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Abstract: The grid-connected inverter is a vital power electronic equipment connecting distributed
generation (DG) systems to the utility grid. The quality of the grid-connected current is directly related
to the safe and stable operation of the grid-connected system. This study successfully constructed
a robust control system for a grid-connected inverter through a dynamic recurrent fuzzy-neural-
network imitating sliding-mode control (DRFNNISMC) framework. Firstly, the dynamic model
considering system uncertainties of the grid-connected inverter is described for the global integral
sliding-mode control (GISMC) design. In order to overcome the chattering phenomena and the
dependence of the dynamic information in the GISMC, a model-free dynamic recurrent fuzzy-neural-
network (DRFNN) is proposed as a major controller to approximate the GISMC law without the
extra compensator. In the DRFNN, a Petri net with varied threshold is incorporated to fire the rules,
and only the parameters of the fired rules are adapted to alleviate the computational workload.
Moreover, the network is designed with internal recurrent loops to improve the dynamic mapping
capability considering the uncertainties in the control system. In addition, to assure the parameter
convergence in the adaptation and the stability of the designed control system, the adaptation laws
for the parameters of the DRFNN are deduced by the projection theorem and Lyapunov stability
theory. Finally, the experimental comparisons with the GISMC scheme are performed in an inverter
prototype to verify the superior performance of the proposed DRFNNISMC framework for the
grid-connected current control.

Keywords: grid-connected inverter; global integral sliding-mode control (GISMC); dynamic recurrent
fuzzy neural network (DRFNN); Petri net; robustness control

1. Introduction

Developing a new generation system based on distributed sources is a crucial way
to achieve low carbon emissions and solve the problem of energy shortage. Microgrids
(MGs) can significantly contribute to the utilization of distributed energy sources flexibly
and efficiently and promote the transition from traditional grids to intelligent grids [1–4].
The electrical energy characteristic of the distributed power generation is different, and
the output voltage easily fluctuates with changes of the environment. Therefore, grid-
connected inverters are necessary interface units for distributed sources connecting to a
MG or utility grid (UG) [5–7]. Research on advanced control strategies for inverter systems
to enhance control capability is of great significance to promote the conversion efficiency
of distributed sources, increase grid-connected capacity, and ensure the reliable operation
of microgrids.

With the increase of nonlinear electric loads [8] and renewable energy systems [9] con-
nected to the UG, the traditional linear control methods cannot guarantee the quality of the
grid-connected current in the grid-connected inverter system with the existence of system
uncertainties including DC voltage fluctuation, disturbance from the utility grid system,

Energies 2022, 15, 4163. https://doi.org/10.3390/en15114163 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15114163
https://doi.org/10.3390/en15114163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5095-9637
https://doi.org/10.3390/en15114163
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15114163?type=check_update&version=2


Energies 2022, 15, 4163 2 of 20

and variation of the circuit parameters. In recent years, as an effective nonlinear robust
control scheme, sliding-mode control (SMC) [10] has attracted much attention in current
control for inverters in grid-connected power-supply modes to replace the conventional
linear control method. In sliding mode, SMCs can provide dynamic characteristics that are
invariant to system uncertainties [11], so they can achieve good dynamic response and ro-
bustness under the occurrence of system uncertainties and disturbance. They are especially
suitable for the control of power electronic circuits. However, the system dynamic loses
insensitivity to uncertainties in the reaching phase. Fortunately, global sliding mode control
(GSMC) can ensure the entire state trajectory of the controlled system in the sliding motion,
and global robustness against system uncertainties can be obtained throughout the whole
control process [12]. However, detailed system information is required in the SMC and the
GSMC law. Moreover, it is hard to know detailed information of the system uncertainty
in the practical grid-connected inverter system for the switching term in the control laws.
Generally, a large gain is selected to cover uncertainties that inevitably cause chatting
phenomena. Adaptive observers [13–15] are developed to approximate the uncertainty
bound, thereby relieving the chattering phenomena, but the observation accuracy depends
on the exact dynamic information of the controlled object.

Due to their ability to approximate an arbitrarily smooth function and independence
from prior knowledge of the system model, intelligent control techniques (i.e., fuzzy logic,
neural networks, and fuzzy neural networks) have [16–18] been an effective approach to
constructing intelligent observers. Unfortunately, intelligent observers work as auxiliary
controllers to estimate the unknown nonlinear part or uncertainties in the mathematical
model. Moreover, an extra compensator is required for the approximation error, which in-
creases the complexity of the controller design [19,20]. In order to solve the above problems,
conventional nonlinear control strategies are integrated into the FNN to construct model-
free intelligent control frameworks [21–24]. However, the feedforward network structure
of the FNN causes a static problem in dealing with the dynamic system [25]. Although the
adaptation of the weights and the membership function for the FNN can effectively enhance
the dynamic ability, the feedforward FNN does not fully utilize the dynamic information
within the network [22]. The recurrent FNN (RFNN) involves internal feedback loops to
realize dynamic mapping, which can significantly ensure the dynamic performance and
demonstrates more robust performance against unpredictable uncertainties [26–29]. High
computational burden is a significant drawback of control systems based on FNN. In the
conventional FNN, all parameters of the network are adjusted online. However, some
rules can be redundant in the steady-state, and the adaptation of parameters corresponding
to those rules will cause an unnecessary computational burden. The computational load
can be reduced by involving a Petri net (PN) in the traditional FNN [30]. Therefore, this
study aims to combine the Petri FNN and the RFNN to construct a dynamic recurrent FNN
(DRFNN) for the current control of the grid-connected inverter, to preserve the superior
dynamic and robust performance with less computational burden.

The main objective of this study is to construct a dynamic recurrent fuzzy-neural-
network imitating sliding-mode control (DRFNNISMC) framework for a grid-connected
inverter. The main contributions are as below:

(1) A DRFNN framework independent of the system dynamics is proposed as a major
controller to approximate the designed global integral sliding-mode control (GISMC) law
without the extra compensator. The proposed DRFNNISMC framework can effectively
address the chattering phenomena in the model-based GISMC scheme in the presence
of system uncertainties. The DRFNNISMC system proposed in this study has massive
application potential in grid-connected inverter systems to deal with the system DC bus
voltage and parameter variations, power disturbances, and nonlinear dynamics.

(2) The proposed DRFNN involves a Petri net with varied threshold and internal
feedback loops to alleviate the computational burden and improve the dynamic mapping
ability of the network. Therefore, the robustness to the uncertainties in the grid-connected
inverter system is significantly enhanced by the proposed DRFNNISMC strategy.



Energies 2022, 15, 4163 3 of 20

(3) Although system stability and convergence of the network parameters are obtained
in [31,32] according to the designed adaptation laws by the Lyapunov stability theorem,
the possibility would exist that the update values of network parameters are out of the
range of the boundaries. In order to avoid the singularity problem in the parameter
adaptive process, the projection algorithm is also utilized to derive the adaptive laws for
the network parameters.

Following the introduction, the circuit structure of the grid-connected inverter and
the dynamic model considering system uncertainties will be depicted in Section 2. The
model-based GIMSC scheme will be expressed in detail in Section 3. Then, the network
structure and the adaptation laws for network parameters in DRFNN are investigated in
Section 4. Section 5 will demonstrate the superiority of the proposed DRFNNISMC strategy
by experimental results in a prototype of the inverter in grid-connected mode. Finally, in
Section 6, some conclusions of this study will be drawn.

2. Descriptions of Grid-Connected Inverter

The framework of the grid-connected inverter is shown in Figure 1, which includes
a full-bridge circuit and an L-type low-pass filter (L f ) with the equivalent resistors (RL f ).
The direct current (DC) bus input voltage and the alternating current (AC) output voltage
are denoted as Vdc and vAB, respectively. vL f represents the voltage across the filter. The
single-phase full-bridge inverter works as a current source with the grid-connected current
(ig) and access to the utility grid (vg). Meanwhile, the unpredictable disturbance in the
utility grid system is considered as a voltage source (vld).
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Applying the Kirchhoff voltage law (KVL) in the output loop of the grid-connected
inverter in Figure 1 (generally, the equivalent resistor of the filter inductor is negligible), it
can be derived as

.
ig =

KPWM

L f
vu −

1
L f

vg −
1

L f
vld, (1)

where KPWM denotes the gain of the inverter by the unipolar PWM strategy. Generally,
the filter inductance L f is supposed to be an ideal constant. However, even high-quality
commercial inductance has a 10% tolerance [33]. On the other hand, disturbance incurred
by the utility power and DC bus voltage is also inevitable. Considering the parameter
variation and the disturbance in the utility grid, as well as the unmodeled system dynamic,
the mathematical model in Equation (1) can be re-expressed as
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.
x(t) = bpu(t) + dp f (t) + g(t)

= (bpn + ∆bpn)u(t) + (dpn + ∆dpn) f (t) + g(t)
= bpnu(t) + dpn f (t) +ϕ(t)

, (2)

where x(t) = ig, u(t) = vu, f (t) = vg, g(t) = −vld/L f , bp = KPWM/L f , and dp = −1/L f .
bpn and dpn denote the criterion values of bp and dp, respectively. ∆bpn and ∆dpn represent
the error between the actual and the criterion values. The system lumped uncertainty ϕ(t)
is defined as

ϕ(t) = ∆bpnu(t) + ∆dpn f (t) + g(t), (3)

Assumption 1. The defined system lumped uncertainty in Equation (3) is a bounded function;
assume that the boundary value can be expressed as

|ϕ(t)| < ρ, (4)

where | · | represents the absolute operator and ρ is a positive constant.

3. GISMC Design

A global integral sliding-mode control (GISMC) strategy is designed to obtain the
control target of regulating the grid-connected current (ig) to track a sinusoidal reference
signal (i∗g) with fast dynamic response and high robustness for a grid-connected inverter.
Moreover, a phase-locked loop (PLL) is adopted to capture the 0 unit sinusoidal function in
the current command.

Firstly, the baseline model control law can be designed as

ub(t) = b−1
pn [−dpn f (t) +

.
x∗ + Kiei], (5)

where ei = i∗g − ig.
Substituting Equation (5) into the nominal part of the system model

.
x(t) = bpnu(t) +

dpn f (t), the controlled nominal system dynamic is

.
ei + Kiei = 0, (6)

It is worth noting that the appropriate controller parameter (Ki) can be designed
to obtain the desired dynamic control performance for the nominal model. However,
if system uncertainties exist, the control performance index (e.g., rise time, overshoot,
and settling time) specified by Equation (6) cannot be ensured by the control law shown
in Equation (5), which designed based on the nominal model. Moreover, the controlled
system will even lose its stability. In order to guarantee the control performance under the
system uncertainties, a global sliding mode controller is designed.

Firstly, define a global integral sliding surface as

s(t) = C(ei)− C(ei0) + Ki

∫ t

0

∂C
∂ei

ei(t)dt, (7)

where C(ei) is designed to satisfy ∂C/∂ei = b−1
pn ; ei0 is the initial value of ei(t); Ki is a

designed positive constant. It can be seen that s(0) = 0 and

.
s(t) =

∂C
∂ei

.
ei +

∂C
∂ei

Kiei = 0, (8)

Thus, s(t) = 0 for all t ≥ 0. s(t) = 0 holds when t = 0. Therefore, the designed global
sliding surface shown in Equation (7) has global robustness against system uncertainties
without the reaching phase.
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Theorem 1. If the global integral sliding-mode control (GISMC) law is designed as Equation (9)
for the grid-connected inverter shown in Equation (2), the current tracking errorei(t) will converge
to 0 with t→ ∞ and the stability of the designed GISMC system for the grid-connected inverter
considering the system uncertainties will be guaranteed.

u1(t) = b−1
pn [−dpn f (t) +

.
x∗ + Kiei + Kssgn(s(t)], (9)

where Ks is the designed switching control gain.

Proof of Theorem 1. The first Lyapunov function candidate is defined as V1 = s2/2 and its
derivative can be obtained as

.
V1 = s

.
s

= s[−KSsgn(s)− ϕ]
≤ −(KS − |ϕ|)|s|

, (10)

Equation (10) will be hold under the condition of KS > ρ; the first Lyapunov function
and its derivative meet V1 > 0 and

.
V1 ≤ 0, respectively. Therefore, it can be proven that the

grid-connected inverter system is stable by the designed GISMC law shown in Equation (9)
and the current tracking error is convergent despite the existence of the system-lumped
uncertainty. �

It is worth noting that the selection of the gain of the switching control law (KS)
is significant to the control performance, which is limited by the bound of the system
uncertainty ρ. However, it is difficult to capture an accurate value for the system lumped
uncertainty (e.g., DC bus voltage and parameter variations, power disturbance, and the
nonlinear dynamics) in the practical application of grid-connected inverter systems [11]. If
a too large KS is selected, chattering phenomena will be inevitable and generate a negative
impact on the power electronic device, even exciting unstable system dynamics [21]. On
the other side, if the value of KS is too small, the inequality Equation (10) may not meet
.

V1 ≤ 0, especially in the worst cases. This will cause the designed control system to be
unstable. Therefore, careful selection of the control gain is required to avoid an increase in
chattering due to the switching term in Equation (9).

In order to attack the above problems of the SMC system, a dynamic recurrent
fuzzy-neural-network (DRFNN) to imitate the GISMC framework is proposed for a grid-
connected inverter in this study, which can ensure the robust control performance without
the requirement of the prior system dynamic and the additional compensator, despite
the existence of system uncertainties. Figure 2 depicts the block diagram of the proposed
dynamic recurrent fuzzy-neural-network imitating sliding-mode control (DRFNNISMC)
framework. Different from the traditional FNN controller, the proposed DRFNNISMC
strategy selects the designed global integral sliding surface shown in Equation (7) as the
input variable, and also adopts it to fire the useful rules and adaptation of the network
parameters in the proposed DRFNNISMC strategy. In the DRFNN, to alleviate the com-
putation burden of the network, only the contributing rules are fired by a designed Petri
layer. Moreover, the dynamic mapping ability of the fuzzy neural network (FNN) can be
enhanced by incorporating internal recurrent loops. In addition, the network parameters
are designed with the capability of self-learning to further enhance the dynamic perfor-
mance and ensure system stability. Finally, the output of the DRFNN is used as the control
input of the grid-connected inverter.
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4. DRFNNISMC Design
4.1. Dynamic Recurrent Fuzzy-Neural-Network

A DRFNNISMC scheme comprised of a five-layer fuzzy neural network (FNN) is
shown in Figure 3. Internal feedback loops are incorporated into the membership layer and
Petri nets are embedded between the rule and the output layer to construct the dynamic
recurrent FNN (DRFNN) framework. The propagation of signals and the online learning
laws for the proposed dynamic recurrent fuzzy-neural-network imitating sliding-mode
control (DRFNNISMC) are described as follows.
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2û
cK

 
Figure 2. Block diagram of DRFNNISMC framework. 

4. DRFNNISMC Design 
4.1. Dynamic Recurrent Fuzzy-Neural-Network 

A DRFNNISMC scheme comprised of a five-layer fuzzy neural network (FNN) is 
shown in Figure 3. Internal feedback loops are incorporated into the membership layer 
and Petri nets are embedded between the rule and the output layer to construct the dy-
namic recurrent FNN (DRFNN) framework. The propagation of signals and the online 
learning laws for the proposed dynamic recurrent fuzzy-neural-network imitating slid-
ing-mode control (DRFNNISMC) are described as follows. 

... ... ... ...

...



Input Layer

Membership 
Layer

Rule Layer

Output Layer

1q nq

1l lNl

Petri Layer

1z− 1z− 1z− 1z− 1z− 1z−

... ...

∏∏ ...

thdthdthd ... ...
thdthdthd

∏ ...hl

1
1p 1

jp 1
1

PNp 1
np j

np 1PN
np

1 1( )j jfμ 11
1 1( )pP NN fμ1 1

1 1( )fμ 1 1( )n nfμ ( )j j
n nfμ ( )pnPn NN

n nfμ

1
1

PNγ1
jγ1

1γ 1
nγ j

nγ PnN
nγ

hw

1w
lNw

y

 
Figure 3. Framework of DRFNN. 

4.1.1. Input Layer 

The input variables 1, ,i i nq
=   in this layer are delivered to the next layer directly. 

4.1.2. Gaussian Membership Layer with Recurrent Frame 
The internal feedback loops for each node in this layer are introduced to construct 

recurrent framework. The inputs of the membership layer are represented as 

Figure 3. Framework of DRFNN.

4.1.1. Input Layer

The input variables qi|i=1,··· ,n in this layer are delivered to the next layer directly.

4.1.2. Gaussian Membership Layer with Recurrent Frame

The internal feedback loops for each node in this layer are introduced to construct
recurrent framework. The inputs of the membership layer are represented as

f j
i (n) = qi(n) + γ

j
i · µ

j
i(n− 1), (11)
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where n represents the number of iterations; γ
j
i denotes the recurrent weight; µ

j
i(n− 1)

indicates the output signal of the membership layer in the previous time. The Gaussian
membership function is chosen for the membership layer that can be written as:

µ
j
i( f j

i ) = exp[−( f j
i − cj

i)
2
/(bj

i)
2
]

∣∣∣∣
j=1,··· ,Npi

, (12)

where exp[·] is the exponential function; cj
i is the mean value, and bj

i is the standard devia-
tion of the Gaussian function of the jth term for the ith input, respectively. The network pa-

rameters are collected into the vectors c = [c1
1 · · · c

Np1
1 · · · c1

n · · · c
Npn
n ]

T∣∣∣
i=1,··· ,n

∈ RNr×1, b =

[b1
1 · · · b

Np1
1 · · · b1

n · · · b
Npn
n ]

T∣∣∣
i=1,··· ,n

∈ RNr×1, and γ = [γ1
1 · · · γ

Np1
1 · · · γ1

n · · · γ
Npn
n ]

T∣∣∣
i=1,··· ,n

∈ RNr×1 in which Npi denotes the number of the Gaussian functions for the ith input and
Nr = ∑n

i=1 Npi denotes the total number of kernel functions of all input signals.

4.1.3. Petri Layer

To improve the transient performance and the robustness of the FNN system, some
membership functions are predetermined for the input signals by expert knowledge. How-
ever, the corresponding parameters of the redundant control rules are meaningless to
update along with the decrease of the tracking error at the steady-state, which requires
excessive computational resources. To solve the problem of the computation burden, a
dynamic Petri net [25] is incorporated into the traditional FNN structure to only transfer
the significant rules to the next layer. The competition law in the Petri layer for producing
the tokens to fire useful rules is selected as:

pj
i =

{
1 i f µ

j
i( f j

i ) ≥ dth
0 otherwise

, (13)

where pj
i is the transition of the neuron in the membership layer. If the outputs of the

neuron in the membership layer are larger than the dynamic threshold value (dth), the
transition pj

i will be set as 1; otherwise, it will be set as 0. Then, only the neuron in the
membership layer with token 1 will be fired and propagated to the next layer by the Petri
net. Moreover, the dynamic threshold value (dth) is tuned by the sliding-surface function
(s), which is designed as

dth =
α f exp[−β f (

1
2 ssT)]

1 + exp[−β f (
1
2 ssT)]

, (14)

where α f and β f are positive constants. It can be seen that the threshold values will be
decreased with a larger tracking error to activate more membership neurons and vice versa.

4.1.4. Layer 4 Rule Layer

Each neuron in the rule layer multiplies the fired outputs of the membership layer
according to different input signals. The result of the product for the hth rule can be
presented as

lh =

 ∏n
i=1 µ

j
i( f j

i )
∣∣∣
h=1,··· ,Nl

, pj
i= 1

0, pj
i = 0

, (15)

where Nl is the number of nodes in the rule layer. All the rules lh|h=1,··· ,Nl
are gathered as

a vector of l =
[
l1 · · · lh · · · lNl

]T ∈ RNl×1.
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4.1.5. Layer 5 Output Layer

This layer multiplies each rule with corresponding weights as the input of the output
layer, and the summation of all the input signals is the output of the FNN. The output can
be expressed in following form:

y =
Nl

∑
h=1

whlh = Wl, (16)

where wh is the connecting weight from the hth rule layer to the output layer. The weigh
vector W = [w1 · · ·wh · · ·wNl ] ∈ R1×Nl is defined for collecting the weighs.

4.2. Adaptive Scheme for Parameters of DRFNN

The approximation error between the GISMC law and the optimal DRNNISMC law is
defined for the derivation of the adaptive laws of the network parameters. Moreover, the
Lyapunov stability theory [34] and the projection theorem [35] are adopted to guarantee the
parameter convergence in the self-adaptive process and the global stability of the designed
DRNNISMC system.

The proposed DRNNISMC law can be represented as follows:

u2(s, W, c, b, γ) ≡Wl(s, c, b, γ), (17)

Assumption 2. There are optimal network parameters containing weight matrix (W∗), mean
vectors (c∗), standard deviation vectors (b∗), and recurrent weight (γ∗) for an optimal DRNNISMC
law (u∗2) to imitate the GISMC law in (6). The optimal DRNNISMC law is expressed as

u1 = u∗2(s, W∗, c∗, b∗, γ∗) = W∗l∗(s, c∗, b∗, γ∗) + ε, (18)

where W∗, c∗, b∗, γ∗, and l∗ are the optimal vectors of W, c, b, γ, and l respectively; ε is the
minimum mapping error vector.

The estimation of the GISMC law by the DRNN can be presented as

û2(s, Ŵ, ĉ , b̂, γ̂) = Ŵl̂(s, Ŵ, ĉ , b̂, γ̂), (19)

where Ŵ, ĉ, b̂, γ̂ and l̂ denote the estimated values of W∗, c∗, b*, γ∗, and l*, respectively.
The approximation error (ũ) between the estimation of the GISMC law (u1) and the optimal
DRNNISMC law (u∗2) is defined as

ũ = u∗2 − û2 + ε

= W∗l∗(s, c∗, b∗, γ∗)− Ŵl̂(s, ĉ, b̂, γ̂) + ε
, (20)

In order to be convenient for later stability analyses, the Taylor series expansion is
employed to transform the output of the rule layer (l) into partially linear forms. The
following linearization expansion for l̃ can be obtained

l̃ =
[
l̃1 l̃2 · · · l̃Nl

]T
≡ lcc̃ + lbb̃ + lγγ̃ + h, (21)

where lc =

[
∂l̂1
∂ĉ

∂ l̂2
∂ĉ · · ·

∂ l̂Nl
∂ĉ

]T
|ĉ=c∗ ∈ RNl×Nr ; lb =

[
∂ l̂1
∂b̂

∂ l̂2
∂b̂
· · · ∂ l̂Nl

∂b̂

]T
|b̂=b∗ ∈ RNl×Nr ;

lγ =
[

∂ l̂1
∂γ̂

∂l̂2
∂γ̂ · · ·

∂ l̂Nl
∂γ̂

]T
|γ̂=γ∗ ∈ RNl×Nr ; l̃ = l∗ − l̂, c̃ = c∗ − ĉ, b̃ = b∗ − b̂, and γ̃ = γ∗ − γ̂,

respectively, and h ∈ RNl×1 is the summation of the higher-order term in the Taylor series.
Then, the optimal value of rule (l) can be rewritten as

l∗ = l̂ + l̃ = l̂ + lcc̃ + lbb̃ + lγγ̃ + h, (22)



Energies 2022, 15, 4163 9 of 20

Substitute (22) into the approximation error (ũ) in Equation (21) to obtain

ũ = W∗l∗ − Ŵl̂ + ε

= W∗(l̂ + lcc̃ + lbb̃ + lγγ̃ + h)− Ŵl̂ + ε

= (W∗ − Ŵ)l̂ + (Ŵ + W̃)lcc̃ + (Ŵ + W̃)lbb̃ + (Ŵ + W̃)lγγ̃ + W∗h + ε

= W̃l̂ + Ŵlcc̃ + Ŵlbb̃ + Ŵlγγ̃ + W̃(lcc̃ + lbb̃ + lγγ̃) + W∗h + ε

= W̃l̂ + Ŵlcc̃ + Ŵlbb̃ + Ŵlγγ̃ + H

, (23)

where W̃ = W∗ − Ŵ and H = W̃(lcc̃ + lbb̃ + lγγ̃) + W∗h + ε represents the uncertain term.

Theorem 2. The dynamic model of the grid-connected inverter is modeled by Equation (2). If the
proposed DRFNNISMC strategy is designed as described in Equation (17), the adaptation laws
for the parameters in DRFNN are designed as depicted in Equations (24)–(31). Then, the current
tracking error and the estimated errors (W̃, c̃, b̃ and γ̃ ) are stably convergent.

If (‖Ŵ‖ < bw) or (‖Ŵ‖ = bw and sŴl̂ ≤ 0)
.

Ŵ
T
= ηwsl̂

, (24)

If (‖Ŵ‖ = bw and sŴl̂ > 0)
.

Ŵ
T
= ηw(sl̂− sl̂ŴŴT

‖Ŵ‖2 )
, (25)

If (‖ĉ‖ < bc) or (‖ĉ‖ = bc and sŴlcĉ ≤ 0)
.
ĉ

T
= ηcsŴlc

, (26)

If (‖ĉ‖ = bc and sŴlcĉ > 0)
.
ĉ

T
= ηc(sŴlc − sŴlcĉĉT

‖ĉ‖2 )
, (27)

If (‖b̂‖ < bb) or (‖b̂‖ = bb and sŴlbb̂ ≤ 0)
.
b̂

T
= ηbsŴlb

, (28)

If (‖b̂‖ = bb and sŴlbb̂ > 0)
.
b̂

T
= ηc(sŴlb − sŴlbb̂b̂T

‖b̂‖2 )
, (29)

If (‖γ̂‖ < bγ) or (‖γ̂‖ = bγ and sŴlγγ̂ ≤ 0)
.
γ̂

T
= ηγsŴlγ

, (30)

If (‖γ̂‖ = bγ and sŴlγγ̂ > 0)
.
γ̂

T
= ηγ(sŴlγ − sŴlγγ̂γ̂T

‖γ̂‖2 )
, (31)

where ‖·‖ is the Euclidean norm operator; bw, bc, bb, and bγ are bound values; ηw, ηc, ηb, and
ηγ are learning rates. The bounds values and learning rates are all given positive values. In
Figure 3, η = [ηw ηc ηb ηγ] and b = [bw bc bb bγ] are defined as learning-rate vector and bound
vector, respectively.

4.3. Stability Analysis of DRFNNISMC

Proof of Theorem 2. The following second Lyapunov function is defined for the proposed
DRFNNISMC system:

V2(s, W̃, c̃, b̃) =
1
2

s2 +
W̃W̃

T

2ηw
+

c̃T c̃
2ηc

+
b̃

T
b̃

2ηb
+

γ̃Tγ̃

2ηγ
, (32)



Energies 2022, 15, 4163 10 of 20

By differentiating Equation (31), one can obtain

.
V2(s, W̃, c̃, b̃, γ̃) = s

.
s− W̃

.
Ŵ

T

ηw
−

.
ĉ

T
c̃

ηc
−

.
b̂

T
b̃

ηb
−

.
γ̂

T
γ̃

ηγ

= s[−KSsgn(s)− ϕ + H] + Vw + Vc + Vb + Vγ

≤ −(KS − |H − ϕ|)|s| ≤ 0

, (33)

where Vw = sW̃l̂ − W̃
.

Ŵ
T

ηw
, Vc = sŴlcc̃ −

.
ĉ

T
c̃

ηc
, Vb = sŴlbb̃ −

.
b̂

T
b̃

ηb
, and Vγ = sŴlγγ̃ −

.
γ̂

T
γ̃

ηγ
. If the controller gain of KS > |H − ψ| is satisfied, the result of

.
V2(s, W̃, c̃, b̃, γ̃) ≤ 0

can be achieved. The detailed deduction of Equation (33) is depicted in Appendix A.
From Equation (33), since

.
V2(s, W̃, c̃, b̃, γ̃) is negative semi-definite, i.e.,

.
V2(s, W̃, c̃, b̃, γ̃)

≤
.

V2(s(0), W̃, c̃, b̃, γ̃), then s(t), W̃, c̃, b̃ and γ̃ are bounded.
Define a function G(t) ≡ (KS − |H − ϕ|)|s| = −

.
V2(s, W̃, c̃, b̃, γ̃) and integrate G(t)

with respect to time to obtain∫ t

0
G(τ) dτ ≤ V2(s(0), W̃, c̃, b̃, γ̃)−V2(s(t), W̃, c̃, b̃, γ̃), (34)

Since V2(s(0), W̃, c̃, b̃, γ̃) is bounded and V2(s(t), W̃, c̃, b̃, γ̃) is non-increasing and
bounded, one can conclude that lim

t→∞

∫ t
0 G(τ) dτ < ∞ and

.
G(t) is bounded. According

to Barbalat’s Lemma [34], one can conclude that s(t), W̃, c̃, b̃, and γ̃ will converge to zero as
t→ ∞ . As a result, the proposed DRFNNISMC system is proven to be stable. Moreover,
the adaptation laws can guarantee the convergence of the parameters in DRFNN. �

The execution process of the designed DRFNNISMC strategy is depicted in the
flowchart shown in Figure 4.
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5. Experimental Verification

The effectiveness of the proposed DRFNNISMC strategy is demonstrated in an ex-
perimental prototype shown in Figure 5 and the detailed circuit parameters of the grid-
connected inverter are described in Table 1. Moreover, the grid-connected current and the
utility voltage are measured by the Hall current and voltage sensor, respectively. In addi-
tion, a digital phase-locked-loop (PLL) is designed to supply a unit sinusoidal waveform
that keeps in phase with the utility voltage for the current command. Furthermore, the
proposed control algorithms and the digital PLL are realized in a digital signal processor
(DSP) board (TMS320F28335) using “C” codes, and the pulse-width-modulation (PWM)
signals are generated through ePWM modules. Then, the PWM signals are sent to the
driving circuit to generate the control signal for the power switches (FQA24N50F power
MOSFETs). Finally, a digital oscilloscope is used to display the waveforms of the grid
voltage and the grid-connected current.
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Table 1. Values of parameters for grid-connected inverter.

Circuit Parameters Value

DC bus voltage 200 V
Current command (RMS) 10 A

Grid voltage (RMS) 110 V
Filter inductance 2 mH

Fundamental frequency 50 Hz
Switching frequency 15 kHz

In this study, the number of membership functions for the input node is designed
as Np1 = 3, the initial mean values are set as ci=1,··· ,n;j=1,··· ,Np1

= 3 ×
(

j− Np + 1
2

)
, initial

standard deviation values are selected as b j
i

∣∣∣
i=1,··· ,n;j=1,··· ,Npi

= 3, the initial weight of the

self-feedback loop γ
j
i

∣∣∣
i=1,··· ,n;j=1,··· ,Npi

= 0.5, and the initial weight (W) is set as zero vector.

The parameter values roughly initialized based on expert knowledge are adjusted online
to the optimal values for satisfactory responses according to the adaptation laws in
Equations (24)–(31). Moreover, the adaptive learning rates of the network parameters
are selected as ηw = 0.26, ηc = ηb = 8.55 × 10−4, ηγ = 0.12. The parameters in the
dynamic threshold value for the Petri layer are chosen as α f = 0.15, β f = 350.

Comparative experiments on the global integral sliding-mode control (GISMC) and
the proposed dynamic recurrent fuzzy-neural-network imitating sliding-mode control
(DRFNNISMC) are performed in this study. The parameters of the GISMC and the proposed
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DRFNNISMC are selected to achieve similar control performance with each other in the
nominal case, and the control parameters for the global integral sliding surface used in
GISMC and the proposed DRFNNISMC are both selected as ki = 1.45× 103, ks = 0.86 for
a fair comparison. Furthermore, to record the respective control performances of the two
control strategies, a normalized mean square error (NMSE) value of the current tracking
error is expressed as

NMSE(ei) =
1

I∗g mT

T

∑
n=1

ei
2(n), (35)

where I∗g m is the maximum value of the current command and T is the sampling time.

5.1. Performance Verification in Steady-State

Figures 6 and 7 show the experimental results of the grid-connected inverter system in
steady-state. One can see from Figure 6 that the power factor (PF) values are more than 0.99
and the total harmonic distortion (THD) values of the current are less than 2% by the two
control strategies. However, the THD and the NMSE values are reduced by 22.95% and
32.3% compared with the values of 1.83% and 0.0235 by GISMC in Figure 6a, and the values
of 1.41% and 0.0159 by the proposed DRFNNISMC in Figure 6b, respectively. Moreover,
the PF value is controlled to be 0.9925 by GISMC in Figure 6a, which is improved to 0.9985
by the proposed DRFNNISMC in Figure 6b.
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Figure 6. Experimental results of the grid-connected inverter in steady-state: (a) GISMC;
(b) DRFNNISMC.

In addition, Figure 7 depicts the harmonic spectrum of the grid-connected current.
The THD value is measured to be 1.83% and the third harmonic content is about 1.62%
with the GISMC scheme in Figure 7a. Nevertheless, as seen in Figure 7b, the THD value is
reduced to 1.41%, and the third harmonic content (0.67%) is reduced by more than one-half
by the proposed DRFNNISMC scheme with the same filter inductance (Lf = 2 mH). The
proposed DRFNNISMC scheme can effectively improve the quality of the grid-connected
current with a lower THD value, and fewer low order harmonics that are more difficult
to eliminate. It can be seen in Figures 6 and 7 that superior quality and higher-precision
tracking of the grid-connected current can be obtained by the proposed DRFNNISMC
strategy in the steady-state.
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Figure 7. Harmonic spectrum of grid-connected current: (a) GISMC; (b) DRFNNISMC.

5.2. Verification of Dynamic Performance

Dynamic experimental research under the grid-connected power variations was per-
formed to further validate the superior robustness of the proposed DRFNNISMC. The
experimental voltage and current response under power variations from 1 kW to 0.5 kW
and from 0.5 kW to 1 kW are demonstrated in Figures 8 and 9, respectively. As seen in
Figures 8a and 9a, the chattering phenomenon occurs during the transition process against
the power variations by the GISMC because of the large gain in the switching control term
for coping with system uncertainties in (9); the NMSE values were recorded as 0.0312 and
0.0308 are reduced to 0.0195 and 0.0189, as shown in Figures 8b and 9b, which provides
at least a 37.5% current tracking improvement from the proposed DRFNNISMC. More-
over, the transient oscillation is decreased effectively by the proposed DRFNNISMC with
reasoning and online-learning capability and mathematical independence of the system.
It can be concluded that the grid-connected inverter system controlled by the proposed
DRFNNISMC framework possesses more robustness against power variation without
oscillation, even though the power varies at the peak value.
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Figure 9. Experimental voltage and current response of grid-connected inverter under grid-connected
power variations from 1 kW to 0.5 kW: (a) GISMC; (b) DRFNNISMC.

5.3. Robustness Property against Parameter Variations

The fluctuation of DC-bus voltages due to distributed generations and filter induc-
tance variation in the grid-connected inverter seems inevitable [33]. In order to illustrate
the excellent robustness of the proposed DRFNNISMC against parameter variations, the
experimental result of the grid-connected inverter with the DC-bus voltage deviation of
10% (Vdc = 180 V) from the nominal voltage (Vdc = 200 V) and the grid-connected inverter
under the filter inductance with Lf = 1.5 mH (with nominal filter inductance of Lf = 2 mH)
controlled by the proposed DRFNNISMC are depicted in Figures 10 and 11, respectively.
Compared to Figure 6b, the THD value of the current and the NMSE values of the cur-
rent tracking error are increased by 2.84% and 4.96%, and 2.51% and 3.77%, with the 10%
voltage reduction and 25% inductance reduction, respectively. Moreover, the PF values
are controlled to be more than 0.997 with a very slight decline. The experimental results
of the grid-connected inverter shown in Figures 10 and 11 verify that the robust control
performance of the proposed DRFNNISMC is less sensitive to parameter variations as a
model-free framework.
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5.4. Experimental Results Discussion

The experimental performance comparisons of the GISMC and the proposed DFN-
NISMC strategy are summarized in Table 2. The experimental comparisons with the
GISMC strategy from Figures 6–9 show that the proposed DRFNNISMC possesses superior
control performance with higher grid-connected power quality and higher-precision cur-
rent tracking due to its capabilities of fuzzy reasoning and parameter online self-learning.
Moreover, under the power variations, the proposed DRFNNISMC can provide at least
37.5% current tracking improvement and effectively decrease the chattering phenomenon
in the GISMC system. In addition, the proposed DRFNNISMC as a model-free control
scheme is less sensitive to parameter variations seen in Figures 10 and 11. Thus, the robust-
ness of current tracking for the grid-connected inverter can be achieved by the proposed
DRFNNISMC framework with the occurrence of system uncertainties without detailed
system information.

Table 2. Experimental performance comparison of two control methods.

Performance Control Methods GISMC Proposed DRFNNISMC

Output power 1 kW
THD (ig) 1.83% 1.41%

PF 0.9925 0.9985
NMSE (ei) 0.0235 0.0159

Power variations from 0.5 kW to 1 kW NMSE (ei) 0.0312 0.0195

Power variations from 1 kW to 0.5 kW NMSE (ei) 0.0308 0.0189

DC-bus voltage fluctuation (Vdc = 180 V)
THD (ig) / 1.45%

PF / 0.9970
NMSE (ei) / 0.0163

Inductance variation (Lf = 1.5 mH)
THD (ig) / 1.48%

PF / 0.0165
NMSE (ei) / 0.9975

Dependence on system parameters High None

Robustness Good Favorable

Chattering Chattering None

Learning ability None Online self-learning

6. Conclusions

A dynamic recurrent fuzzy-neural-network imitating sliding-mode control (DRFN-
NISMC) framework is proposed in this study to construct an excellent performance control
system for an inverter system in grid-connected mode. Due to its ability to approximate
continuous functions, the designed DRFNN works as a major controller to approximate the
GISMC law without the extra compensator. The concept of a Petri net with the simplified
rule firing mechanism is introduced to lessen the computational load of parameter learn-
ing. Moreover, the frame of internal recurrent loops is utilized to improve the dynamic
capability of network mapping. In addition, the adaptation laws are derived by the Lya-
punov stability theory and the projection theorem to assure the convergence of the network
parameters and the stability of the proposed DRFNNISMC system.

In order to further enhance the robustness against system uncertainties, type-2 fuzzy
neural networks can be developed to approximate the nonlinear control laws. Moreover,
the intelligent controller for the grid-connected inverter can designed and analyzed by con-
sidering the influence of weak grid characteristics in order to improve the grid-connected
power quality of the microgrid (MG). In addition, multi-function grid-connected inverters
with the compound functions of grid-connected power generation as well as power quality
management (e.g., voltage sags, harmonic currents, and reactive currents compensation)
can be further investigated to promote the customization of MG systems in future work.
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Abbreviations

MG Microgrid
UG Utility grid
SMC Sliding-mode control
GSMC Global sliding mode control
GISMC Global integral sliding-mode control
FNN Fuzzy neural network
PN Petri net
RFNN Recurrent fuzzy neural network
DRFNN Dynamic recurrent fuzzy-neural-network
DRFNNISMC Dynamic recurrent fuzzy-neural-network imitating

sliding-mode control
DC Direct current
AC Alternating current
KVL Kirchhoff voltage law
PLL Phase-locked loop
DSP Digital signal processor
PWM Pulse width modulation
NMSE Normalized mean square error
PF Power factor
THD Total harmonic distortion
Variables and parameters
L f Filter inductor
RL f Equivalent resistors of filter
Vdc DC bus input voltage of inverter
vAB AC output voltage of inverter
ig Grid-connected current
vg Voltage of utility grid
vld Disturbance in utility grid
Kc PWM gain of inverter
vt Amplitude of triangular-carrier signal
vu Modulation signal
X System state
u Control input
f, g Variable of state equation
bpn, dpn Criterion values of state equation coefficients
bp, dp State equation coefficients
∆bpn, ∆dpn Difference between real and criterion values of

state equation coefficients



Energies 2022, 15, 4163 17 of 20

ϕ(t) System lumped uncertainty
ρ Boundary value of system lumped uncertainty
i∗g Reference signal of grid-connected current
ub Baseline model control law
ei, ei0 Current tracking error, initial value of error
S global integral sliding-surface
Ki, Ks Controller parameters of GISMC
u1 Control law of GISMC
V1 First Lyapunov function candidate for GISMC scheme
qi|i=1,··· ,n Input variables of DRFNN

γ = [γ1
1 · · · γ

Np1

1 · · · γ1
n · · · γ

Npn
n ]

T∣∣∣
i=1,··· ,n

Recurrent weight vector in membership layer

c = [c1
1 · · · c

Np1

1 · · · c1
n · · · c

Npn
n ]

T∣∣∣
i=1,··· ,n

Mean deviation vector of Gaussian functions

b = [b1
1 · · · b

Np1

1 · · · b1
n · · · b

Npn
n ]

T∣∣∣
i=1,··· ,n

Standard deviation vector of Gaussian functions

f j
i Input of jth membership neuron for the ith input signal

µ
j
i Output of jth membership neuron for the ith input signal

Npi Number of nodes in membership layer for ith input
Nr Total number of membership functions of all input signals
pj

i Transition of jth membership neuron for the ith input signal
dth Dynamic threshold value
α f , β f Parameters of dynamic threshold
l =

[
l1, · · · , lNl

]
∈ RNl×1 Output of rule layer

Nl Number of nodes in rule layer
W = [w1 · · · wh · · · wNl ] Connecting weight vector from rule layer to output layer
y Output of DRFNN
W∗, c∗, b*, γ∗, l* Optimal vectors of W, c, b, γ, l
Ŵ, ĉ, b̂, γ̂, l̂ Estimated vectors of W∗, c∗, b*, γ∗, l*

W̃, c̃, b̃, γ̃, l̃ Difference between optimal and estimated vector
u∗2 Optimal DRNNISMC law
ε Minimum mapping error vector
û2 Estimation of u∗2
ũ Approximation error
lc, lb, lγ Coefficient vectors of first-order terms in Taylor series
h Summation of higher-order term in Taylor series
H Uncertain term in approximation error
b= [bw bc bb bγ] Bound vectors of W, c, b, γ

η= [ηw ηc ηb ηγ] Learning rates of W, c, b, γ

V2 Second Lyapunov function candidate for
DRFNNISMC scheme

G Defined function for proof of stability and convergence
of DRFNNISMC system

Appendix A

The derivative of Equation (31) with respect to time can be expressed as

.
V2(s, W̃, c̃, b̃, γ̃) = s

.
s− W̃

.
Ŵ

T

ηw
−

.
ĉ

T
c̃

ηc
−

.
b̂

T
b̃

ηb
−

.
γ̂

T
γ̃

ηγ
, (A1)

replacing u1 and ũ with Equations (9) and (23), respectively. The actual DRNNISMC law as
shown in Equation (19) can be rewritten as

û2 = u1 − ũ
= b−1

pn [−dpn f (t) +
.
x∗ + Kiei + Kssgn(s)]

−(W̃l̂ + Ŵlcc̃ + Ŵlbb̃ + Ŵlγγ̃ + H)

, (A2)
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Based on the actual DRNNISMC law, the derivative of the global integral sliding-
surface (s) with respect to time can be re-expressed as

.
s = −KSsgn(s)− ψ + (W̃l̂ + Ŵlcc̃ + Ŵlbb̃ + Ŵlγγ̃ + H), (A3)

By substituting (A2) into (A1), one can obtain

.
V2(s, W̃, c̃, b̃, γ̃) = s[−KSsgn(s)− ψ] + s

(
W̃l̂ + Ŵlcc̃ + Ŵlbb̃ + Ŵlγγ̃ + H)]

− W̃
.

Ŵ
T

ηw
−

.
ĉ

T
c̃

ηc
−

.
b̂

T
b̃

ηb
−

.
γ̂

T
γ̃

ηγ

= s[−KSsgn(s)− ψ + H] + (sW̃l̂− W̃
.

Ŵ
T

ηw
) + (sŴlcc̃−−

.
ĉ

T
c̃

ηc
)

+ (sŴlbb̃−
.
b̂

T
b̃

ηb
) + (sŴlγγ̃−

.
γ̂

T
γ̃

ηγ

)
= s[−KSsgn(s)− ψ + H] + Vw + Vc + Vb + Vγ

, (A4)

where Vw = sW̃l̂− W̃
.

Ŵ
T

ηw
, Vc = sŴlcc̃−

.
ĉ

T
c̃

ηc
, Vb = sŴlbb̃−

.
b̂

T
b̃

ηb
, Vγ = sŴlγγ̃−

.
γ̂

T
γ̃

ηγ
.

Vw can be rewritten as the following expression according to the adaptation law of the
output weights designed as shown in Equation (24).

By Equation (24),

Vw = sW̃l̂− W̃
.

Ŵ
T

ηw
= sW̃l̂− W̃(ηwsl̂)

ηw
= 0, (A5)

By Equation (25),

Vw = sW̃l̂− W̃
.

Ŵ
T

ηw
=

W̃sl̂ŴŴT

‖Ŵ‖2 =
sŴl̂

‖Ŵ‖2 W̃ŴT , (A6)

The result of W̃ŴT
= (W∗ − Ŵ)ŴT

= 1
2 (‖W

∗‖2 − ‖Ŵ‖2 − ‖W̃‖2
) < 0 is satisfied

according to the conditions of ‖Ŵ‖ = bw and sŴl̂ > 0, and the result of Vw < 0 can be
guaranteed due to ‖W∗‖ < bw = ‖Ŵ‖.

According to the analysis of Equations (A5) and (A6), one find that Vw ≤ 0. Similarly,
the results of Vc ≤ 0, Vb ≤ 0, and Vγ ≤ 0 can also be satisfied. Then, (A4) can be
re-expressed as

.
V2(s, W̃, c̃, b̃, γ̃) = s[−KSsgn(s)− ψ + H] + Vw + Vc + Vb + Vγ

≤ sKSsgn + s(H − ψ)
≤ −(KS − |H − ψ|)|s|≤ 0

, (A7)

If the controller gain of KS > |H − ψ| is satisfied, the result of
.

V2(s, W̃, c̃, b̃, γ̃) ≤ 0 can
be obtained.
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