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Abstract: This paper introduces a new two-speed planetary gear automatic transmission using an
electronically controlled wedge clutch. In order to verify the feasibility of using this transmission
in pure electric vehicles, the influencing factors of the two-speed transmission due to the increase
in mass and the reduction in transmission efficiency are introduced. The vehicle simulation model
was established on the MATLAB/Simulink platform, and the dynamic programming method was
used to optimize the transmission ratio and shifting law. The simulation results show that the use of
a two-speed automatic transmission can effectively improve the economic performance and dynamic
performance of battery electric vehicles.

Keywords: battery electric vehicle; wedge clutch; automatic transmission; dynamic programming;
transmission ratio; shift schedule

1. Introduction

At present, the battery electric vehicle transmissions on the market are mainly fixed
ratio transmissions. Compared with fuel engines, the electric motor has high efficiency, large
torque at low speed, and good speed-adjustable characteristics. Fixed ratio transmissions
can basically meet the needs of electric vehicles [1]. Studies have shown that changing the
fixed ratio transmission to a two-speed automatic transmission can reduce the performance
requirements of the battery and drive motor, and improve the economic performance and
dynamic performance of the vehicle [2–8]. The traditional AT automatic transmission uses
a torque converter and a hydraulic control system, which requires the engine to drive
the oil pump to continuously rotate during operation, and the transmission efficiency is
low [9]. Therefore, it is not suitable for battery electric vehicles that rely solely on low-
energy-density battery power sources. In view of the mature technology of planetary
gear automatic transmission for traditional fuel vehicles, the literature [10,11] has studied
the application of planetary gear two-speed automatic transmission in battery electric
vehicles, and concluded that the two-speed planetary gear automatic transmission can
meet the power requirements of battery electric vehicles, but it did not give its economic
performance and the optimization method of speed ratio selection and shift sequence. To
apply two-speed planetary gear automatic transmission to battery electric vehicles, the
complexity and inefficiency of its hydraulic shift control system must be reduced and
improved. In addition, the impact of increased mass and reduced transmission efficiency
compared to single-speed transmission must also be considered.

In this paper, a new type of electronically controlled wedge clutch two-speed planetary
gear automatic transmission is used, which cancels the hydraulic torque converter and
adopts an electronically controlled wedge clutch for the shifting actuator. Taking a front-
drive battery electric vehicle that was equipped with a fixed-speed ratio transmission as the
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research object, a simulation model was established on the MATLAB/Simulink platform
(Version: 9.11.0.1769968(R2021b), University of Science and Technology Beijing, Beijing,
China), and the influence of the increase in the mass and the decrease in the efficiency of
the planetary gear automatic transmission was introduced. Using a dynamic programming
method, in typical urban road conditions such as UDDS in the United States, ECE in Europe,
and 1015 in Japan, with the goal of the lowest energy consumption, the transmission ratio
and shifting law were obtained. The research results show that the use of the new two-speed
planetary gear automatic transmission can effectively improve the economic performance
and dynamic performance of battery electric vehicles.

2. Materials and Methods
2.1. Structure and Working Principle

The new two-speed planetary gear automatic transmission (hereinafter referred to
as two-speed automatic transmission) is shown in Figure 1. In order to improve the
transmission efficiency, the transmission adopts an electronically controlled wedge clutch.
The transmission input shaft is connected with the output shaft of the drive motor, and
the output shaft is connected with the half shaft. The transmission cancels the torque
converter and hydraulic transmission system, and uses the self-energizing characteristics
of the wedge clutch to reduce the torque demand of the actuator drive motor. It has the
characteristics of small size, low cost, simple structure, high efficiency, fast response, and
high control precision.
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Figure 1. Planetary gear automatic transmission with electrically controlled wedge clutch.

The electronically controlled wedge clutch adopts a worm gear and worm actuator, as
shown in Figure 2a. The worm is driven by the motor to drive the worm wheel to rotate,
thereby driving the wedge block to rotate. The axis of the worm and its driving motor
is perpendicular to the axis of the gearbox gear shaft to save the axial position space of
the gearbox. The friction plate and steel plate of the wedge clutch (as shown in Figure 2b)
are, respectively, connected with the ring gear of the planetary gear mechanism and the
transmission housing; the wedge angle is α, and the friction coefficient of the friction plate
and the wedge block is µ. During braking, the worm wheel is rotated by the worm driving
force F. The steel plate is stationary due to the connection with the transmission housing,
and the friction plate rotates with the planetary gear. The direction of movement is the
same as that of the driving force that is received by the wedge block, resulting in a friction
force Ff and a pressing force Fn between the wedge block and the friction plate. If the
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self-enhancing coefficients of the friction force and positive pressure are defined as Cf and
Cn, respectively, according to the force balance of the wedge block, we can get [12]:

Cf =
Ff
F

=
µ

tanα− µ
(1)

Cn =
Fn

F
=

1
tanα− µ

(2)
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Figure 2. Electronically controlled wedge clutch system schematic. (a) Wedge clutch actuator
schematic diagram. (b) Wedge clutch force schematic diagram.

It can be seen that when the wedge angle α is greater than and close to tan−1α, the
above proportional coefficient increases rapidly, which means that only a small driving
force can generate a large positive pressure and friction force. This is the self-energizing
property of the wedge mechanism [13,14].

As shown in Figure 3, the automatic transmission is composed of two-stage planetary
rows, and the front and rear sun gears S2 and S1 are integrated. The characteristic parame-
ters of the front and rear planetary transmissions are different. The front planet carrier P2
and the rear ring gear R1 are the same member and are output from the rear planet carrier
P1. R2 is the ring gear of the front planetary row.

Two wedge clutches B2 and B1 are, respectively, connected with the front and rear ring
gears. The transmission gears are shown in Table 1. In the table, 1 means that the clutch is
closed, and 0 means that the clutch is released. When only the wedge clutch B1 is closed,
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the transmission is in first gear; when only the wedge clutch B2 is closed, the transmission
is in second gear; the reverse gear is realized by the reverse rotation of the electric motor.
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Table 1. Transmission control table.

Gear B1 B2

1 1 0
2 0 1

2.2. Transmission Ratio and Efficiency

The calculation of the transmission ratio and efficiency of the planetary gear mech-
anism is more complicated, especially for the planetary gear transmission. For different
combinations of planetary rows in each gear, the calculation formulas of the transmis-
sion ratio and transmission efficiency are different, and the simplified calculation method
of the literature [15,16] can be used. The transmission efficiency is calculated using the
transmission ratio and the characteristic parameters of the planetary gearbox.

2.2.1. Gear Ratio Calculation

Each individual planetary gear row has an angular velocity equation:

ωs + pωr − (1 + p)ωp = 0 (3)

where ωs is the angular velocity of the sun gear, ωr is the angular velocity of the ring
gear, ωp is the angular velocity of the planet carrier, p is the characteristic parameter of the
planetary mechanism and p = zr

zs
, zr is the number of teeth of the ring gear, and zs is the

number of teeth of the sun gear.
On the basis of the above component angular velocity equation, the ratio of input and

output speeds can be calculated from the connection relationship of the planetary mechanism.

2.2.2. Transmission Efficiency Calculation

The transmission efficiency of the multi-stage planetary gearbox is the ratio of the
output power of the transmission to its input power,

ηp =
Po

Pi
=

Toωo

Tiωi
=

To/Ti
ωi/ωo

=
i′p
ip

(4)
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where ηp is the transmission efficiency of the planetary transmission mechanism, Po is the
output power, Pi is the input power, To is the output torque, ωo is the output speed, Ti is
the input torque, ωi is the input speed, i′p = To/Ti is the dynamic transmission ratio, and
ip = ωi/ωo is the kinematic transmission ratio.

It can be seen from (3) that the kinematic transmission ratio of the planetary transmis-
sion mechanism is a function of its characteristic parameter p, that is

ip = f (p1, p2 · · · , pn) (5)

According to the Kleins (Кляйнс) method, the dynamic transmission ratio of the
planetary mechanism is based on the kinematic transmission ratio, and each characteristic
parameter value is multiplied by

(
ηH)xn ,

i′p = f
[

p1

(
ηH
)x1

, p2

(
ηH
)x2 · · · , pn

(
ηH
)xn]

(6)

where ηH is the frictional transmission efficiency of the planetary mechanism. The trans-
mission efficiency of the planetary mechanism in this paper is:

ηH = ηsp × ηpr = 0.97× 0.99 = 0.96 (7)

where ηsp is the friction efficiency between the sun gear and the planetary gear, which is
0.97; ηpr is the frictional efficiency between the planetary gear and the ring gear, which is
0.99; and xn is +1 or −1, obtained from (8)

xn = sign

[
pn

ip
×

∂
(
ip
)

∂(pn)

]
(8)

where when calculated value is greater than 0, sign[] = 1, and when calculated value is

less than 0, sign[] = −1.
∂(ip)
∂(pn)

is the partial derivative of the calculation formula of the
transmission ratio ip in this gear to the planetary row characteristic parameter pn.

3. Vehicle Parameters and Drive Train Model

As shown in Figure 4, using the backward simulation idea and the modular design
idea, the vehicle drive chain model of the study is established under the MATLAB/Simulink
platform. The model contains road files, vehicle module, drive train module, electric motor
modules, and battery module.
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The model takes the road condition file as input from left to right, and transmits the
speed, torque and speed or power requirements. The main parameters of the model are
shown in Table 2.

Table 2. Vehicle parameter.

Parameter Value

Vehicle

Mass/m 1246 kg
Frontal area/A 2 m2

Wheel radius/r 0.282 m
Main reducer gear ratio/i0 1

Transmission ratio/ig 5.3
Rolling resistance

coefficient/f 0.009

Air drag coefficient/Cd 0.335

Motor
Rated power/PN 59 kW

Maximum speed/nmax 8000 r·min−1

3.1. Vehicle Module

The vehicle is subjected to force along the longitudinal driving direction as shown in
Figure 5. During driving, it is subjected to rolling resistance Fr, air resistance Fw, climbing
resistance Fi, and acceleration resistance Fa. According to the force balance, the vehicle
driving equation is obtained:

Ft = Fr + Fw + Fi + Fa (9)

where Ft is the driving force, and the other forces are as follows:

Fr = Fff + Ffr = mg f cos α (10)

Fw =
1
2

CD Aρu2
r (11)

Fi = mg sin α (12)

Fa = δm
du
dt

(13)

where m is the mass of the vehicle, g is the acceleration of gravity, f is the rolling resistance
coefficient, α is the road slope angle, CD is the air resistance coefficient, A is the windward area,
and ρ is the air density. In the simulation step size, let the initial speed be u0 and the final speed
be ut, take the average value ur = (ut + u0)/2 as the demand speed, and δ is the conversion
coefficient of the car rotating mass, δ > 1, du/dt = (ut − u0)/t is the driving acceleration.
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Assuming that the wheel radius r remains unchanged during the driving process, the
ground adhesion coefficient is sufficient, and the average vehicle speed ur is used as the
required vehicle speed. The required wheel torque and rotational speed at a certain time are:

Twh_r = (Ft − Fbreak)r + Twh_loss + Twh_inertia (14)

ωwh_r = (1 + ϕ)ur/r (15)

where Twh_r is the wheel demand input torque, Fbreak is the braking force, Twh_loss is the
wheel drag torque loss, Twh_inertia is the wheel acceleration inertia torque, ωwh_r is the
wheel demand input speed considering the tire slip rate, and ϕ is the tire slip rate.

3.2. Drive Train Module

The speed ratio of the final reducer is i0. Considering the effects of friction torque loss
Tfd_loss and acceleration inertia loss Tfd_inertia, the required input torque Tfd_r and rotational
speed ωfd_r of the final reducer are:

Tfd_r = Twh_r/i0 + Tfd_loss + Tfd_inertia (16)

ωfd_r = ωwh_ri0 (17)

Similarly, if the transmission speed ratio is igb, considering the effects of friction torque
loss Tgb_loss and acceleration inertia loss Tgb_inertia, the required input torque Tgb_r and
rotational speed ωgb_r of the transmission are:

Tgb_r = Tfd_r/igb + Tgb_loss + Tgb_inertia (18)

ωgb_r = ωfd_rigb (19)

3.3. Drive Motor Module

The motor module calculates the motor demand torque Tm_r and the rotation speed
ωm_r in consideration of the motor acceleration inertia torque loss according to the demand
torque and rotation speed that is transmitted by the transmission. By querying the motor
torque-speed efficiency MAP to solve the motor demand input power Pm_r, the motor
efficiency ηm is shown in Figure 6:
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3.4. Battery Module

The battery adopts the Rint model, and the equivalent circuit structure is shown in
Figure 7. According to the current SOC value and temperature of the battery, the open-
circuit voltage Voc and resistance Rint of the battery (discharge resistance Rd under driving
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conditions or charging resistance Rc under regenerative braking conditions) are determined
by looking up the table. The current I can be obtained according to the power demand Pr,
and the battery SOC change ∆SOC can be obtained by the method of continuous iterative
step-by-step approximation:
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Figure 7. Rint model of battery.

According to Kirchhoff’s voltage law, the bus voltage V is:

V = Voc − IRint (20)

According to the definition of power,

Pm_r = VI (21)

The bus current I can be obtained from (20) and (21):

I =
Voc −

√
Voc2 − 4Pm_rRint

2Rint
(22)

The battery SOC consumption is:

∆SOC =
Iηcoul
3600C

∆t

{
ηcoul = 1 charge
ηcoul = 0.9 discharge

(23)

where ηcoul is the coulomb efficiency, and C is the battery capacity.

4. Transmission Ratio and Shift Schedule Optimization

The models that were studied in this paper are mainly used for urban roads, and
typical urban roads such as European ECE, American UDDS, and Japanese 1015 are selected
for research, as shown in Figure 8.
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4.1. Dynamic Programming Algorithm

The dynamic programming algorithm is divided into two types according to the
solution sequence: a reverse method such as in the literature [2,5] and a forward method.
It is a global optimization algorithm for multi-stage decision-making processes that is
especially suitable for global optimization problems under nonlinear, multi-constraint
conditions [17]. In the vehicle backward simulation model that was established in Section 3,
the total travel time is divided into k stages, and the time interval of each stage is 1 s. Starting
from the initial stage, the shift sequence that minimizes the total energy consumption in
each stage is calculated, and the transmission gear ratio is the only control variable for each
stage.

As shown in Figure 9. The horizontal direction is divided into N stages, and the
time interval of each stage is 1 s, and the vertical direction is the discontinuous first gear
igb1 and second gear igb2. The horizontal lines ∆SOC(N − 1, 11) and ∆SOC(N − 1, 22)
in the figure represent the change in battery SOC when no shifting is performed at the
time k = N − 1, and the oblique line ∆SOC(N − 1, 12) in the figure and ∆SOC(N − 1,
21) represent the upshift or downshift battery SOC change amount at time N − 1. The
dynamic programming is divided into smaller dynamic programming stages by neutral,
and the minimum battery SOC change ∆SOC is used as the objective function. The objective
function is:

G = min
N−1

∑
k=0

∆SOC(k, ij) (24)

where i and j are gears, i = 1, 2; j = 1,2.
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In order to avoid unnecessary shifting, reduce shifting frequency, and make shift-
ing operation and energy consumption as close to reality as possible, a penalty factor is
introduced for correction. The modified objective function formula is as follows:

G = min
N−1

∑
k=0
{∆SOC(k, ij) + α|i− j|} (25)

The dynamic programming algorithm is as follows:
The initial stage k = 0,

∆SOC∗0
(

SOC0, igb0

)
= minigb_0{∆SOC(0, ij) + α|i− j|} (26)

k stage, 0 < k ≤ N − 1:

∆SOC∗k
(

SOCk, igb_k

)
= minigb_k

{
∆SOC∗k−1 + ∆SOC(k, ij) + α|i− j|)

}
(27)

where the transmission gear igb_k is the control input, and SOCk is the state vector. ∆SOC∗k
represents the minimum value of ∆SOCk in 0 − k stage. Starting from time k = 0, the time
interval is 1 s. By calculating all combinations of igb_k and ∆SOCk−1, searching for every
possible ∆SOCk, the minimum SOC consumption ∆SOC∗k in the k phase is obtained. It can
be seen that the dynamic programming problem is the shortest path problem.

In each search step, in addition to satisfying the above equations, the following
inequality conditions should also be satisfied:

Pm_r ≤ min(Pbus_max, Pm_max) (28)

Tm_min ≤ Tm_r ≤ Tm_max (29)

0 ≤ ωm_r ≤ ωm_max (30)

∆SOC∗k ≤ SOCinit (31)

V ≥ max(Vm_min, Vess_min) (32)

where Pbus_max is the power that the battery can provide, Pm_max is the maximum power of
the motor, Tm_min and Tm_max are the minimum torque (braking) and the maximum torque
of the motor respectively, ωm_max is the maximum speed of the motor, SOCinitt is the initial
SOC value of the battery, Vm_min is the motor minimum allowable voltage, and Vess_min is
the minimum battery voltage.

4.2. Transmission Ratio Optimization

According to automobile theory [18], the transmission ratio i should satisfy the trans-
mission ratio that is determined by the maximum vehicle speed and the ratio that is
determined by the maximum ascendable road grade:

i ≤ 0.377
rn

umax
(33)

i ≥ mg( f cos αmax + sin αmax)r
Tm_maxηT

(34)

where umax = 120 km/h, the max slope angle is 20%, the average efficiency of the trans-
mission ηT = 0.97. Bring the data in Table 1 to get igb2 ≤ 7.09, igb1 ≥ 3.70. After repeated
tests [19], the speed ratio range of the two-speed planetary gear automatic transmission
that meets the constraints is selected: igb1 ∈ {14, 8}, igb2 ∈ {6, 3}.

The dynamic programming method that is described in Section 4.1 is used to optimize
the above-mentioned different gear ratios, and the minimum SOC consumption can be
obtained under the combination of different gear ratios of first gear and second gear. The
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driving distance of each road condition is introduced as a weight to obtain the weighted
SOC consumption under different transmission ratios, as shown in Figure 10. It can be seen
that in the selected two-speed transmission gear combination, there is an area with less
energy consumption; within this range, there are gear combination points that minimize
energy consumption.
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For traditional fuel vehicles, in order to reduce the difficulty of shifting, the transmis-
sion ratio between adjacent gears is below 1.7–1.8 [20].

igb1/igb2 < 1.7 ∼ 1.8 (35)

For electric vehicles, by optimizing the transmission structure and shifting control
method [21], and precisely controlling the motor speed and shifting timing, a wider range
of adjacent transmission ratios can be achieved [2,3,22]. The transmission ratio between
adjacent gears in literature [2] reaches 2.08, and the literature [3] reaches 3.18. In this paper,
the transmission ratio at the lowest point of SOC consumption in Figure 10 is:

igb1 = 12.2 (36)

igb2 = 4.3 (37)

4.3. Shifting Schedule

It can be seen from the above research that different gear combinations directly affect
energy consumption, and for a two-speed transmission with a given transmission ratio,
good shift control is crucial to reducing vehicle energy consumption. Using the transmission
ratio that was determined in Section 4.2, under the European ECE, American UDDS, and
Japanese 1015 road conditions, taking the motor torque load rate, vehicle speed, and current
gear data, Figure 11 can be obtained. It can be seen from the figure that the distribution
of different gears is basically divided into two areas, and there is overlap between the
areas. According to the figure, the upshift control curve is drawn. In order to prevent cyclic
shifting, the downshift curve is processed with a certain delay.
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5. Simulation and Result Analysis

Based on the MATLAB/Simulink software platform, using the modular design idea,
the hybrid simulation method in which the backward simulation is the main and the
forward simulation is supplemented to carry out the simulation analysis of the power and
economy of the vehicle [23]. The motor torque load ratio is used to replace the accelerator
opening to formulate the speed-motor load ratio two-parameter shift control law, and
the vehicle simulation model of the two-speed planetary gear automatic transmission is
established.

The two-speed planetary gear automatic transmission will increase the quality of the
vehicle and reduce the transmission efficiency, which will affect the efficiency of the vehicle.
The mass of the two-speed planetary automatic transmission is set to be 20 kg [2] more
than the original fixed speed ratio transmission. The transmission efficiency is calculated
by the method of Section 2.2.2, and the transmission efficiency of the fixed speed ratio
transmission is 99%. The efficiency of the planetary gear transmission is 97.4% in first gear
and 96.7% in second gear.

5.1. Gear Control Sequence and Transmission Efficiency

Figure 12 shows the shift sequence of the shift schedule that was established under the
UDDS road conditions, which is the most complex of the selected conditions. It can be seen
from the figure that the first gear is mainly used for low-speed road sections, and the second
gear is mainly used for high-speed road sections. Table 3 shows the efficiency of fixed-
ratio transmission and two-speed planetary automatic transmission under different road
conditions. It can be clearly seen that the average efficiency of the fixed ratio transmission
is higher than that of the two-speed planetary automatic transmission, which is consistent
with the previous setting.
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Table 3. Transmission efficiency comparison.

Transmission
Transmission Efficiency

ECE UDDS 1015

Fixed speed 99.00% 99.00% 99.00%
2-speed 97.20% 97.04% 97.05%

5.2. Economic Performance Comparison

Table 4 shows the comparison of the energy consumption data of the fixed ratio
transmission and the two-speed automatic transmission. It can be seen that, compared
with the fixed speed ratio transmission, although the two-speed planetary gear automatic
transmission increases the vehicle mass (20 kg) and reduces the transmission efficiency
(about 2%), its use can still reduce the vehicle energy consumption (the highest is 2.25%,
the lowest is 0.37%, and the average is 1.22%), which improves the vehicle economy.

Table 4. Energy consumption comparison.

Transmission Gear Ratio
∆SOC Weighted

AverageECE UDDS 1015

Fixed speed 5.3 0.011384 0.149638 0.048443 0.1171

2-speed 1st 12.2
0.011128 0.147683 0.048266 0.11572nd 4.3

Efficiency improved 2.25% 1.31% 0.37% 1.22%

It can be seen from Table 3 that the transmission efficiency of the two-speed transmis-
sion is close to 2% lower than that of the fixed speed ratio transmission. So why does the
use of two-speed automatic transmission reduce the energy consumption of the car? This
needs to be analyzed from the working point of the motor and its efficiency.

Figures 13–15 are the comparison of the motor operating points (×) of the fixed-speed
ratio transmission and the two-speed planetary automatic transmission under different
road conditions. Obviously, with the two-speed automatic transmission, the working point
of the motor is closer to the high-efficiency area of the motor. Table 5 shows the driving
efficiency values of the motor under different road conditions. The efficiency of the motor
increases by 2.05–3.57% under different driving conditions.
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Table 5. Motor efficiency comparison.

Transmission
Motor Efficiency

ECE UDDS 1015

Fixed speed 74.17% 80.00% 80.12%
2-speed 77.74% 82.92% 82.17%

The use of a two-speed automatic transmission increases the energy consumption of
the entire vehicle due to the increase in mass and the decrease in the transmission efficiency
compared with the fixed speed ratio transmission. However, the two-speed transmission
can optimize the working point of the motor through gear switching, reduce motor torque,
and current, thereby reducing motor losses, and move the working point of the motor to
the high-efficiency area, which improves the efficiency of the motor. These are enough
to make up for the reduction in the transmission efficiency that is caused by the use of a
two-speed planetary gear automatic transmission, thereby improving energy efficiency.

5.3. Power Performance Comparison

Table 6 lists the acceleration time, maximum grade, and maximum speed data for the
different transmissions. It can be seen that compared with the fixed ratio transmission, the
two-speed automatic transmission reduces the vehicle acceleration time, and the 0–50 km/h
acceleration time is reduced from 5.4 to 3.8 s, 0–100 km/h acceleration time reduced from 15.9
to 15.3 s. The maximum gradeability at 30 km/h is increased from 28.7 to 42.6%. Of course,
the above conclusion is in the case of a good road surface and sufficient adhesion. The given
values may become unrealistic due to wheel adhesion limitations. The two-speed automatic
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transmission introduces a large transmission ratio in the first gear, which can increase the
output torque of the transmission, especially when running at low speeds, thereby improving
the vehicle’s climbing ability and acceleration ability. The maximum speed is mainly limited
by the maximum power of the motor, and there is no significant change.

Table 6. Dynamic performance comparison.

Transmission
Acceleration Time (s) Maximum Gradeability Maximum Speed

0–50 km·h−1 0–80 km·h−1 0–100 km·h−1 30 km·h−1 km·h−1

Fixed speed 5.4 10.4 15.9 28.70% 145
2-speed 3.8 9.6 15.3 42.60% 144.9

Improved 30% 8% 4% 48% ——

6. Conclusions

Compared with the fixed ratio transmission, the two-speed planetary gear automatic
transmission increases the mass of the vehicle and reduces the efficiency of the transmission.
However, it can optimize the working point of the drive motor to move closer to the high-
efficiency area through gear switching, and improve the working efficiency of the motor,
thereby making up for its inefficiency and reducing the energy consumption of the vehicle.
Under the three selected road conditions, the working efficiency of the motor is increased by
2.05–3.57%, and the energy consumption of the power battery is reduced by 0.37–2.25%. The
simulation results of the vehicle dynamic performance shows that the use of the new two-
speed automatic transmission can significantly improve the vehicle’s acceleration performance
and climbing ability. Under good road adhesion conditions, the acceleration performance
0–50 km/h increased by 30%, 0–100 km/h increased by 4%, and 30 km/h climbing ability
increased by 48%.

At the same time, it can be seen that under different road conditions, the two-speed
automatic transmission has great differences in the reduction of vehicle energy consumption.
If the method of this paper is used to optimize the design of a certain road condition, the
two-speed planetary gear automatic transmission that is used in this paper can improve the
economy of the vehicle by more than 3%.

It must be noted that the improvement of vehicle economic performance and dynamic
performance is a multi-objective optimization problem. Other structural components and
control strategies of the vehicle have not been changed in this paper. To further improve
vehicle performance and give full play to the role of the two-speed planetary gear automatic
transmission in improving vehicle performance, it is necessary to optimize the selection of
components such as drive motors and improve control methods such as regenerative braking
control strategies.
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