trained and tested with the dataset. Figure 9 shows the
scatter plots of the performance of each ANN, where the improvement achieved by adding
the shadows as input to the ANN is clearly evidenced.
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Figure 9. Scatter plot of the power modeled with ANN for the East 1 array including FS as input (a)
compared to the case of no FS in the input variables (b).

5. Conclusions

Modeling PV power in building façades and BIPV systems requires precise knowledge
of shading caused by the surrounding buildings, trees and other urban elements. This
implies the modeling of PV module performance under partial shading conditions, which
vary along both the day and the year. Moreover, the shading patterns at a given time might
be very heterogeneous depending on the surrounding elements to the façade, making
performance modeling even more challenging. In this work, a model based on one single
artificial neural network (ANN) has been trained and validated with two years of data
of a monitored BIPV system consisting of five different arrays placed at the top of the
south, west and east façades of a CIEMAT’s building in a university area of Madrid (Spain).
Afterwards, the analyzed ANN has been used for modeling the power behavior of all the
arrays during three subsequent years (i.e., from 2019 to 2021), and the results showed a
prediction of the power of each sub-array on a 5 min basis with high accuracy. The input
parameters to this model were divided into two groups. The first group corresponded
to PV direct conversion parameters: POA irradiance, module temperature and ambient
temperature. The second group corresponded to geometry, orientation and shading of
the modules: cosine of the sunlight incident angle, azimuth of the façade and illuminated
fraction of the array at every time step.

The analysis of the ANN performance evidenced the significant importance of geometric-
related variables, in particular, the proper computation of the shadows. Thus, the use of
shadow cast using DSM from LIDAR data as input data in modeling the power of BIPV
seems to play a crucial role for the accuracy of BIPV predictions.

Notwithstanding the challenging conditions associated with the dynamic partial
shading of the arrays, particularly those installed on the east façade which are facing a long
line of large trees nearby, the proposed ANN model was able to estimate the power of each
individual PV array with high accuracy, while being an easy-to-implement methodology.
The mean relative error (MRE) in predicting power on a 5 min basis ranged approximately
from 6% to 15%. Therefore, this kind of model can be used relatively well in digital
twin approaches for buildings with BIPV systems, which would allow the diagnosis of
anomalous behaviors. In addition, the methodology proposed in this work can be generally
extrapolated to any other building whenever LIDAR data are available for proper shading
computation. Benchmarking of other different machine learning methods (gradient boost,
support vector machine, and random forest) could be interesting for selecting the most
appropriate algorithm. Future work will assess this comparison. A further study focused
on forecasting with ANNs is also expected as future scope.
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Nomenclature

ANN Artificial Neural Network
BAPV Building Applied Photovoltaics
BIPV Building Integrated Photovoltaics
DSM Digital Surface Model
DT Digital Twin
LIDAR Laser Imaging Detection and Ranging
PV Photovoltaic
cosAOI cosine of the sunlight incident angle
FS illuminated fraction of array
MAE mean absolute error
MBE mean bias error
POA plane of array irradiance
R2 coefficient of determination
RMSE root mean square error
Ta ambient temperature
Tm module temperature
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