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Abstract: Non-intrusive load monitoring takes place in residential and industrial contexts to dis-
aggregate and identify loads connected to a distribution grid. This work studies the applicability
and effectiveness for AC railways, considering the highly dynamic behavior of rolling stock as an
electric load, immersed in varying contexts of moving loads. Both voltage–current diagrams and
harmonic spectra were considered for identification and extraction of features relevant to classifica-
tion and clustering. Principal components were extracted, approaching the problem using principal
component analysis (PCA) and partial least square regression (PLSR). Clustering methods were then
discussed, verifying separability performance and applicability to the railway context, checking the
performance by means of the balanced accuracy index. Based on more than one hundred measured
spectra, PLSR has been confirmed with superior performance and lower complexity. Independent
verification based on dispersion and correlation were used to spot relevant spectrum components to
use as clustering features and confirm the PLSR outcome.

Keywords: AC railways; classification; clustering; disaggregation; distortion; harmonics; load
monitoring; power quality

1. Introduction

Non-intrusive load monitoring (NILM) is a process or a technique used to disaggregate
and identify loads from global metering points, e.g., at the feeding point of an installation
or facility, transferring the concept to electrified transportation, at the traction power station
(TPS). NILM is non-intrusive; namely, it does not use physical sensors at individual loads,
relying on load signature recognition amid the power flow of the whole pool of connected
loads. Load signatures are based on metrics that characterize load operating conditions,
time patterns (if any), power absorption profiles, etc. NILM can effectively support net-
work diagnostics, status monitoring, load management, power demand forecasting, and
profiling [1–3].

NILM is based on a variety of techniques [4], which have proven to be effective at
various degrees in a domestic context [5,6]; they are then considered for extensions to
completely different applications, electrified railways, exploring the most promising signal
features. The analysis is extended to both time- and frequency-domain data, consider-
ing voltage and current waveforms, instantaneous power, power trajectory, harmonic
components, and harmonic quantities.

Electrified transportation systems, exemplified in this work by AC railways, feature
highly dynamic moving loads entering and exiting supply sections, causing intermittent
power absorption from a specific TPS [7]. In addition, the operation is characterized
by power quality (PQ) issues [8–12] and complex harmonic signatures that depend on
operating conditions [13,14].

As a first application to a railway system, the approach is based on feature extraction
backed up by physical meaning. For this reason, wave shape (WS) features [2,15] are
considered a starting point, having demonstrated significant discernibility in different
home appliances. It should be acknowledged that discernibility was based years ago on
substantially different power conversion architectures of the examined appliances, whereas
for electrified rolling stock, the range is quite limited. Old AC locomotives were based
on diode and possibly thyristor rectifiers [16], wheres modern ones are all equipped with
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four-quadrant converters (4QCs) [17–19]. Such loads differ from home appliances, making
many WS features non-informative, as will be shown in this work (see Section 4.1).

For the same reason, the attention is directed to the thorough characterization of one
or a few loads with known operating conditions, rather than starting from the identification
of such loads in a more difficult context—that of measurements at TPS of the overall power
flow of one supply section. When doing NILM on a power feeder, one element that brings
additional information involves identifying the ’switch on and switch off’ events of the
connected loads, possibly with their time patterns. In case of trains moving along the
traction line, characteristic events involve the sudden changes of operating conditions
(passing from standstill to acceleration, coasting, and braking [14]) and the passage under
phase-separation points (seen as a switch off at one TPS and a new switch on at the adjacent
one [13]). When measuring from a local pantograph perspective, other minor transients
can occur, such as those caused by onboard load switching: many loads, such as pumps
and compressors, have no power drive controls, and are switched on and off by direct
connections, causing significant inrush currents and sudden reductions of the available
line voltages; as for voltage sags in MV and LV distribution grids [20–22]: voltage sags
are of much more relevance in industrial systems, whereas for electrified railways, such
transients would not be clearly visible at the TPS measuring point. In general, they can be
detected and assessed by a variety of methods [20–22] for quantification and triggering
compensating systems [20], but are excluded from this analysis that is tailored to electrified
AC railways, assuming locally stationary data following more slowly varying operating
conditions.

Liang et al. [23] confirmed that active and reactive power plots are effective sets of
features. In addition, high-order harmonics, instantaneous admittance (another way of
quantifying the proportion between voltage and current spectra), instantaneous power,
and eigenvalues can improve recognition capability.

NILM relies heavily on modern machine learning (ML) approaches [1,3–5], as well
as more traditional techniques [2,15,24,25]. ML methods can be classified into supervised
and unsupervised methods, using both deterministic and statistic approaches, whereas
traditional techniques are based on more direct inspections of “electrical” quantities, such
as voltage–current trajectories, active–reactive power plots, displacement factor discrimina-
tion, etc.

Unsupervised methods can proficiently be used in scenarios where labeling of op-
erating states is not possible, allowing extraction of clusters from unsorted data. Basic
clustering algorithms (such as k-means) rely on an assigned number of classes, making
them de facto a partially supervised method. In addition, such methods perform well
when data features are linearly separable. Conversely, evolved clustering methods, such as
density-based spatial clustering of applications with noise (DBSCAN), provide indication
of the optimal number of classes and can implement non-linear separation [26,27].

As a starting point, this work explores the basic characteristics of voltage and current
waveforms of dynamic AC loads exemplified by rolling stock running on AC railways; this
shows that commonly applied NILM techniques that perform well for home and office
appliances are not effective for loads featuring much higher power levels and a uniformly
applied wave-shape correction. It then evolves to the application of the discussed ML
methods, focusing on the extraction of relevant features in the time or frequency spectrum
domains, which allow effective clustering of the various operating conditions, separating
components of external origins. The paper is structured into a preliminary description of
AC railways (Section 2) and of classification and machine learning (Section 3). Section 4
presents the applications of such methods, distinguishing methods applicable to time
domain waveforms and to spectral components for voltage, current, and power terms, in
as many subsections. Section 5 discusses and summarizes the findings, leaving space to
outline further developments and promising directions of research.
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2. AC Railway System and Electrical Quantities

AC railways are peculiar electrical systems if compared to three-phase industrial
networks: they are single-phase operated, use medium voltage (MV) levels, with an
extension for each supply section of tens of km (up to about one hundred); the loads (i.e.,
rolling stock) move and have highly dynamic profiles, passing from standstill to tractioning,
cruising, and braking. The traction line feeds power to such distributed loads by means of
TPSs. AC railway systems in use today are mostly operated at 25 kV 50/60 Hz and 15 kV
16.7 Hz (for central Europe), yet with different supply schemes and different arrangements
of supply sections. The supply traction line undergoes resonance phenomena at fairly low
frequencies, possibly amplifying the distortion caused by the trains [28].

Assessments of rolling stock distortions are carried out for several reasons: tradition-
ally, compliance to limits of emission to prevent interference to signalling [29,30], and in
general, excessive induction [31,32]; more recently, attention has been placed on power
quality with respect to the rest of the network [33], to resonance triggering and conse-
quential overvoltages [28,34,35]. Finally, distortion has implications for power and energy
consumption [36–38]; this is gathering more attention, i.e., in order to improve the energy
efficiency of electrified transportation systems [39] in a sustainability perspective.

Rolling stock from different operators and manufacturers traveling over the line will
have different emission patterns and distortion behaviors while changing the operating
conditions.

There has been progress in power conversion, i.e., providing faster and more efficient
converters, with more complex patterns of emission and distortion occurring over wider
frequency intervals [17–19]. At the same time, electric transportation is reducing headway,
necessitating faster dynamics and resulting in trains more densely arranged along the
railway lines [40]. The harmonic spectrum of a vehicle in a real scenario features compo-
nents of internal and external origins, the latter caused by the superposition of the terms
of interacting rolling stock under a significant phase rotation depending on the relative
position [41].

To study the problem and track distortion contribution, as well as identify loads
by their distortion signatures, relevant power quantities must be defined first: the IEEE
Std. 1459 [42] expresses voltage and current as vectors of harmonic components with a
fundamental pulsation ω,

v(t) = V0 +
√

2
∞

∑
h=1

Vh sin(hωt + αh)

i(t) = I0 +
√

2
∞

∑
h=1

Ih sin(hωt + βh)

(1)

where Vh and Ih are the amplitudes and αh and βh the phases of order h.
Active and nonactive power terms may be defined, as known, with nonactive power

further separated in reactive and distortion power:

pa(t) =
∞

∑
h=1

Vh Ih cos θh[1− cos(2hωt− 2αh)] (2)

pq(t) =
∞

∑
h=1

Vh Ih sin θh[1− sin(2hωt− 2αh)] (3)

pd(t) = 2
∞

∑
m=1

∞

∑
n 6=m

Vm In sin(mωt− αm) sin(nωt− βn) (4)

These expressions lend themselves to recognise and classify fundamental and har-
monic active power P1 and Ph, fundamental and harmonic reactive power Q1 and Qh, and
distortion power Dh, as commented in [14,43].
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It should be noted that active and nonactive power terms are shown in (2), (3) and
(4) as time domain functions, leading one to think that they may be exploited to plot loci
similar to VI diagrams, providing an alternative. Such expressions in reality are defined,
starting from Vh and Ih, which are determined only on a cycle-wide basis, i.e., by the Fourier
analysis. A valid approach in this respect, instead, is the instantaneous power theory and
the use of “homo” integral and derivatives of voltage and current waveforms [44]. The
present work is not complemented by this approach, as it would open the door to a large
amount of interpretation of the resulting PQ trajectories that are much more complex than
VI diagrams and are currently being developed.

In the fields of harmonic analysis and harmonic source identification, several ap-
proaches have been proposed based on classical manipulations of harmonic active power
Ph (tracking sign and intensity), distortion power Dh, and total nonactive power (or Fryze’s
power). Except for harmonic active power, all other indices are collective and measure
distortion as a whole, hinting at the origin based on small variations around reference
values [43]. Changes of distortion patterns for varying operating conditions would be
diluted and possibly go unnoticed if only collective indices were considered.

From this, there is a need to explore a fine-grain identification, down to the details
of the single components of the harmonic power vectors if needed, but able to offer a
synthetic representation without the burden of retaining all of the harmonic vectors. In
other words, the expert examining patterns of power harmonic spectra could come out
having selected a list of quantities with a strong relation to physical meaning, such as Ph
and Dh, possibly weighted on selected frequency bands. An example of selected harmonics
related to the operation of (’own’ and extraneous) power conversion can be found in [14].
Traditional classification methods of the supervised type select an oversized pool of features
in the data space and then subject these features to analyses aimed at identifying the most
significant ones, using, e.g., principal component analysis (PCA), retaining entire spectra as
autovectors, or partial least squares regression (PLSR), spotting out spectral components.
Such features are then fed to clustering algorithms that exploit concepts of density or
distance, to separate alike groups of data points.

The approach oriented to the component selection is well applicable to other scenarios,
where sources and their operating conditions can be distinguished by spectral signatures
(specific combinations of spectral components), as is the case of charging electric vehicles
from different manufacturers, and possibly in different state-of-charge conditions [45].

Such methods are discussed in the next section.

3. Signal Features and Clustering

Signal features are considered in a broad sense, from time domain to frequency domain
characteristics and quantities.

Time domain waveforms characteristics are often used for NILM involving home ap-
pliances, where there is a variety of front-end converters and conversion principles, whereas
in large-power transportation applications there is some uniformity of architectures.

Frequency domain characterization is typically approached based on engineering
judgment, supported by mathematical properties, such as correlation between components
of different operating conditions and different rolling stocks, as discussed with some
examples in [14]. The purpose is to identify frequency bins that are coherent for the same
operating conditions (providing a compact feature that can be easily clustered) and show a
significant diversity, or incoherence, when picked up from different operating conditions,
or different rolling stocks.

3.1. Signal Features and Quantities

A wide range of features and index quantities can be extracted from rolling stock
voltages and current recordings in time domain (waveforms) and from frequency domain
spectra. Many of such quantities are common to industrial PQ; they were briefly reviewed
in the previous section. In particular, when evaluated against a longer time horizon, they
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provide insight into the behavior of the source of distortion, especially regarding operating
conditions [13,43].

Regarding the use of such indices for classification purposes, Ph preserves information
on the source down to a single component, whereas nonactive power terms are collective,
with less interpretable behaviors. In addition, it could be observed that they have often
been used without preserving their physical meanings, such as when reactive power terms
are simply summed arithmetically rather than in quadrature [23].

Time domain waveforms, when suitably represented, provide a different type of
information, as discussed below.

3.1.1. VI Diagrams

Lissajous diagrams were much exploited when the oscilloscope display was the only
processing available, or nearly so. The most straightforward implementation is plotting i(t)
against v(t), providing what is called instantaneous or time domain admittance y, which
takes the form of closed curves with a periodically deformed elliptic path (periodic defor-
mation is caused by harmonics). They are a significant source of information, regarding
emission characteristics and spotting the differences between different loads.

A basic study may be carried out of the main plot characteristics, as discussed in [2],
where they are identified as “wave-shape features” (although they are the features of a
trajectory in the v-i plane, namely admittance):

• Loop direction of the VI locus, where the clockwise direction indicates capacitive
behavior (which is quite uncommon in railways, being almost prohibited by the EN
50388 [46]), but also regenerative braking; the sign of current entering or exiting the
pantograph provides clarification.

• Maximum and minimum points for the current (to compare with the total rms current
Irms) and voltage (less significant, as it depends on the line supply condition, rather
than the rolling stock itself); the slope ψ of the line joining the current extreme points
(opposed vertices of the curve) is commonly used as an indicator.

• Mean curve traversing the locus in the middle of the closed shape and joining the two
vertices; the most meaningful index that can be extracted from it is its slope ξ at some
predetermined point, such as near the origin; in the following, the average slope in
the first 30% of the x-axis voltage points will be used.

• Area A enclosed by the locus, measuring at the same time current intensity and
loop aperture; this value should be normalized by the voltage intensity (to make
the comparison of different systems possible, as well as different catenary voltage
conditions) and by the current intensity (to compare different power absorption levels).

• Intersection points of the vertical i axis at v = 0 (i+0 and i−0 ) and related span i0 =
i+0 − i−0 .

• Presence of self intersections and their numbers Ninters.

These features are demonstrated graphically in Figure 1, by taking two different shapes
of the many VI diagrams of the Swiss system (see Section 4.1 for complete results).

Active and reactive power can be, in principle, plotted in a similar way, but the
quantities in which we must focus on are not Ph and Qh (defined and calculable only on
a minimum time scale of one fundamental period and not suitable for the analysis of
trajectory), impacting then on the time interval for definition of pa(t) and pq(t), or pd(t)
(namely Equations (2), (3) and (4)), as observed in Section 2.
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Figure 1. Example of the VI diagram and explanatory symbols for the locus features: blue circles
for current extremes Imax and Imin, joined by the dashed extreme line; purple squares for voltage
extremes Vmax and Vmin; intersections with the vertical axis indicated by the brown crosses (i+0 and
i−0 ); self intersections indicated by green circles; black curve for the mean curve.

3.1.2. PCA and SVD Analysis

The application of some methods may require setting up data structures that at the
current sampling rate for harmonic studies (e.g., 20 kHz to 50 kHz) become cumbersome
and challenging to process. This is the case, for instance, with the SVD used in [23] to
calculate signal eigenvalues. The instantaneous current i(t) or power p(t) waveform was
split in cycle-long segments and rearranged in matrix form. Using the full sample rate
for a low-frequency analysis would result in a 1 k × 1 k matrix spanning 20 s assuming a
50 Hz fundamental. Besides the fact that the 1000 cycle-long periods might be unavailable,
operating conditions, as commonplace for railway applications, will certainly vary over the
said time interval (resulting in overall non-stationarity).

A better form of analysis is pursued in Section 4, applying PCA (based on the SVD
algorithm) and showing the independent components as measures of signal complexity
and stationarity, when, for given operating conditions (e.g., traction or braking), distortion
is expected to be qualitatively similar. To this aim, data records are limited, e.g., to those
spanning over some tens of seconds during tractioning or braking.

PCA is a well-founded technique that seeks a linear combination of the features of
provided data with minimum variance; thus, achieving a compact data representation.
Data are arranged as: N ×M X matrix containing M columns of N collected observations
each, with M different variables xm (column vectors of length N). In our problem, when
PCA is applied to spectra, such variables coincide with the spectrum frequency bins. Such
an arrangement is depicted in Figure 2.

The sought linear combination can be written as a vector of coefficient a that selects
the desired (up to M, with M ≤ N) components of X. Writing this as Xa, it turns out that
the objective of maximizing the variance can be written as [47]:

var(Xa) = a′Xa = Λa′a (5)

where S is the sample covariance matrix associated with the data matrix X and ′ denotes
transpose. With a being a unit-norm vector, the form with explicit eigenvalues Λ holds.

The solution is an M-dimensional vector â that maximizes variance, but the most
useful application in PCA involves keeping only those coefficients (â components) with
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the largest contribution to the variance (namely, corresponding to the largest eigenvalues),
operating a reduction of dimensionality.

The obtained solution is an orthogonal base made of terms Xâ that are called “principal
components” (PCs). Once ordered from the largest to the smallest eigenvalue (as done
ordinarily by PCA algorithms, such as for MATLAB), the subset of the first M∗ coefficients,
contributing a fraction of the total variance of at least γ∗, constitutes a minimum set of PCs
for the given level of significance γ∗. The total variance corresponds to the trace of S, tr(S),
and each eigenvector λm gives a contribution of λm/tr(S). The fraction of energy brought
in by the first M∗ eigenvalues is indicated by the quantity γ∗:

γ∗ =
M∗

∑
m=1

λm

tr(S)
(6)

In general, mostly to avoid problems of ill-conditioning, the PCA algorithm is run
using the centred version of the vector X, obtained by subtracting for each component the
mean value in the direction of observations, so along the index n = 1 . . . N.

Figure 2. Example of data arrangement for PCA analysis.

3.1.3. Partial Least Squares Regression

Partial least squares regression (PLSR) has two major advantages with respect to PCA:

• It requires a smaller number of PCs to achieve the same quality of representation;
• PLSR includes the information of the second vector of responses y and it is more

suitable to the wide class of classification problems.

In addition, it does not require that the number of observations N be larger than the
number of variables M.

The general underlying structure of a PLSR problem can be described as follows. By
analogy, with PCA, T is called the score matrix and P the loading matrix (in PLSR, the
loadings are not orthogonal). X is decomposed as TP′ and, likewise, an estimate of y, ŷ, is
decomposed into TBC′, where B is diagonal and takes the name of the regression weights
matrix [48]. The looser representation of Y, underlined by having used the word “estimate”
is not worrisome in our context, as this term contains the labels that are comfortably
assigned integer numbers and do not necessitate high numeric accuracy.

X = TP′ + E

Y = TBC′ + F
(7)
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where E and F are two error terms.
Various PLS methods provide different estimates of T, orthogonal or not, or can handle

more complex responses, arranged as a whole matrix Y rather than a vector y (in the present
case it simply contains the class labels).

The MATLAB implementation (function plsregress) uses the SIMPLS algorithm
proposed in [49].

3.2. Cluster Analysis

The main objective of a classifier is to determine the label to assign to new unlabeled
data, based on previously labeled data. In traditional classification, datasets are structured
based on selected input attributes or features, and one output attribute (the class or label).

Cluster analysis, or clustering, is a form of machine learning of the unsupervised type,
aimed at dividing provided data into clusters, which are then flagged separately. Clustering
is based on the concept that data points belonging to the same group should have similar
features.

From a general standpoint, clustering algorithms may be classified as:

• Density-based algorithms: grouping is carried out, identifying areas of high concen-
trations of points, separated by areas of low concentrations;

• Distribution-based algorithms: make some kind of assumption on the distribution of
points around the supposed centroids, the probability reducing with distance indicates
to which cluster a data point belongs;

• Centroid-based algorithms: similarly, the simple distance from centroids instructs
how to separate data points;

• Hierarchical-based algorithms: it attempts to create a hierarchy of data by either an
agglomerative approach (bottom-up, combining smaller clusters) or divisive approach
(top-down, splitting into smaller clusters starting from one large cluster of all data).

To this aim clustering techniques are mostly based on the metric of distance between
data items in a given space of representation. Data are grouped based on their perceived
compactness, not only a short distance between points of the same cluster, but also a signif-
icant separation from neighbouring points of other clusters. Some clustering algorithms
require to first specify the number of clusters inherent to the data; others may require that a
minimum distance between data points is specified to consider them “connected”.

New data can be classified as belonging to one cluster or another, based on the said
metric. Two main problems occur when dealing with feature-rich data showing high
dimensionality:

• The predictive performance of a classifier decreases as the number of features increases,
while keeping the number of training instances constant [50]; in other words, training
should be augmented in terms of the number of instances, at least proportionally to
the increase in the number of features;

• The metric based on distance tends to lose significance as dimensionality grows [51].

So, a fundamental objective for effectively operating clustering algorithms involves
reducing dimensionality, by identifying the most relevant features, with care for compact
representation.

3.2.1. K-Means

K-means is a centroid-type algorithm, based on a straightforward application of the
concept of a higher density of data points to justify their belonging to a cluster. The
algorithm aims to minimize the sample dispersion of data points within a cluster. Namely,
the criterion to assign data points to a cluster involves the Euclidean distance from the
current centroids; centroids are determined from the calculated means. At each iteration for
the current partitioning of data points, means are calculated and assigned to the centroids.
If the new mean values do not change from the previous iteration, the algorithm is stopped.
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K-means has the limitation of fixing a priori the number of clusters, and since it iterates
over all data points, it is not efficient with large datasets. The method also has difficulties
in clustering non-convex or overlapping datasets. However, it could be considered a basic
clustering method and it is a useful reference. It has been acknowledged that many other
methods fix the number of clusters and it is a minor issue, possibly by attempting a few
different choices and selecting the best one.

3.2.2. Density-Based Spatial Clustering of Applications with Noise

A significant improvement is represented by the density-based spatial clustering of
applications with noise (DBSCAN) method, which has some important advantages:

• It does not fix the number of clusters a priori;
• It has the ability of separating outliers labeling them as “noisy points”, possibly

reinserting them into a cluster during the process;
• It works effectively with non-convex data points.

However, there are two main drawbacks:

• Performance is impaired by data groups featuring varying density, as the distance
threshold and minimum point required to form a cluster should be continuously
adapted;

• It may face a similar problem for high-dimensional data, which is, in any case, allevi-
ated by pre-processing data with feature extraction techniques, such as the autoen-
coder.

3.2.3. Mean Shift

Mean shift is another centroid-based iterative algorithm that assumes distribution
of points around supposed centroids by taking a kernel function F( ) (usually Gaussian,
with respect to distance, hinting that data points are dispersed because of noise or by a
combination of random errors). Using F( ) as a weight function, the first assumed center is
replaced by the calculated mean of the data points, falling into the cluster of the centroid;
convergence occurs when the difference between the old center and the new calculated
mean (called namely “mean shift”) is below a given threshold.

The selection of K() is critical, but a few geometries are available; in addition, there is
no formal proof of convergence for increasing data dimensions. Similar to k-means, mean
shift has difficulties in clustering non-convex or overlapping datasets.

3.2.4. Gaussian Mixture Model

K-means places regions of circular shapes to capture clusters and it performs poorly
with oblong data clusters (where data spread differently along, e.g., orthogonal directions).
The Gaussian mixture model (GMM) has more degrees of freedom, allowing to modulate
the extension of the cluster region along each axis. In addition, GMM features a version
with soft classification, assigning to data the probabilities of belonging to the given clusters.

The GMM algorithm deals with a set of Gaussian distributions of mean µk and disper-
sion σk, in numbers equal to the number of clusters K; for each distribution, there is also a
fraction of data points belonging to it, called density πk. The algorithm iteratively updates
these parameters passing through three steps:

1. During the estimation phase, the probability is calculated for each datum point, xi,
belonging to each cluster, given the distribution and the actually assigned point
(number nk for each cluster):

ri,k =
Pb{xi ∈ k∗

} ∑ Pb{xi ∈ other than k∗} = πk∗N (µk∗ , σk∗)

∑k 6=k∗ πkN (µk, σk)
(8)

2. Data point xi is assigned to cluster k following the indication of the largest ri,k values;
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3. During the maximization phase, parameters are updated, calculating πk as the fraction
of the number of data points effectively assigned to cluster k, and quantities updated
as follows with similarity with mean shift for µ (referred to k∗, with k∗ = 1 . . . K):

πk∗ =
nk∗

∑K
k=1, nk

µk∗ =
1

nk∗
∑

i
ri,k∗xi σk∗ =

1
nk∗

∑
i

ri,k∗(xi − µk∗)
′(xi − µk∗) (9)

We will see that GMM results in a poorer performance compared to k-means (Section 4.4),
as if the additional information it deals with (dispersion) is in some way counterproductive
for this specific problem.

3.3. Verification of Performance

For demonstration and discussion of signal and spectrum features, it would be hard
to find a formal quantification of performance, although criteria are followed to assess the
effectiveness and relevance of a particular feature. Regarding classification and clustering,
instead, performance is assessed using selected indices against a set of test signals.

In general, evaluating the performance of correct identification and separation is
subject to different standpoints, depending on what is deemed more relevant: in the
present situation, a balanced evaluation is carried out, similarly weighting all classification
errors. Performance assessment is built around a set of cases representing V = 3 vehicles
(synonymous of locomotive or electric unit) and O = 2 operating conditions (traction and
braking).

The confusion matrix C summarizes the results of a classification problem by counting
the number of correct and incorrect predictions for each class. A binary confusion matrix is
such that results are classified with obvious meanings, such as true positive (TP), true nega-
tive (TN), false positive (FP) and false negative (FN). Then many indices of performances
that are reviewed below can be straightforwardly applied. For multi-class problems, the
binary structure is not immediate (see Figure 3) and binary indices seem to be inapplicable.
In reality, selecting one particular case (indicated as α, β for the TP case), the rest of C can
be arranged to determine the remaining TN, FP, and FN. As alternatives, there are binary
indices that may be applicable, straightforward, to multi-class scenarios.

TN = ∑
a 6=α
b 6=β

Ca,b FP = ∑
a 6=α
b=β

Ca,b FN = ∑
a=α
b 6=β

Ca,b (10)

Of the entire set of conventionally-named positive cases for a given operating condi-

tion, o, for a given vehicle, v, indicated by P =
K
∑

b=1
Cαb, the ratio of those truly classified

as positive TP = Cαβ defines the “hit ratio” (or “sensitivity”): TP/P. Symmetrically, the
performance for a negative case is named “specificity” and expressed as TN/N.

The concept of minimizing FP may reflect into “precision” TP/(TP+ FP) (if weighted
against TPs) or “fall-out rate” FP/N = FP/(FP + TN) (if considering FPs as negative
cases leaked, or fallen out, into a positive classification).

Without leaning toward any particular case or scenario, the objective becomes the
minimization of off-diagonal terms, which improves separation and reduces falling-out
cases to a minimum.



Energies 2022, 15, 4141 11 of 27

Figure 3. Graphical description of the confusion matrix C: a and b are the row and column indices,
α and β are the positions of the specific cells (the first one in this example is for graphical reasons),
summation expressions indicate how to revert to a binary confusion matrix representation.

An accurate and comprehensive measure of performance that will be used in the
following is balanced accuracy (BA), which combines the correct classifications for both
positive and negative cases (weighting TP and TN values),

BA =
1
2

(
TP
P

+
TN
N

)
(11)

and is applicable to multi-class scenarios:

BA =

K

∑
a=1
a=b

Ca,b

K

∑
a,b=1

Ca,b

(12)

Other performance indices used, e.g., for medical diagnostics, tend to privilege con-
servatively efficacy on positive cases, such as the diagnostic odds ratio. For this reason,
attention is focused on indices giving an overall metric of performance and that are easily
applicable to multi-class scenarios.

4. Exemplification and Results of Classification

The previously discussed approaches to NILM and load classification are put in
practice with data provided in a large dataset of pantograph electric quantities, tagged also
for speed, total rms current, and operating conditions [52].

Data are processed by means of discrete Fourier transform (DFT) using a Hanning
smoothing window. The use of smoothing windows is possible due to the synchronization
of data in [52], aligned with zero-crossings. Measured data are provided for all three
countries considered in this analysis (Switzerland, Germany, and France) in the form of
short records of five fundamental cycles called “snippets” that allow both multi-cycle and
sliding-window single-cycle DFT (namely short-time Fourier transform), the latter was
used in this work to obtain average amplitude spectra, in attempt to reduce data variability.

The measuring system and setup are described in [53], including an estimate of its
uncertainty, which is roughly in the order of 1–2% for the voltage and current channels.
Such a system was installed in three different rolling stock items in the three respective
countries collecting pantograph quantities (voltage and current) for several days, either in
normal commercial service (Switzerland and France) or during special tests of acceleration
and braking (Germany).
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4.1. VI Diagrams

Lissajous diagrams are shown in the following for some selected current levels in
tractioning and braking conditions for the three railway systems (Switzerland, Germany,
and France, in Figures 4, 5 and 6, respectively). VI locus parameters are then summarised
in Tables 1, 2 and 3.

(a) (b)

Figure 4. Typical VI trajectories for Switzerland (from low to high current intensities, top to bottom):
(a) tractioning, (b) braking.

(a) (b)

Figure 5. Typical VI trajectories for Germany (from low to high current intensities, top to bottom): (a)
tractioning, (b) braking.



Energies 2022, 15, 4141 13 of 27

(a) (b)

Figure 6. Typical VI trajectories for France (from low to high current intensities, top to bottom): (a)
tractioning, (b) braking.

Table 1. VI diagram parameters for Switzerland (case numbering from 1 to 8, following Figure 4).

Case Irms
(A)

A
(MVA)

Vmin
(kV)

Vmax
(kV)

Imin
(A)

Imax
(A) ξ (mS) ψ (mS)

Tra1 24.3 0.0593 21.10 −20.58 54.49 −54.65 2.62 1.72
Tra2 53.6 0.5680 21.18 −20.68 101.84 −100.02 4.82 3.87
Tra3 83.9 0.8287 21.10 −20.45 138.05 −138.36 6.65 6.18
Tra4 122.0 1.4746 20.93 −20.44 187.60 −188.12 9.08 8.65
Tra5 165.4 2.3639 20.89 −20.40 258.55 −258.08 12.51 13.14
Tra6 240.4 3.5886 21.03 −20.50 362.53 −369.02 17.61 18.30
Tra7 328.8 5.1505 20.88 −20.63 495.86 −497.66 23.93 24.83
Tra8 412.5 5.7500 20.61 −20.07 613.71 −610.52 30.09 30.55

Brk1 21.3 0.1114 21.21 −20.60 54.64 −49.79 −2.50 0.42
Brk2 52.5 0.4189 21.13 −20.72 85.70 −78.10 −3.90 −1.77
Brk3 72.9 0.7821 21.47 −20.90 108.38 −106.42 −5.07 −3.49
Brk4 96.2 1.0762 21.14 −20.77 141.41 −142.27 −6.76 −5.09
Brk5 144.1 2.2006 21.45 −21.10 204.76 −202.55 −9.57 −8.29
Brk6 202.4 3.2431 21.63 −21.03 295.41 −296.26 −13.87 −13.14
Brk7 262.8 3.8325 21.47 −20.94 368.65 −367.51 −17.36 −18.15
Brk8 311.8 4.6487 21.31 −20.82 443.19 −437.03 −20.90 −22.02
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Table 2. VI diagram parameters for Germany (case numbering from 1 to 8, following Figure 5).

Case Irms
(A)

A
(MVA)

Vmin
(kV)

Vmax
(kV)

Imin
(A)

Imax
(A) ξ (mS) ψ (mS)

Tra1 23.3 0.8209 23.44 −23.27 53.49 −53.06 2.28 1.11
Tra2 44.8 0.8197 23.23 −23.03 68.14 −70.73 3.00 5.09
Tra3 79.0 1.1113 23.23 −23.06 113.60 −115.47 4.95 8.76
Tra4 116.9 1.0105 22.45 −22.98 165.39 −165.60 7.29 11.18
Tra5 148.6 0.7708 23.07 −22.86 197.81 −202.32 8.71 12.61
Tra6 174.6 1.0620 23.26 −23.04 234.60 −232.98 10.10 14.64
Tra7 214.2 1.9642 23.41 −23.19 291.60 −293.99 12.57 18.04
Tra8 238.7 1.7447 23.05 −22.76 332.51 −329.66 14.46 19.06

Brk1 19.3 0.3256 23.06 −23.20 37.95 −38.42 −1.65 −0.58
Brk2 45.3 0.6861 22.05 −22.22 72.43 −73.92 −3.30 −2.28
Brk3 73.9 0.1791 22.94 −22.75 117.07 −117.15 −5.13 −5.38
Brk4 109.1 0.1381 22.30 −22.07 168.13 −168.98 −7.60 −6.73
Brk5 145.1 0.6629 22.87 −22.72 229.39 −228.16 −10.03 −11.18
Brk6 206.0 0.7705 22.99 −24.00 308.06 −310.56 −13.42 −14.68
Brk7 278.3 1.3882 22.15 −21.97 422.08 −417.77 −19.04 −18.97
Brk8 330.1 1.6285 23.00 −22.87 474.03 −469.78 −20.58 −24.38

Table 3. VI diagram parameters for France (case numbering from 1 to 8, following Figure 6).

Case Irms
(A)

A
(MVA)

Vmin
(kV)

Vmax
(kV)

Imin
(A)

Imax
(A) ξ (mS) ψ (mS)

Tra1 27.4 3.4812 36.31 −35.92 37.16 −44.37 1.13 0.52
Tra2 61.1 4.0156 35.72 −35.34 87.62 −93.28 2.55 2.06
Tra3 102.6 4.0501 35.76 −35.33 149.11 −154.93 4.28 3.87
Tra4 164.7 4.3928 35.70 −35.19 241.20 −245.99 6.87 6.53
Tra5 216.7 4.7573 35.95 −35.75 304.73 −309.54 8.57 8.55
Tra6 282.7 6.1352 36.00 −35.17 401.04 −405.61 11.33 10.90
Tra7 403.7 8.2298 34.84 −34.22 574.20 −578.20 16.69 16.12
Tra8 460.0 8.6922 35.82 −35.44 657.54 −662.02 18.5 17.67

Brk1 21.9 3.4022 38.52 −37.95 37.49 −42.26 −1.04 0.11
Brk2 63.4 3.5954 37.29 −36.88 89.07 −95.23 −2.48 −2.45
Brk3 122.5 4.3329 35.75 −35.02 188.67 −196.15 −5.44 −5.27
Brk4 156.6 3.8601 34.90 −34.69 219.77 −228.41 −6.44 −6.24
Brk5 197.0 4.3599 35.60 −35.28 284.69 −290.28 −8.11 −8.08
Brk6 253.1 5.1692 35.41 −35.20 359.28 −364.93 −10.26 −9.60
Brk7 303.0 7.2288 35.56 −35.68 430.61 −436.41 −12.17 −11.04
Brk8 347.5 9.4055 34.92 −34.77 494.98 −500.58 −14.29 −13.29

For the two 16.7 Hz cases (Tables 1 and 2), the maximum and minimum values of
the current are almost double the rms value due to the larger distortion at lower intensity,
caused mainly by superposed auxiliaries and by the third harmonic due to the input
transformer [14]; the effect is visible up to about 150 A, more pronounced for tractioning.
France (Table 2), in this respect, aligns to the expected

√
2 law (ratio of peak to rms value)

already at 60 A of exchanged current.
The evident ripple of VI trajectories of Swiss and German rolling stock (in Figures 4

and 5, respectively) is caused by the significant third harmonic distortion [14]. The origins
are both the input transformer distortion and the presence of 50 Hz auxiliary loads, which
become relevant at a low traction or a braking current intensity, as visible in the top
VI diagrams of Figure 4 and 5. This third-order ripple never ceases really, as for larger
intensities, the input transformer distortion comes in.

A general asymmetry of the current was also observed for France, where the absolute
value of minima exceeds that of maxima by about 5 Apk to 8 Apk, which at a lower current
intensity corresponds to 5–10%.
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France, in Figure 6, shows wider loops (this is confirmed by much larger A values),
with a bold circular shape at a low current intensity. This is explained by a larger phase
displacement compared to Swiss and German rolling stocks, implying a worse cos φ. This
information may be used as a valid feature for clustering.

Another measure of the loop aperture that can be calculated more rapidly is the value
of i at the zero crossing of v. The area and intercept depend clearly on the current excursion
between Imin and Imax and the voltage excursion between Vmin and Vmax. Normalization is
necessary to compare different systems, To avoid the influence of irregular pointed-current
shapes, normalization was carried out for the current using Irms. These two parameters are
normalized

Anorm =
A

Vrms Irms
I0,norm =

I+0 − I−0
Irms

(13)

and shown in the scatter plot of Figure 7.

Figure 7. Scatter plot of normalized A and I0. The traction conditions are indicated by dark green,
blue, and red for CH, D, and F, respectively; similarly, braking conditions have corresponding lighter
nuances.

It could be seen that the dispersion for data belonging to the same group is significant
and that data clusters are overlapped, with I0 performing only slightly better than A. This
type of parameter cannot be used as a feature for classification.

Regarding admittance estimation (slopes I/V at selected trajectory points), they de-
pend clearly on the current excursion between Imin and Imax, assuming (with good approx-
imation) that voltage excursion is pretty homogeneous between test cases of the same AC
railway (see Vmin and Vmax in the tables above). Better parameters are the normalized
versions of ξ and ψ, which, for stability, are normalized by Irms:

ξnorm =
ξ

Irms
ψnorm =

ψ

Irms
(14)

The line joining the current maxima gives an overestimation of maximum admittance
ψ, which is sufficiently repeatable, as shown in Figure 8; the initial admittance ξ is even
more repeatable, as the spread of points along the ξ axis is smaller. However, as anticipated
in the introduction, the admittance information used for household NILM purposes is not
as effective here, with homogeneous behaviour between power converters sharing good
power factors at medium and large current intensities; at very low currents, in a few cases,
the admittance points stem off each respective cluster.
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Figure 8. Scatter plot of the normalized ξ and ψ. The traction conditions on the right-hand side are
indicated by dark green, blue, and red for CH, D, and F, respectively; similarly, braking conditions on
the left-hand side have corresponding lighter nuances.

4.2. PCA Analysis and Spectra Regularity

Ph and Qh spectra during a tractioning and braking interval have been analyzed
for stationarity in terms of the number of independent components and their spatial
distributions by means of PCA. For Swiss recordings, it is possible to conclude that:

• Ph was described by only one main component, accounting for 99.86% of energy in
tractioning and 99.90% in braking; adding the second one indicates 100% within four
decimal digits;

• For Qh, the same accuracy is reached with three components (99.88% of energy),
but energy increase by adding successive components was much slower; the same
performance of Ph within four digits was reached at the 28th and 20th components for
tractioning and braking conditions, respectively.

Three components were then retained for the graphical representations of the space
distributions of Ph and Qh, shown in Figure 9.

With the principal components, identified on the ground of contribution to the total
energy (e.g., individual variance), a simplified spectral representation can be retrieved, as
shown in Figure 10.

Figure 10 shows (with the black background) the spread of the measured spectra,
whereas the colored spectra are the PCA approximations, with the darker curve represent-
ing the average. It is evident that PCA “takes care” of components up to about 3.5 kHz in
traction conditions and 3 kHz in braking conditions. Reconstructed values are remarkably
below the profiles of the measured spectra above the said frequency values, and even below
them, there are voids here and there (namely, intervals where the provided PCA values
are smaller than the measured ones). The reason may be due to a less coherent behavior
of some components “filtered” by PCA, especially going toward the higher part of the
spectrum; this is investigated further in the next section.
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(a) (b)

Figure 9. Spatial distribution of the first three PCA components for Ph and Qh: (a) tractioning, (b)
braking.

(a) (b)

Figure 10. Spectral approximation of the first three PCA components for Ph and Qh: (a) tractioning,
(b) braking; the darker colored trace is the mean of the PCA approximation (in lighter color).

4.3. Selection of Spectral Components as Features

Rather than identifying complete spectrum traces as PCs extracted by PCA, the atten-
tion is now focused on spectrum subsets (e.g., a component or a group of components) to
use as features for a clustering analysis. The objective is to identify those components with
low intra-cluster variance and large inter-cluster variance.
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4.3.1. Dispersion and Correlation

This may be achieved by simply evaluating a sample variance for recordings labeled
with the same or different operating conditions and rolling stock types. The sample
variance is taken along index n for selected spectrum components, i.e., odd harmonics (even
harmonics are known not to be characteristic harmonics in AC railways). To be selected
as features, harmonics must have small intra- and large inter-variances for components
belonging to the same and different operating conditions, respectively.

For the comparison between the different systems, despite the different values of the
fundamental frequencies, spectra for 16.7 Hz systems have been post-processed, obtaining
one component out of three, and assigning it to the 50 Hz spaced grid. The options were an
incoherent rms summation of the absolute value of the three components or the maximum
value among the three, which preserve phase information (the latter was chosen).

Sample dispersions of spectra at each frequency bin were calculated, resulting in the
coefficient of dispersion, σ/µ, shown in Figure 11.

(a)

(b)

Figure 11. Normalized dispersion σ/µ, calculated out of 24 + 24 observations for traction and braking
conditions for: (a) Ph and Qh (black and grey for CH, blue and light blue for D system, respectively);
(b) Vh and Ih (black and grey for CH, blue and light blue for D system, respectively).

It is important to note that normalized dispersion increases significantly with fre-
quency, implying that, if not suitably linked to variable operating conditions, such variabil-
ity indicates simply excessive noise. As commented below, sources above about 2.5 kHz
are difficult to identify, for which reason the frequency interval of interest is limited to
2.5 kHz, so as to achieve better frequency resolution and smaller matrices, where collected
N observations have more relevant weights compared to the reduced M variables.

To appreciate the variability of spectra with respect to portions of the frequency
interval, the sample dispersions were calculated separately for traction (dark colors) and
braking (light colors) conditions, as shown in Figure 12.

This figure clarifies the influence of operating conditions on portions of the spectrum
for each type of rolling stock. It was not constancy that we looked for, as the operating
conditions were selected purposely to cover widely variable tractions and braking points;
from a frequency domain perspective, it is interesting to observe which frequency intervals
are influenced by varying operating points within traction or braking mode.
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The curves confirm the significance of the 600 Hz to 900 Hz interval for the Swiss
rolling stock, with a rebound of around 2 kHz, which is known to be secondary emissions
caused by trains in the same supply section [53]. This underlines the importance of
engineering judgment, avoiding blind assignment based on pure mathematical models,
especially in realistic situations of mixed traffic (the Swiss rolling stock is in a normal
commercial service on a very busy line). This is particularly evident as distortion in the
Vh spectrum, as these trains significantly pollute the line voltage, causing the discussed
secondary emissions.

Figure 12. Dispersion σ, calculated out of 24 + 24 observations for traction (dark colors) and braking
(light colors) conditions: CH brown, D blue.

For the German rolling stock, the most significant emissions are located at 350 Hz to
450 Hz, with another significant burst at 700 Hz. It is interesting to observe the similarity of
dispersion at about 350 Hz for both the Swiss and German rolling stocks. This is typical
with older types of equipment, which likely run on the same line as the newer Swiss loco
and pollute the line voltage, and (significantly) not the other quantities; conversely, this
peak of dispersion is present in all four quantities for the older German train used for the
tests, which has this frequency component among its characteristic emissions.

Another method of evaluation is estimating the correlation ρ between the sets of
measurements referred to as different operating conditions (traction and braking) and for
different rolling stocks, as shown in Figure 13.

Correlation is calculated via the covariance matrix G for the considered sets of spectra
belonging to the two compared, oc or rs, indicated as U and V, made of M column vectors
um and vm. Since for each frequency bin (along index m) the observation values form an
N × 1 vector that is not in principle related to other similar vectors for a different m value,
the calculation of the correlation is carried out by orderly calculating the covariance matrix
Gm for each pair of vectors um and vm. Gm is a 2× 2 matrix, from which the correlation
coefficient ρm may be determined.

Gm = cov(um, vm) =

(
G11 G12
G21 G22

)
m = 1, 2, . . . M (15)
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ρm =
G12√

G11G22
m = 1, 2, . . . M (16)

ρ(u, v) = [ ρ1, ρ2, . . . ρm, . . . ρM−1, ρM ] (17)

For simplicity, the correlation will be indicated only as ρ.

Figure 13. Correlation between groups of spectra: cross-correlation in traction (top) and braking
(middle) conditions (CH vs. D (brown), CH vs. F (blue), and D vs. F (green)); cross-correlation
between traction and braking conditions for the same rolling stock (CH (black), D (violet), F (red)).

The purpose of Figure 13 is to show the correlation amounts between different sets
of spectra belonging to one of the three types of rolling stocks (CH, D, or F, with obvious
meaning) and two operating conditions (traction and braking).

The two 16.7 Hz systems should share some characteristics and show more similarities,
but surprisingly the correlation values are large as for the cross-correlation with the French
system.

Another point is that the same rolling stock in the two operating conditions (bottom
subplot of Figure 13) should be more coherent than compared to the other subplots with
cross-correlation terms. The reason is simply that, in many models, the converter used
for traction and braking is the same, so characteristic harmonic groups should pop up.
Moreover, this occurs for Switzerland (CH), featuring a large correlation between 500
and 900 Hz, where the 4QC operates, as well as for the German rolling stock (D) in the
low-order harmonics range. However, it must be observed that correlation is calculated
as a global index between all the recorded spectra of the traction subset and those of the
braking subset, both undergoing a range of different operating points (namely different
absorbed or released power, and different current intensities), which significantly shuffle
scenarios. By removing the spectra with the lowest current intensity of nearly 20 A, the
correlation improved slightly, as the number of PCA components was reduced by about
25%.
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4.3.2. PLSR Analysis

The objective is to identify components that are the most relevant for the classification
purpose, so attention is placed on a method that combines the projection of spectra on a
compact space and ranks the most significant components.

Analogously to PCA, PLSR indicates the number of principal components along which
data are represented and their performances in terms of incremental variance or energy
fraction γ, as shown in Figure 14. Such “components” are spectral bins for PLSR and not
entire projected spectrum vectors (as for PCA).

(a) (b)

Figure 14. PLSR results for fitting quality (mean square error, MSE) and cumulative energy fraction
γ: (a) traction and braking classes for Switzerland; (b) distinction of the three rolling stock for
Switzerland, Germany, and France (traction and braking conditions altogether). Ph (brown dark and
light), and Qh (blue dark and light) above, Vh (brown dark and light), and Ih (blue dark and light)
below.

Only two components are sufficient in most cases to achieve a better-than-90% energy
fraction γ. The most representative quantities are confirmed to be power terms Ph, Qh, and
current Ih.

As anticipated, PLSR indicates the most relevant components by means of the variable
importance in projection (VIP), determined as the components that maximize the covariance
between X and y. Since the average of squared VIP scores equals 1, a commonly used
criterion is to select components that have individual VIP scores larger than 1. This is
shown in Figure 15 for the two 16.7 Hz systems (standalone, comparing the traction and
braking conditions, and confronted, merging the traction and braking conditions for each).

By inspecting Figure 15a, the Swiss rolling stock is represented well by components
between about 700 Hz and 950 Hz (where the Re460 converter emissions are located [14]),
besides low-order harmonics that characterize all examined systems. When inspecting
the combined curves (green), both these components and those around 350 Hz are judged
relevant, the latter provided by the German train, as confirmed by the large value of its Ih
curve (light blue).
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(a)

(b)

Figure 15. PLSR VIP scores for (a) 16.7 Hz system representation (CH tra-brk brown dark and light,
D tra-brk blue dark, and combined CH and D green dark and light light, (b) combined 16.7 Hz and
50 Hz system representation (Switzerland, Germany, and France); dark and light refer to Ph and Ih).

Figure 15b reports the result of the confrontation of the three systems, summarizing
that components up to about 900 Hz are relevant. The relevance of the 2 kHz components,
commented before as extraneous, but persistent, due to concomitant Swiss trains, has been
correctly reduced. It should be noted that this comparison between heterogeneous spectra
was made possible by transforming the spectra with 16.7 Hz harmonics of the CH and D
systems into equivalent 50 Hz spectra by applying a max( ) operator to consecutive groups
of three adjacent 16.7 Hz bins; this slightly reduces the resolution and representativeness.

It is worth noting that this last comparison shows the relevance of the Ih spectrum
(light violet curve), which has VIP values larger than the darker curve for Ph. This is
important in the perspective of carrying out NILM at TPS, where the current is the quantity
that can be more easily measured.

4.4. Classification Performance

The capabilities of the most promising indices reviewed so far were tested for clas-
sification purposes, using the same set of data on which the previous figures are based.
Performance was measured by providing confusion matrices and balanced accuracy, as
shown in Figure 16.
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(a)

(b)

Figure 16. Confusion matrices and balanced accuracy BA for (a) PCA and (b) PLSR, using the k-
means algorithm: 24 observations used for each rs (CH, D, and F train) and oc (traction and braking)
for a total of 144 spectra; comparisons were carried out for traction/braking conditions within the
same system (selected CH), for different rs for more similar systems (CH and D), and the same for all
three different systems (CH, D, and F).

The main points are summarized as:

• Anticipated and demonstrated by other means, active power Ph and current Ih are the
most effective indices; reactive power Qh also has good performance.

• The size of the problem is not an indicator of its complexity, as when systems are
different, so their spectral signatures are; for the problem of separation of traction and
braking for the same train, we saw the worst performance (the quantities are provided
as absolute values, so removing the most relevant, but trivial, piece of information,
i.e., the direction of flow).

• The current has a good understandable performance and is the best candidate to carry
out NILM at the TPS.

• PLSR has a better performance than PCA, likely due to the dimensionality reduction.
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For confirmation, clustering was also carried out with the GMM algorithm; in principle,
it is more flexible than the k-means basic algorithm. Results are shown in Figure 17;
surprisingly, the GMM algorithm performed worse, although not dramatically. There was
a marginal improvement only for Qh for the CH-D clustering case.

Figure 17. Confusion matrices and balanced accuracy BA for PLSR using the GMM algorithm:
24 observations used for each rs (CH, D, and F train) and oc (traction and braking) for a total of
144 spectra; comparisons were carried out for traction/braking conditions within the same system
(selected CH), for different rs for more similar systems (CH and D), and the same for all three different
systems (CH, D, and F).

5. Conclusions

This work focused on NILM applied to electrified transportation systems, focusing on
AC railways, and considered a range of time domain and frequency domain indices:

• Voltage–current time domain trajectories provided poor performances because in
the AC railway context, rolling stock has a strictly regulated displacement factor
dictated by standards, so it does not represent a feature bearing relevant information
for household NILM.

• Converter emissions are located at low-order harmonics and for more modern rolling
stocks at the switching frequency of four-quadrant converters (4QCs), providing
a feature-rich pattern of emissions up to about some kHz. For the analyzed case,
the relevant frequency range extended up to 1 kHz, but there was evidence of an
extraneous emission (explained by the presence of other trains in the same supply
section) at 2 kHz, found relevant in one case at 4 kHz.

• Power and current harmonic spectra (Ph, Qh, and Ih) were analyzed for significance
with identification and classification purposes. The used methods spanned simple
harmonic component tracking by means of sample dispersion and correlation, as well
as principal component analysis (PCA) and partial least squares regression (PLSR) for
extraction of more compact/better representations, aimed at clustering techniques.

After the identification of possible indices and features, and their preliminary verifi-
cations concerning their relationships with operating conditions, component separability,
and variability, such features were verified by feeding them to clustering algorithms, as-
sessing performance on a significant set of measured spectra. A total of 24 spectra for each
operating condition (synthesized to traction and braking) and for each rolling stock (one
for Switzerland, Germany, and France) were selected, 144 in total, to calculate statistics and
clustering performances. Spectra were calculated based on the recordings available in the
public dataset [52].
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Assessed performances (via the confusion matrix) confirmed the better behavior of
the PLSR algorithm in contrast to PCA, especially due to reduced dimensionality, which
favors the clustering task. Then, even a basic clustering algorithm (such as k-means) has an
almost optimal performance. Improved clustering algorithms (at least from a theoretical
standpoint) were found to perform slightly worse, as demonstrated by using GMM in the
same case.

Future developments involve confirming the findings using a larger set of data from
other types of rolling stock and proceeding with data applications measured at TPS rather
than at each rolling stock item. In addition, more powerful methods of spectra characteriza-
tion may be explored, such as using higher-order cumulants, as well as pattern recognition
techniques applied to 2D image-like representations, involving two quantities at the same
time.
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