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Abstract: This study experimentally investigated the performance of a PVT air collector coupled
with a triangular block. The triangular block, newly suggested by the authors, is a triangular-shaped
obstacle and was inserted at the bottom of the PVT air collector to enhance the heat transfer perfor-
mance of the collector. The experiment was carried out in actual climate conditions in Korea with
two air mass flow rate conditions: 0.03606 kg/m2 s and 0.06948 kg/m2 s. Results show the average
values of electrical efficiency of the collector during the test period to be 16.15% and 16.43% for each
air mass flow rate, while thermal efficiencies were 28.83% and 38.36%, respectively. The average
values of total energy efficiencies were found to be 44.99% and 54.79%, respectively. The results show
that air mass flow rate has a large impact on thermal and total energy efficiency, while it has a small
impact on electrical efficiency. Furthermore, it was confirmed that the PVT air collector coupled with
a triangular block can enhance the utilization of solar energy since the thermal performance was
higher than that of the collector without a triangular block.

Keywords: solar energy; solar air heater; solar energy utilization; solar collector; experiment; PVT

1. Introduction

The PV module is one of the most frequently utilized renewable energy products in
the world to convert solar energy into useful energy. It can directly change incident solar
radiation into electrical power. However, only around 12–18% of solar radiation turns into
useful electrical energy during the operation of the PV module [1]. Much solar irradiance
captured by a PV module is reflected or changed into thermal energy that leads to high
increases in the temperature of the PV module. As the temperature of the PV module rises,
the electrical efficiency of the PV module decreases. In contrast to this, by decreasing the
temperature of the PV module, its electrical efficiency can be enhanced [2–4].

To maintain the lower temperature of the PV module, the first concept of the PVT
collector was suggested by Wolf [5]. The PVT collector is a hybrid system that was com-
posed of a PV module and an active cooling system, such as a liquid pipe, air duct, etc. The
active cooling system retrieves thermal energy from the PV module. Therefore, by reducing
the PV module temperature, a decrease in its electrical efficiency can be prevented. Also,
cooling mediums heated by PV modules can be utilized to generate useful thermal energy
for drying crops and fruits, space heating, providing hot water supply, and so on [6–8].

Generally, liquid-cooling and air-cooling methods are utilized to reduce the temper-
ature of the PV module. The liquid-type PVT collector usually uses water or nanofluid
to cool the PV module. Nualboonrueng et al. conducted a performance evaluation of a
liquid-type PVT solar collector to confirm the feasibility for residential application in an
outdoor field in Bangkok [9]. Exergy and economic investigations for a commercialized
PVT water collector were performed by Jahromi et al. using known price and technical
parameters for different climates in Iran; their the results showed that a PVT water collector
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with specified economic parameters is marginally economically feasible [10]. Motamedi
et al. carried out a comparative study on the performance characteristics of a liquid-type
PVT collector, which had hydrophobic microchannels, with and without nanofluid. From
the results, it was confirmed that the thermal performance of the collector using selective
Ag/SiO2 core-shell nanofluid can be improved by 20% compared with the collector using
water [11]. Lee et al. examined the thermal and electrical characteristics of a liquid-type
PVT collector using nanofluid and found that the PVT system using Al2O3/water nanofluid
had a 15.14% higher thermal efficiency than that of the system using water [12]. The per-
formance of an unglazed PVT water collector was investigated experimentally by Calise
et al., who utilized a one-dimensional finite-volume model to confirm the impact of the
different operating conditions. In their research, it was observed that the thermal and
electrical performances increased with an increment of the solar intensity and decreased
with an increment of the fluid inlet temperature [13]. Liu et al. proposed equivalent overall
output energy to evaluate energy performance and optimize a hybrid system composed of
a PVT water collector integrated with aPCM (phase change material) and a phase change
material-ventilated trombe wall [14]. Sarafraz et al. assessed the electrical and thermal
characteristics of a liquid-type PVT collector; their results confirmed that combining a PVT
collector with a cooling jacket packed with PCM boosted the system’s thermal and electrical
generation by 130% and 20%, respectively [15].

The liquid-type PVT collector generally has a higher thermal performance than that
of an air-type PVT collector because of the higher thermal conductivity of the liquid [16].
However, the liquid-type PVT collector is more expensive due to its relatively complex
design and because it takes up more space. Also, the liquid-type PVT collector is difficult
to install compared with the air-type PVT collector. Meanwhile, the air-type PVT collector
has a simple design. In addition to this, it is economic and requires a little maintenance;
however, due to the low thermal conductivity and capacity of air, this collector has a lower
thermal efficiency than a liquid-type PVT collector, as stated previously [17,18]. Hence,
much research has been undertaken in an attempt to promote the thermal performance of
the PVT air collector.

Sopian et al. conducted a comparison study on the thermal and electrical behaviors
of single and double-pass PVT air collectors using mathematical models based on energy
conservation. In this research, they found that the PVT air collector with a double-pass air
channel could generate much more electricity and heat than a single-pass type collector [19].
Othman et al. studied the electrical and thermal characteristics of the double-pass PVT air
collector combined with fins by using a mathematical model and confirmed that utilizing
a double-pass air channel and fins improved the electrical and thermal efficiency of the
collector [20]. Jin et al. examined the performance of a PVT air collector having a single-pass
air channel and rectangular tunnel absorber under the PV module in a laboratory using
halogen lamps as a solar simulator. They found that the rectangular tunnel absorber
enhanced both the thermal and electrical efficiencies of the collector [21]. To provide
uniform air flow in an air channel of the collector, Teo et al. designed a parallel array
of ducts having inlet and outlet manifolds. The results demonstrated that the collector’s
electrical efficiency using a newly designed air duct to actively cool the PV module was in
the range of 12–14%, while the collector without active cooling only achieved an electrical
efficiency of 8–9% [22]. Hussain et al. suggested combining a PVT air collector with a
hexagonal honeycomb heat exchanger to improve thermal performance, and the electrical
and thermal performances of the collector combined with a proposed heat exchanger were
enhanced by 0.1% and 60%, respectively, over the collector without a heat exchanger [23].
Fan et al. conducted optimization of the finned PVT air collector using the Taguchi method.
As a result, it was found that the final determined optimal design could improve both net
power generation and thermal output by 20% and 21.9% [24]. Kim et al. suggested a newly
designed air-type PVT collector, which has bending round-shaped heat-absorbing plates
and experimentally investigated the electrical and thermal characteristics. In this study, it
was observed that thermal and electrical efficiencies improved as the air mass flow rate was



Energies 2022, 15, 4150 3 of 12

raised [1]. Choi et al. suggested a PVT air collector that employed a non-uniform transverse
rib and double-flow air channel. In this research, the proposed collector’s minimum and
maximum overall energy efficiencies were found to be 46.24% and 75.3% according to the
experimental conditions investigated [25]. The performance of a heat-recovery ventilator
combined with an air-type PVT collector was studied by Kim et al., and their results showed
that the air-type PVT collector could reduce the energy required for heating in a building by
10% [26]. Yu et al. conducted CFD (computational fluid dynamics) analysis to confirm the
uniformity of the air flow in a building-integrated PVT air collector. Their results confirmed
that the thermal efficiency of the collector could be improved by 20% according to air
distribution methods [27]. In addition to these studies, other previous research has been
conducted to enhance the heat transfer performance of the PVT air collector [28–31].

In this study, the performance of a PVT air collector coupled with a triangular block,
and newly proposed and designed by the authors, is evaluated in the actual climate
conditions in Korea in November. November is a cold month in Korea. The triangular
block was attached at the bottom plate, and it enhanced the heat transfer performance by
inducing an increase in local velocity of air in an air channel. This is different to previously
studied heat transfer enhancement devices, such as fins and rectangular tunnels, used
to extend the heat transfer area. The triangular block also has merits in manufacturing
and cost because of its simple design [32]. The electrical and thermal performances are
investigated with the two different air mass flow rates on two different days with similar
weather conditions. The main aims of this research were as follows: (a) to evaluate the
electrical and thermal performances of the PVT collector coupled with a triangular block
under actual climate conditions in Korea; (b) to assess the impact of air mass flow rate on
the thermal and electrical performance; and (c) to confirm the feasibility of the suggested
PVT air collector.

2. Experimental Apparatus and Methods
2.1. PVT Air Collector Coupled with a Triangular Block

The PVT air collector consists of a commercially available PV module (LG360S2W-5K)
and an air duct having a triangular block. Table 1 summarizes the parameters of the
PV module used to fabricate the PVT air collector. The parameters obtained under stan-
dard conditions.

Table 1. Parameters of the PV module obtained under standard conditions (module temperature
25 ◦C, irradiance 1000 W/m2).

Parameters Value

Electrical efficiency under standard conditions (%) 17.37
Voltage at maximum power point (V) 37.7
Current at maximum power point (A) 9.56

Maximum power output (W) 360
Temperature coefficient (%/K) −0.41

Cell size (mm) 161.7 × 161.7
Number of the cell (ea) 6 × 12

An air duct of 1030 mm width, 100 mm height, and 2027 mm length was used to
fabricate the PVT air collector. A total of 15 triangular blocks of 1000 mm width, 37 mm
height, 97 mm length, and 126.5 mm pitch were attached at the bottom of the air duct
to promote the collector’s thermal performance. The triangular block, which was sug-
gested and designed by the authors, is a triangular-shaped obstacle made by folding an
aluminum plate.

Figures 1 and 2 present the composition and side view of the PVT air collector coupled
with the triangular block. In Figure 3, an actual view of a triangular block in an air duct of
a PVT air collector is shown and more detailed dimensions of the air duct and triangular
block are summarized in Table 2.
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Table 2. Dimensions of the air duct and triangular block.

Parameters Value

Aluminum duct Length (mm) 2027
Width (mm) 1030
Height (mm) 100
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Table 2. Cont.

Parameters Value

Triangular block Length (mm) 97
Width (mm) 1000
Height (mm) 37
Pitch (mm) 126.5

2.2. Experimental Setup and Methods

The actual view and schematic of the experimental setup for the PVT air collector are
shown in Figure 4. Generally, solar intensity reaches the maximum value at about 12:00.
Hence, the experiments for performance evaluation of the collector were carried out from
10:00 to 14:00 to include the maximum value of the solar intensity. The experiments were
performed with two different air mass flow rates, 0.03606 kg/m2 s and 0.06948 kg/m2 s,
on two different days to take the effect of air mass flow rate into consideration. All the
experiments were conducted in the actual climate conditions in Korea in November. The
experimental setup was located at Engineering Building 2, Pukyong National University.
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The measured values to analyze the collector’s performance were solar intensity,
voltage of the PV module, ampere of the PV module, outlet air temperature of the collector,
outlet air velocity of the collector, and ambient air temperature. The pyranometer was used
to measure solar intensity. A DC voltage meter and a DC ampere meter were used to obtain
the voltage and ampere produced from the PV cell. The outlet air temperatures of the
collector and ambient air temperature were measured by thermocouples. An anemometer
was used to measure air velocity. Air mass flow rate is defined as the product of air density,
cross-section area of the air duct, and air velocity. Thus, the values of air mass flow rate
were determined by multiplying air density and the cross-sectional area of the air duct by
measured air velocity. The value of air density was calculated using the equation reported
in previous studies and is as follows [34–36]:

ρ = 1.1774− 0.00359(T− 27) (1)

where, the T is the arithmetic mean temperature of the inlet and outlet air.
The detailed models and accuracy of the measuring devices are summarized in Table 3.
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Table 3. Specification of measuring equipment.

Equipment Model Accuracy

Thermocouple T-type ±1 ◦C
Voltage meter MT4Y-DV-43 ±0.56%
Ampere meter MT4Y-DA-43 ±0.56%
Anemometer Kanomax 6531-2G ±0.015 m/s
Pyranometer MS-802 ±2%

The power generation and electrical efficiency of the PVT air collector were evaluated
to investigate the electrical performance of the collector.

The collector’s power generation can be written as follows:

wPV =
VPV IPV
εcell Ac

(2)

where VPV , IPV , and εcell are voltage (V), ampere (I), and the coverage factor of the PV cell
(-), respectively. The coverage factor of the PV cell means the ratio of the PV cell area to the
gross area of the collector.

The electrical efficiency can be expressed as follows:

ηe =
wPV

G
=

VPV IPV
GεPV Ac

(3)

Here, G is solar intensity (W/m2).
To confirm the collector’s thermal performance, thermal energy gain and thermal

efficiency were evaluated.
The thermal energy gain can be calculated as follows:

qair =

.
mairCp, air(Tair, out − Tair, in)

Ac
(4)

In the above equation,
.

mair is the air mass flow rate (kg/s), Cp, air is the specific heat of
the air (J/kg·K), Tair, out is the outlet air temperature of the collector (◦C), Tair, in is inlet air
temperature of the collector (◦C), and Ac is the collector area (m2), respectively.

The thermal efficiency can be obtained as follows:

ηth =
qair
G

=

.
mairCp, air(Tair, out − Tair, in)

GAc
(5)

As the PVT air collector generates both electrical and thermal energy, the total energy
efficiency needs to be confirmed. Total energy efficiency means the sum of electrical and
thermal efficiencies and it can be derived by the following equation:

ηtotal = ηe + ηth (6)

3. Results and Discussion
3.1. Weather Conditions

The solar intensity and ambient temperature measured during the test period are
shown in Figure 5.
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Figure 5. The solar intensity and ambient temperature during the test period for each day.

The solar intensity was in the range of 664.4–932.92 W/m2 and 760.14–978.41 W/m2.
The mean values of solar intensity were 861.42 W/m2 and 911.26 W/m2 for each experiment
day. The ambient temperature varied from 17.61 to 19.1 ◦C and 15.41 to 18.24 ◦C, with
average values of 18.41 ◦C and 17.15 ◦C. As shown in the figure, the experiments were
carried out on a clear day. Moreover, during the experiment period, the solar intensity and
ambient temperature had similar changing trends and values.

3.2. Electrical Performance

Figure 6 presents the variation of power generation and electrical efficiency of the col-
lector with operating time. The power generation was in the range of 110.22–149.68 W/m2

and 126.5–159.5 W/m2, with mean values of 138.98 W/m2 and 149.62 W/m2 for air mass
flow rates of 0.03606 kg/m2 s and 0.06948 kg/m2 s, respectively. The electrical efficiencies
varied from 15.42 to 16.59% and 16.12 to 16.74% for each air mass flow rate, with mean
values of 16.15% and 16.43% during the test period. The mean value of electrical efficiency
increased somewhat with an increase in air mass flow rate. Both power generation and
electrical efficiency had higher values at the higher air mass flow rate, since a higher air
mass flow rate improves heat transfer performance in the collector, resulting in a lower op-
erating temperature of the PV module; however, the impact of air mass flow rate attributed
to electrical performance was found to be insignificant, similar to previously published
research [25,36,37].
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3.3. Thermal Performance

Figure 7 shows the air temperature increase by the collector. It varied from 4.85 to
7.7 ◦C and 3.86 to 5.73 ◦C for each air mass flow rate. The average values of air temperature
increase by the collector were 7.7 ◦C and 5.73 ◦C during the test period, and the lower
values are shown at the high air mass flow rate. The air temperature increase shows a
similar changing trend with the variation of the solar intensity since it depends on the
solar intensity. Figure 8 shows air temperature increase by the collector with solar intensity.
From the figure, it can be observed that the collector’s air temperature increased linearly
with an increase in solar intensity.
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Figure 9 shows the thermal energy gain and thermal efficiency of the PVT air collector
with operating time. The thermal energy gain was in the range of 175.49–278.87 W/m2 and
269.02–399.3 W/m2, with average values of 248.92 W/m2 and 349.76 W/m2, respectively.
The collector’s thermal efficiency varied from 26.41 to 32% and 35.35 to 47.13%. The average
thermal efficiencies were 27.8% and 37.38%, respectively. The thermal energy gain and
thermal efficiency continuously showed better performance at the higher air mass flow
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rate during the test period. Also, the results demonstrate that the thermal energy gain
and thermal efficiency improve considerably with an increment in air mass flow rate.
Furthermore, the thermal efficiency confirmed in this study was higher than that of an
identical PVT air collector without a triangular block [38–41]. These results confirm that
a triangular block installed in an air channel can enhance the thermal performance of the
collector, as expected.
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3.4. Total Energy Efficiency

Figure 10 depicts the total energy efficiency of the collector with operating time. Total
energy efficiency ranged from 43.01 to 48.21% and 51.82 to 63.78%, with average values
of 44.99% and 54.79% for each air mass flow rate. Total energy efficiency showed better
performance at a higher air mass flow rate; this is similar to thermal efficiency, since both
electrical and thermal efficiencies improved as air mass flow rate increased.
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The average values of the electrical, thermal, and total energy efficiency during the test
period are shown in Figure 11. The electrical, thermal, and total energy efficiency during
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the test period improved by 1.73%, 33.06%, and 21.78%, respectively, with an increment of
air mass flow rate. The results show that the impact of air mass flow rate on thermal and
total energy efficiency is significant, while it has a small effect on electrical efficiency.
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4. Conclusions

This study experimentally investigated the performance of a PVT air collector coupled
with a triangular block in the actual weather conditions in Korea. The experiments were
carried out in an outdoor field with two different air mass flow rates, 0.03606 kg/m2 s and
0.06948 kg/m2 s, on two different days having similar weather conditions. The important
conclusions of this research are as follows: (1) During the test period, the average values
of electrical efficiency were 16.15% and 16.43% for each air mass. The electrical efficiency
slightly increased with an increment in air mass flow rate, but the effect was insignificant.
(2) The average values of thermal efficiency were 28.83% and 38.36% for each air mass flow
rate. The result shows that the air mass flow rate has a considerable impact on thermal
efficiency. In addition to this, the thermal efficiency of the collector in this study was higher
than that of another similar collector, without a triangular block. (3) The average values of
total energy efficiency were 44.99% and 54.79% for each air mass flow rate, respectively.
The total energy efficiency improved with an increment in the air mass flow rate due to the
enhancement in both thermal and electrical efficiencies. (4) The electrical, thermal, and total
energy efficiencies increased by 1.73%, 33.06%, and 21.78%, respectively, as the air mass flow
rate increased. The results show that air mass flow rate has a significant impact on thermal
and total energy efficiency, while it has a small impact on electrical efficiency. (5) From
the results, it was confirmed that the PVT air collector coupled with a triangular block
enhances the utilization of solar energy, since the thermal performance of the proposed
collector was higher than that of a collector without a triangular block. (6) There are many
factors that affect both the thermal and electrical performance of the collector. Hence,
further study is required to investigate the influence of different parameters of the collector,
and the experimental results obtained in this study will help to find the optimal design of
the collector.
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