
Citation: Chen, W.; Zheng, L.; Li, H.;

Pei, X. An Assessment Method for

the Impact of Electric Vehicle

Participation in V2G on the Voltage

Quality of the Distribution Network.

Energies 2022, 15, 4170. https://

doi.org/10.3390/en15114170

Academic Editor: Calin Iclodean

Received: 17 May 2022

Accepted: 2 June 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

An Assessment Method for the Impact of Electric Vehicle
Participation in V2G on the Voltage Quality of the
Distribution Network
Wei Chen *, Lei Zheng, Hengjie Li and Xiping Pei

College of Electrical Engineering and Information Engineering, Lanzhou University of Technology,
Lanzhou 730050, China; zl15588052012@163.com (L.Z.); lihj915@lut.edu.cn (H.L.); 175918381@lut.edu.cn (X.P.)
* Correspondence: chenlin@lut.edu.cn

Abstract: In order to further evaluate the impact of vehicle-to-grid (V2G) on the distribution network,
this paper studies a method to assess the influence of electric vehicles participating in charge and
discharge on the voltage quality of the distribution network. First, considering the state of charge of
the EV, the participation of the owner and other factors, the charging and discharging model is built.
Then, the probabilistic power flow calculation based on Latin hypercube sampling is used to obtain
the probability distribution of the voltage amplitude of the charge and discharge load connected to
the distribution network, and finally the evaluation index is established to quantify and calculate
the voltage quality of the distribution network participating in the V2G process of electric vehicles.
Simulation results show that the evaluation method has the advantage of fast calculation speed while
ensuring known accuracy, introduces the probability distribution of expected value and variance
quantification of voltage amplitude, more intuitively understands the degree of influence on voltage
quality before and after V2G, and can effectively assess the impact of electric vehicles accessing
the distribution network in V2G mode on the power quality of low-voltage residential areas and
industrial and commercial areas, and this evaluation method can provide useful reference for the
formulation of future V2G control strategies and the planning of future urban power grids.

Keywords: V2G; Latin hypercube sampling; probabilistic current; voltage mass

1. Introduction

With the rapid development of the electric vehicle industry, the power quality prob-
lems caused by the access of electric vehicles to the power grid have received more and
more attention from the industry. As the charging load increases, the original power flow
distribution in the power network will also change, resulting in problems such as three-
phase imbalance and voltage deviation becoming increasingly prominent [1]. In addition,
the batteries in the electric vehicles can also be used to discharge into the distribution grid,
which is the V2G option. This will require a good realization of vehicle-network interaction
between energy and information [2], so that the discharging into the network is orderly
and occurs during peak demand periods, and charging occurs during trough periods. This
would permit V2G to be used to balance the load curve and would reduce the impacts of
electric vehicle charging and discharging on the power quality of the distribution network.

Charging load modeling is a prerequisite for the study of orderly vehicle-network
interaction, the impact of electric vehicle access on the distribution network, and the
location and capacity of charging facilities [3]. On the basis of Ref. [4], analyzing the travel
rules of electric vehicles, a charging load probability model based on time variables is
proposed, and the simulation method of Monte Carlo is used to complete the prediction
of electric vehicle charging load [5]. Considering the correlation between electric vehicle
charging load and historical charging behavior, a charging load prediction method for
electric vehicles based on multi-related day scenarios is proposed. Ref. [6] based their
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study on the topological information of the road network and the randomness of the
travel chain, and the coupling relationship between the road network and the power
grid was constructed by graph theory in order to establish a spatio-temporal prediction
model of electric vehicle load. Ref. [7] comprehensively considered the uncertainties such
as SOC, parking time and time-sharing price of the vehicle, and analyzed the time and
spatial distribution of the response power and charging load of electric vehicles in V2G
by using fuzzy algorithm. Ref. [8] studied dynamic programming and put forward a
distributed EV orderly participation in V2G regulation mode, and its simulation analysis
in the V2G mode. Electric vehicle charge and discharge control is also an important topic.
Ref. [9] coordinated the charging behavior of plug-in electric vehicles in smart grids in
real time to minimize power losses and improve voltage curves. Ref. [10] aiming at the
problem of orderly charging and discharging of large-scale electric vehicles, this paper
proposes a kind of power system load spike problem caused by electric vehicle access in
the distribution network, to realize the peak shaving and valley filling of the power system
load. Refs. [11,12] load stabilization control strategies are established through the rational
use of the vehicle’s ability to store energy. In summary, research work on the potential
impact of electric vehicle charge and discharge on distribution networks is in fact quite
important. However, there are few studies on the method of assessing the effect of EVs on
the voltage quality of the distribution network in V2G mode.

In view of the above problems, this paper establishes a charging and discharging
model based on the charging state of electric vehicles, user willingness, and other factors.
It starts from the main influencing indexes of V2G connection on the voltage quality of the
power system, and proposes a new idea for the voltage quality evaluation of a power system
based on V2G technology, based on the probability power flow calculation of Latin super
cube sampling, to obtain the probability distribution of the voltage amplitude of charge and
discharge load connected to the distribution network, and finally establishes an evaluation
index to quantify the voltage quality of the distribution network for electric vehicles
participating in the V2G process. In order to adapt to the evaluation of the voltage quality
of the distribution network of electric vehicles in the V2G mode, it provides a reference
value for the wide promotion of V2G technology and the planning and construction of
urban distribution networks.

2. V2G Model Based on EV Driving Characteristics
2.1. Electric Vehicle Charge-Discharge Model
2.1.1. Vehicle Arrival and Departure Times

The time for vehicles to go out is mainly in the morning and evening rush hours. The
office space is generally the end of the first time to go out, and the entry time is mainly at
07:00–10:00 [13]. The closing hours are during the rush hour of another trip, between 17:00
and 19:00.

Charging is approximately normally distributed when the first travel arrival time of
an electric vehicle follows a normal distribution [14,15], and its probability density function
is represented by Equation (1).

y(N) ∼ f
(

u
∣∣∣x(N−1)

)
= U[0, f (xn−1)]

(u) (1)

where: µx = 7.9; бx = 1.
Assuming that the time td of the electric vehicle leaving the working area obeys the

normal distribution of the variance of 1 h and the mean is 7.9, then the residence time of
the electric vehicle ∆tp can be calculated using Equation (2).

∆tp = td − ta (2)
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2.1.2. Daily Mileage

Based on the traffic data of residents, the daily mileage of an EV x (unit: km) can be
expressed as a log normal distribution, and Equation (3) is its probability density function.

fd(x) =
8

5xσd
√

2π
exp

(
− (ln(5x)− 3 ln 2− µd)

2

2σ2
d

)
(3)

where in µd = 3.58; бd = 0.89.

2.1.3. The State of Charge before the Vehicle Participates in V2G

The remaining power of the electric vehicle battery determines the charging behavior
of the owner, and the degree of discharge of the electric vehicle depends on the expected
surplus power before the user travels. Although turning on the air conditioner in summer
consumes the vehicle’s electricity due to seasonal and temperature reasons, according to
previous car travel data, it is shown that the vehicle’s state of charge is not significantly
affected by the climate [16], so the decisive factor affecting the state of charge of the vehicle
is the daily mileage of the vehicle.

This article considers the departure of the vehicle to the arrival as a stage, then the
state of charge at the time of the departure of the vehicle Eend is the initial state of the
vehicle. Through the statistical analysis of the historical charging data of the vehicle, it is
found that Eend ≤ 1 and basically follows N (0.94, 0.12). If Eend > 1, then Eend = 1. The state
of charge at the time the vehicle arrives at the destination is expressed in Equation (4).

Estart = Eend −
x

xmax
(4)

In the Equation, xmax is the maximum travel distance when the electric vehicle is
fully charged.

2.1.4. Charge and Discharge Time

In general, vehicles can participate in the discharge during the time period after
arriving at the work area in the morning and returning home in the evening. Combined
with the willingness of the owner and the method of probability analysis, assuming that
the initial discharge time of the vehicle that can participate in the scheduling within 24 h is
uniformly distributed in the discharge period, the probability density function when the
vehicle begins to release electrical energy is:

fD(x) =
{

1, x ∈ [8, 16] ∪ [18, 23]
0, x /∈ [8, 16] ∪ [18, 23]

(5)

Based on the above constraints, Table 1 shows the potential charging and discharging
behavior of the vehicle.

Table 1. Classification of charging and discharging behavior of electric vehicles.

Category Description

Sc,d The vehicle is involved in charge and discharge
Sd Vehicles are only involved in discharge
Sc The vehicle is only involved in charging
S0 Vehicles are idle

Assuming that the electric vehicle can be connected with the charging pile when it
enters the destination, the time of charging and discharging the electric vehicle depends on
the user’s willingness to participate, the charging and discharging power of the vehicle,
and the amount of electricity. Take the maximum charge, discharge power Pc, where Pd is
8.1 kW. In order to improve the battery life of electric vehicles, it is assumed that vehicles
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participating in V2G scheduling can participate in up to two charges and discharges a day,
in order to slow down the battery performance decline caused by excessive charge and
discharge. In order to ensure the subsequent driving needs of the owner and the new peak
period of electricity caused by multiple charge and discharge, the vehicles participating in
the V2G adopt the first release and then charge mode.

Equation (6) is the charging length of the electric vehicle Tc during the second τ charge
and discharge cycle, Equation (7) is the second τ charge and discharge cycle discharge time
Td, and the scheduling time of the electric vehicle ∆ts is calculated by Equation (8).

Tc =


(Eend,τ+1−Estart,τ)C

Pcηc
, Sev = Sc

(Eend,τ+1−E1)C
Pcηc

, Sev = Sc,d

(6)

Td =


(Estart,τ−Eend,τ+1)C

Pdηd
, Sev = Sc

(Estart,τ−E1)C
Pdηd

, Sev = Sc,d

(7)

∆ts = Tc + Td, (8)

where ηc and ηd are the charging and discharging efficiency of the vehicle, both take
0.92; the charging and discharging behavior type of the electric vehicle is Sev; the battery
usable capacity of the electric vehicle is C; Sc,d, Sd, and Sc represents the vehicle charge and
discharge, discharge only and charge only mode.

2.1.5. Feature Parameters and Classification Criteria

Table 2 shows the characteristic factors based on the charging history data of electric
vehicles, which cause car owners to participate in the charging and discharging decision
results [17].

Table 2. The characteristic factors for car owners to participate in V2G.

Symbol Description

pd The compensatory electricity price expected by the owner, yuan/(kW·h)
pc The charging price expected by the owner, yuan/(kW·h)

∆tp The length of the vehicle’s downtime, h
∆ts Vehicle dispatch duration, h
Eend The state of charge when the vehicle leaves
E1 The lowest state of charge acceptable to the owner

Estart The state of charge at the time of arrival of the vehicle

According to the characteristic parameters in Table 2, the following rules for charging
and discharging electric vehicles are established.

(1) When Estart > E1, the EV can immediately participate in the V2G scheduling when it
drives into the destination;

(2) When Estart ≥ E1 and Eend ≥ E1, the remaining power when the electric vehicle leaves
can meet the owner’s subsequent car requirements;

(3) If the electric vehicle participates in the V2G scheduling, calculate ∆ts and ∆tp. If
∆ts ≤ ∆tp, then the electric car is able to end charging and discharging during parking;

(4) Compare the compensated electricity price with the charging price, if the pd > pc,
then the owner is more willing to participate in the discharge. Referring to China’s
time-sharing electricity price, the highest pc takes 0.9947 yuan/(kW·h).

In summary, only when the four conditions of pd > pc, ∆ts ≤ ∆tp, Eend ≥ E1, Estart ≥ E1
are met, then electric vehicles are likely to participate in V2G scheduling, otherwise electric
vehicles will not participate in V2G.

Figure 1 shows the vehicle participating in the V2G prediction process.
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Figure 1. Electric vehicle charge and discharge prediction flow chart.

The single EV prediction process is as follows:

(1) Simulated driving state: First, the arrival and departure time of the electric vehicle,
the driving distance of the single day, the SOC before participating in the V2G,
the charging and discharging time, and the charging price and compensation price
expected by the user are extracted, and the remaining battery power when the electric
vehicle is driven in, the time required for charging and discharging, and the docking
time are calculated;

(2) Whether to participate in V2G: Based on the number of features of vehicle charge and
discharge behavior, random sampling is used to determine whether electric vehicles
participate in V2G;

(3) Calculation of V2G load: In the case of electric vehicle participation in charge and
discharge scheduling, the V2G time and load of the vehicle are calculated; in the case
that the electric vehicle does not participate in the charge and discharge scheduling,
only the charging time and load of the EV are calculated;

(4) Judge the total number of participating vehicles and go back to step 1 to cycle until
the last electric vehicle is judged.
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Based on the size of the electric vehicle scale, the vehicle is predicted, the above steps
are repeated, and the charge and discharge load are accumulated in hours, and finally the
vehicle charge and discharge load curve of the region is obtained.

3. EV Participates in the Power System Voltage Quality Assessment Method of Charge
and Discharge

Traditional probabilistic research methods include approximation, analysis and simula-
tion. The approximation method cannot estimate the magnitude of the error, the analytical
method calculates faster, but the accuracy is not high, while the simulation method calcu-
lates with high accuracy but slower calculation speed. Simulation methods include Latin
hypercube sampling method and Monte Carlo simulation method. Compared with the
Monte Carlo method, the Latin hypercube sampling method can ensure that the sample
values are within the distribution range of all input random variables, with good robust-
ness, small error, high sampling efficiency, and can obtain higher accuracy with a small
sample scale. Therefore, after obtaining the load model of electric private car participating
in V2G, the probability power flow calculation of Latin super cube sampling is used to
obtain the optimal node voltage in V2G mode, and finally the voltage deviation index is
used to evaluate the voltage quality of the distribution network.

3.1. Latin Hypercube Sampling

Latin hypercube sampling is an efficient method for reflecting the overall distribution
of an entire random variable in sampled numerical values. The goal is to ensure that
the sample points can cover the entire sampling area. This method consists of two steps:
sampling and arranging. The first step is to sample each input random variable to ensure
that the entire sample point is completely covered to the area of the random distribution.
In the second step, the order in which the sampled values of the random variables are
arranged is adjusted so that the correlation between the samples is as low as possible.

3.1.1. Sampling

Assuming that X1, X2, ..., XK are the random variables K for which the solution is
required, and XK is any of the random variables in X1, X2, ..., XK, then its cumulative
probability distribution function is:

Yk = Fk(Xk) (9)

If the sample size is expressed in N, the sampling method is: first divide the ordinate
coordinate of Yk = Fk (Xk) into N equal intervals that are not overlapping parts, then the
length of each interval is 1/N, the sampling value of Yk is the middle point of each interval,
and the inverse function of Yk = Fk (Xk) is used to find the sample value of Xk:

xkn = F−1
k

(
n− 0.5

N

)
, n = 1, 2, · · · , N (10)

A sampling diagram is shown in Figure 2.

Figure 2. Schematic diagram of Latin hypercube sampling.



Energies 2022, 15, 4170 7 of 14

The sampled values for each random variable are listed in a row in the matrix. After
sampling of K random variables, all sampling values xkn constitute the initial sampling
matrix of the K × N order, also known as the experimental matrix, which is expressed as:

XKN =


X11 X12 · · · X1N
X21 X22 · · · X2N

...
...

. . .
...

XK1 XK2 · · · XKN

 (11)

Because the elements in the sampling matrix above are randomly combined, the degree
of association between each column is uncontrolled and random.

3.1.2. Arrangement

Surveys have shown that when using the Monte Carlo method to solve for random
variables with multiple inputs, the accuracy depends not only on the sampled values, but
also on the relationship between the sampled values of each random variable. In general,
the less the correlation, the higher the accuracy [18,19], so the main goal of the permutation
is to reduce the correlation between any variable in the sampling matrix, the permutation
in Equation (11) aims to reduce the correlation between the rows.

The degree of association of the rows of the K × N-order matrix V can be measured by
a K × K correlation coefficient matrix ρ [20], the expression of which is as follows:

ρ =
{

ρij, i = 1, 2, · · · , K; j = 1, 2, · · · , K
}

(12)

In the equation, ρij is the coefficient of association between row i and row j, such as:

ρij =

K
∑

k=1

[(
Vik −Vi

)(
Vjk −Vj

)]
√

K
∑

k=1

(
Vik −Vi

)2 K
∑

k=1

(
Vjk −V j

)2

In order to facilitate the analysis of the correlation of the sample matrix, this paper
uses the square mean root of the correlation coefficient matrix to represent:

ρrms =

√
K
∑

i=1

K
∑

j=1
ρ2

ij − K√
K(K− 1)

(13)

Florian proposed a way to reduce the correlation between the matrices using the
Cholesky decomposition method [21], the basic idea was to reduce the correlation between
the sample matrices by adjusting the positions of the elements in the sample matrix without
changing the size of the LKN of the sample matrix.

The permutation matrix LKN is a matrix of the K × N order, and the numerical value
of each row represents the arrangement of the corresponding row elements of the sample
matrix XKN. Using the Cholesky decomposition method, the following steps can be obtained:

(1) Initialize the permutation matrix LKN, each row of which contains an arbitrary permu-
tation of l, 2, 3, · · · , N;

(2) Assuming that the correlation coefficient matrix of each row of LKN is ρL, then ρL is
positively fixed and is a symmetric matrix, which is decomposed into a non-singular
solid trigonometric matrix D using the Cholesky decomposition method:

ρL =
{

ρLij, i = 1, 2, · · · , K; j = 1, 2, · · · , K
}
= DDT (14)
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Since D is not singular and has an inverse matrix, combined with LKN, it is possible to
form a set of matrices with low correlation coefficients:

GKN = D−1LKN (15)

Since the data in GKN is not necessarily a positive integer, the arrangement position of
the elements cannot be directly represented in the sample matrix, so an effective method is
to use the size ordering of the elements in the GKN to represent the arrangement position of
the elements in the sample matrix, and repeat this step until the column correlation of the
permutation matrix is less than the predetermined value.

The rows of the resulting sample matrix X represent all the sampled values of a
random variable, while this column represents the input values of each random variable in
a random simulation. Assuming that ρx is the correlation coefficient matrix between the
columns of the sample matrix XKN, ρLrms and ρXrms are the degree of association between
the rows of the arrangement matrix and the sample matrix, which can be found from
Equation (15). It should be noted that ρx and ρL are not exactly the same, so ρLrms and ρXrms
are also different, but we were able to find that smaller ρLrms lead to smaller ρXrms.

3.2. Comprehensive Evaluation Index of Voltage Quality

The evaluation of voltage quality includes three-phase imbalance, voltage deviation,
harmonic limit, etc. This paper focuses on the study of voltage deviation, which is an
important indicator of the power quality evaluation of the distribution network, that is, the
power system in the normal working state, the difference between the measured voltage of
a node, and the rated voltage of the percentage of the system rated voltage, that is:

∆U =
Ure −UN

UN

× 100% (16)

Referring to GBT 29316-2012 “Technical Requirements for Power Quality of Electric
Vehicle Charging and Replacing Facilities”, combined with the operation status of the
actual distribution system, nodes with voltage amplitudes in the range of [0.95, 1.05]
are considered to meet the voltage standards [22]. Through the method of probabilistic
power flow model based on Latin hypercube sampling, the probability distribution of the
voltage amplitude of each node in the power system is obtained, and the voltage deviation
caused by the charge and discharge load is analyzed to quantify the voltage quality of the
distribution network participating in the V2G process of electric vehicles.

4. Study Analysis
4.1. Example Description

In this paper, taking a certain type of electric private car with a battery capacity of
57 kW·h and a cruising range of 500 km as an example, in view of the impact of large-scale
participation in V2G electric private car access on the voltage quality of the distribution
network, this paper sets the scale of electric private cars to 200. User V2G engagement
was 75% [23]. The V2G power of electric private cars is 8.1 kW; assuming that the V2G
efficiency is 0.92, the battery emergency capacity coefficient µmin is 20%, that is, 11.4 kW·h.
The 24 h of the day are divided into 24 identical periods, and the periods that can be
connected to the power grid are after 8:00 to the unit and after 18:00 to home, that is,
8:00–13:00 and 18:00–23:00 for reasonable discharge, and reasonable charging after 13:00
and 23:00 respectively after the discharge is completed to meet the needs of subsequent
travel. Combined with factors such as the battery margin of the electric vehicle and the
user’s willingness to participate in V2G, the discharge time is determined.

In this paper, the IEEE 33 node system of the distribution network is used as an ex-
ample for simulation and analysis [24], and Figure 3 shows the topology diagram of
the system.



Energies 2022, 15, 4170 9 of 14

Figure 3. Topology diagram of an IEEE 33-node power distribution system.

The typical daily (a) low-voltage residents and (b) low-voltage industrial and commer-
cial load curves of a certain area in Gansu Province, as shown in Figure 4, are used. As can
be seen from the curve, peaks are reached around 12:00 and 19:00 in low-pressure residen-
tial areas, and troughs are reached around 5:00 and 16:00. The low-pressure industrial and
commercial area peaks around 11:00 and 19:30, and reaches a trough at 4:30 and 14:00.

Figure 4. Typical daily load in the region. (a) Typical daily load curve of low-voltage residential areas.
(b) Typical daily load curve of low-voltage industrial and commercial areas.

4.2. Simulation Result Analysis

Using the Monte Carlo method [25], the initial charge and discharge time, driving
distance, and SOC at the end of the EV are sampled, the charge and discharge power of
each time period is simulated, and the total charge and discharge power curve of each
time period is obtained. The daily load of charging and discharging electric vehicles for
low-voltage industrial and commercial and low-voltage residents is shown in Figure 5a
low-voltage residents and Figure 5 blow-voltage industrial and commercial vehicles:
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Figure 5. Charge and discharge load of an electric private car. (a) Low-voltage residential EV
participation in the V2G load curve. (b) Low-voltage industrial and commercial area EVs participate
in the V2G load curve.

As can be seen from Figure 5, in the case of considering V2G, electric private cars in the
two periods 08:00–13:00 and 18:00–23:00 [26], according to the remaining battery power and
user participation to the grid discharge, after the end of discharge for reasonable charging,
in low-voltage residential areas, the reasonable charge and discharge of electric vehicles
effectively played a role in peak shaving and valley filling. Additionally, in low-voltage
industrial and commercial areas most of the electric vehicles were parked in this area
during the day and drove away at night. Therefore, the participation of electric vehicles in
V2G can only improve the peak-to-valley difference during the day, while the improvement
effect of the peak-to-valley difference at night is not obvious. Under the condition of V2G,
the connection of electric vehicles with the power grid can not only transfer the charging
load during peak periods, but also provide power to the grid during peak periods to reduce
peak-to-valley difference and achieve the purpose of peak shaving and valley filling.

In this paper, the load data of low-voltage residential areas and low-voltage industrial
and commercial areas before and after participating in V2G are compared and analyzed
based on the probability power flow calculation of Latin hypercube sampling, and Figure 6
shows the voltage amplitude probability distribution of nodes 6 and 33 before and after (a)
low-voltage residential area and (b) low-voltage industrial and commercial area V2G. As
can be seen from the figure, the voltage amplitude difference between the front and back
nodes of V2G is small.
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Figure 6. Probability distribution of voltage amplitude before and after nodes 6 and 33 V2G. (a) Low-
pressure residential areas. (b) Low-pressure industrial and commercial area.

Figure 6 only reflects the probability distribution of the voltage amplitude of certain
nodes, and to fully evaluate the accuracy of the evaluation method, the mean value of
the voltage amplitude (the expected value of the voltage at this node) and the variance
are calculated for analysis [27]. Tables 3 and 4 are the mean and variance of the voltage
amplitudes of the remaining nodes, except node 1 in low-voltage residential areas and
low-voltage industrial and commercial areas.
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Table 3. Mean and variance of node voltage amplitude before and after V2G in low-voltage residen-
tial areas.

Node
Mean Variance

Node
Mean Variance

Before
V2G

After
V2G

Before
V2G

After
V2G

Before
V2G

After
V2G

Before
V2G

After
V2G

2 1.0423 1.0426 0.0042 0.0040 18 0.7858 0.7968 0.1454 0.1389
3 1.0049 1.0069 0.0246 0.0234 19 1.0411 1.0415 0.0048 0.0046
4 0.9844 0.9871 0.0358 0.0342 20 1.0330 1.0336 0.0092 0.0088
5 0.9639 0.9674 0.0471 0.0451 21 1.0313 1.0320 0.0101 0.0096
6 0.9141 0.9196 0.0745 0.0743 22 1.0298 1.0305 0.0109 0.0104
7 0.9026 0.9085 0.0808 0.0774 23 0.9962 0.9989 0.0293 0.0277
8 0.8868 0.8732 0.0895 0.0856 24 0.9797 0.9835 0.0382 0.0359
9 0.8455 0.8541 0.1013 0.0968 25 0.9716 0.9762 0.0426 0.0398

10 0.8455 0.8541 0.1122 0.1073 26 0.9094 0.9151 0.0770 0.0737
11 0.8426 0.8513 0.1139 0.1088 27 0.9032 0.9091 0.0805 0.0770
12 0.8373 0.8463 0.1168 0.1116 28 0.8781 0.8849 0.0942 0.0903
13 0.8154 0.8254 0.1290 0.1231 29 0.8603 0.8677 0.1040 0.0997
14 0.8071 0.8174 0.1336 0.1276 30 0.8521 0.8598 0.1085 0.1040
15 0.8014 0.8118 0.1367 0.1306 31 0.8388 0.8474 0.1158 0.1109
16 0.7961 0.8067 0.1397 0.1335 32 0.8358 0.8446 0.1175 0.1124
17 0.7882 0.7990 0.1441 0.1377 33 0.8351 0.8439 0.1179 0.1128

Table 4. Mean and variance of voltage amplitudes of nodes before and after V2G in low-voltage
industrial and commercial areas.

Node
Mean Variance

Node
Mean Variance

Before
V2G

After
V2G

Before
V2G

After
V2G

Before
V2G

After
V2G

Before
V2G

After
V2G

2 1.0474 1.0474 0.0011 0.0011 18 0.9714 0.9708 0.0342 0.0345
3 1.0349 1.0349 0.0065 0.0065 19 1.0469 1.0469 0.0014 0.0013
4 1.0285 1.0284 0.0094 0.0093 20 1.0434 1.0436 0.0029 0.0027
5 1.0220 1.0220 0.0012 0.0012 21 1.0427 1.0429 0.0032 0.0030
6 1.0068 1.0066 0.0188 0.0188 22 1.0421 1.0423 0.0034 0.0033
7 1.0035 1.0032 0.0202 0.0203 23 1.0316 1.0317 0.0079 0.0079
8 0.9990 0.9986 0.0222 0.0223 24 1.0254 1.0256 0.0107 0.0105
9 0.9928 0.9925 0.0249 0.0250 25 1.0225 1.0226 0.0119 0.0118

10 0.9873 0.9868 0.0273 0.0275 26 1.0053 1.0051 0.0195 0.0195
11 0.9865 0.9860 0.0276 0.0278 27 1.0033 1.0032 0.0203 0.0203
12 0.9850 0.9845 0.0283 0.0285 28 0.9955 0.9954 0.0238 0.0237
13 0.9791 0.9785 0.0309 0.0311 29 0.9900 0.9900 0.0262 0.0261
14 0.9768 0.9763 0.0318 0.0321 30 0.9874 0.9874 0.0273 0.0273
15 0.9754 0.9748 0.0325 0.0328 31 0.9835 0.9834 0.0290 0.0290
16 0.9740 0.9734 0.0331 0.0334 32 0.9826 0.9826 0.0294 0.0294
17 0.9720 0.9714 0.0340 0.0342 33 0.9824 0.9823 0.0295 0.0295

As can be seen from Table 3, in low-voltage residential areas, after considering V2G,
the mean value of the voltage amplitude increases. The mean value increases when it is less
than 1, when it is closer and closer to 1, and, when it is 1, the maximum increase is no more
than 1.05, so the pass rate increases and the variance decreases; the smaller the variance,
the smaller the node voltage fluctuation. Therefore, the participation of electric vehicles in
low-voltage residential areas with V2G can effectively improve the voltage quality of the
distribution network.

It can be seen from Table 4 that in the low-voltage industrial and commercial areas,
after considering V2G, the average value of the voltage amplitude is close, and the voltage
pass rate is not much different; the variance is reduced and increased, and the overall
voltage fluctuation is not significantly reduced.



Energies 2022, 15, 4170 13 of 14

5. Conclusions

In this paper, an evaluation method is proposed to evaluate the impact of large-scale
EV participation in the V2G process on the voltage quality of the distribution network
by analyzing the situation in which electric vehicles are connected to the distribution
network as charging and discharging loads. Combined with the charging state of electric
vehicles, user willingness and other factors, a charge-discharge model is established. The
probabilistic power flow model based on Latin super cube sampling is used to solve the
power flow, obtain the probability distribution of the voltage amplitude of the charge and
discharge load connected to the distribution network, and then evaluate the voltage quality
of the distribution network by the participation of electric vehicles in the V2G process.
Finally, taking the IEEE33 node as an example, the simulation analysis of electric vehicles
connected to the distribution network is carried out, and the simulation results show
that the evaluation method quantifies the probability distribution of voltage amplitude
before and after V2G, and more intuitively and effectively depicts the impact of electric
vehicles accessing the distribution network in V2G mode on improving the voltage quality
of low-voltage residential areas and low-voltage industrial and commercial areas, which
can provide theoretical support for the formulation of future V2G control strategies and
the planning of urban power grids.
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