
Citation: Yousif, J.H.; Kazem, H.A.;

Al-Balushi, H.; Abuhmaidan, K.;

Al-Badi, R. Artificial Neural Network

Modelling and Experimental

Evaluation of Dust and Thermal

Energy Impact on Monocrystalline

and Polycrystalline Photovoltaic

Modules. Energies 2022, 15, 4138.

https://doi.org/10.3390/en15114138

Academic Editor: Petr Musilek

Received: 26 April 2022

Accepted: 2 June 2022

Published: 4 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Artificial Neural Network Modelling and Experimental
Evaluation of Dust and Thermal Energy Impact on
Monocrystalline and Polycrystalline Photovoltaic Modules
Jabar H. Yousif 1,* , Hussein A. Kazem 2, Haitham Al-Balushi 1, Khaled Abuhmaidan 1 and Reem Al-Badi 2

1 Faculty of Computing and IT, Sohar University, P.O. Box 44, Sohar PCI 311, Oman;
haithm-1@hotmail.com (H.A.-B.); khmaidan@su.edu.om (K.A.)

2 Faculty of Engineering, Sohar University, P.O. Box 44, Sohar PCI 311, Oman; h.kazem@su.edu.om (H.A.K.);
eng.reemabdullah@gmail.com (R.A.-B.)

* Correspondence: jyousif@su.edu.om; Tel.: +968-26850100 (ext. 307)

Abstract: Many environmental parameters affect the performance of solar photovoltaics (PV), such as
dust and temperature. In this paper, three PV technologies have been investigated and experimentally
analyzed (mono, poly, and flexible monocrystalline) in terms of the impact of dust and thermal
energy on PV behavior. Furthermore, a modular neural network is designed to test the effects of
dust and temperature on the PV power production of six PV modules installed at Sohar city, Oman.
These experiments employed three pairs of PV modules (one cleaned daily and one kept dusty for
30 days). The performance of the PV power production was evaluated and examined for the three
PV modules (monocrystalline, polycrystalline, and flexible), which achieved 30.24%, 28.94%, and
36.21%, respectively. Moreover, the dust reduces the solar irradiance approaching the PV module and
reduces the temperature, on the other hand. The neural network and practical models’ performance
were compared using different indicators, including MSE, NMSE, MAE, Min Abs Error, and r. The
Mean Absolute Error (MAE) is used for evaluating the accuracy of the ANN machine learning model.
The results show that the accuracy of the predicting power of the six PV modules was considerable,
at 97.5%, 97.4%, 97.6%, 96.7%, 96.5%, and 95.5%, respectively. The dust negatively reduces the PV
modules’ power production performance by about 1% in PV modules four and six. Furthermore, the
results were evident that the negative effect of the dust on the PV module production based on the
values of RMSE, which measures the square root of the average of the square’s errors. The average
errors in predicting the power production of the six PV modules are 0.36406, 0.38912, 0.34964, 0.49769,
0.46486, and 0.68238.

Keywords: photovoltaic performance; solar energy; dust impact; monocrystalline; polycrystalline; ANN

1. Introduction

Renewable energy sources and technologies have become attractive and compete with
fossil fuels. With the exacerbation of economic issues and the crisis of high environmental
pollution, the global trend towards renewable energy has become noticeable, especially
solar energy. There has been a noticeable and renewed interest in the use of renewable
energy recently [1]. This reduces the significant adverse environmental impact that results
from the heavy use of fossil energy. With the increasing obstacles related to the use
of fossil fuels from a political and ecological point of view, those interested in energy
must exploit alternative natural sources for energy production. Solar energy is one of
the most widespread renewable energies on the globe. Its energy is estimated at more
than 150,000 terawatts of the total energy on the earth’s surface. Solar energy technologies
spread fast in the last two decades. Photovoltaic, which converts solar energy into direct
electricity, has been used in many applications [2]. PV technologies have been investigated
by much research from different views over the past few decades. It was concluded that
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there are some disadvantages of investing in photovoltaics, such as a sharp reduction in PV
costs and improved PV efficiency [3].

The desert and coastal areas are among the most suitable regions for photovoltaic uses
due to the abundance of solar radiation throughout the year. However, these areas have
many challenges that affect the surfaces and efficiency of PV modules. The dust accumula-
tion is the most noticeable effect in these areas on the surfaces of the photovoltaic module
blocks and reflects the solar radiation. This situation leads to an impact on performance
and efficiency over time. Dust accumulation occurs for various reasons, including the type
of installation, the photovoltaic module slope, amount of humidity, etc. [4].

Several research studies have investigated the impact dust has on solar photovoltaics.
Appels et al. [5] investigated the effect of dust accumulation on PV modules experimentally.
The study suggested using a coating to reduce dust accumulation and losses. The authors
claimed that the rain removes the large dust particle (>60 µm) due to the coating compared
with small dust particles. Rajput et al. [6] experimentally investigated the effect of envi-
ronmental dust on the efficiency of solar cells over a year. Through the graphical results,
the maximum efficiency obtained without dust was 0.64%, and the resulting energy was
92.11%. The lowest efficiency is 0.33% with dust, equivalent to 89% of the energy. As dust
significantly affects energy production, performance must be ensured by providing a source
of dust cleaning for the surface of solar cells. Guo et al. [7] investigated the cleanliness index
to study the percentage of loss resulting from dust deposition on photovoltaic modules
for one year. The study showed that the average drop for one day is 0.46% if the modules
are cleaned within two months and 10–20% per month. Wind speed and humidity are
among the most important factors for dust deposition on modules. Klugmann-Radziemska
E [8] evaluated the negative impact of dust accumulation on the power generation of solar
photovoltaic (PV) modules in dusty conditions. The experiments showed a reduction of
3% annually in energy output. Saidan et al. [9] investigated the effect of dust on photo-
voltaic solar modules in Baghdad city experimentally. The dust density and aerosol size
distribution on the modules were measured. The results showed a decrease in the current
short circuit (ISC) and output power in each solar module with dust deposits compared to
the clean modules. The average effect on efficiency was 6.24%, 11.8%, and 18.74%, which
worked for periods of exposure to dust on the modules for one day, one week, and one
month, respectively. ALI et al. [10] investigated the dust deposition on the surface of two
types of PV modules (monocrystalline and polycrystalline) during three months of the
winter season. The study showed that the amount of dust deposited on the module’s
surfaces amounted to 0.98667 mg/cm3, leading to a decrease in the average generated
energy of 20% and 16% and a reduction in efficiency of 3.55% and 3.01%, respectively.

Gholami et al. [11] have conducted 70 days of experiments to investigate the dust
effect on PV performance in Iran. This study was carried out on days when the region
suffered from a lack of rain. They were started in May 2017 to identify how the photovoltaic
modules are affected by dust accumulation. The results show a decrease of 21.47% in energy
output and a total reduction of 289 kW for every 4.845 kW of output power capacity. The
energy reduction was estimated to be equivalent to three hectares of forest area absorbing
(32.7 tons) of carbon per MW of capacity. Chen et al. [12] studied factors that affected dust
accumulation on photovoltaic cells and investigated the effects of temperature, protection,
and corrosion. It is found that the accumulation and increase in dust on the surfaces of
photovoltaic cells reduces the efficiency of photoelectric conversion (short-circuit current
and voltage). This decrease in photovoltaic energy was estimated by about 34% if the den-
sity of the accumulated dust was 10 g/m2. Hachicha et al. [13] examined the performance
of solar photovoltaic (PV) modules in dusty conditions in the United Arab Emirates. The
results showed a decrease of 1.7% per g/m2 in power generation. Additionally, there was
an increase of 5.44 g/m2 in dust density within five months. The accumulated dust reduced
the power generation by 12.7%. Kazem et al. [14] implemented an experimental analysis to
examine the impact of dust accumulation on the PV module’s energy losses. The results
demonstrated that 64% of the dust particles’ diameters were 2–63 µm. The daily reduction
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of efficiency was 0.05% compared to neighboring countries, which is considered a small
value. The results show the recommended period of cleaning the cells should not exceed
three months.

Kazem et al. [15] proposed an analytical model for dust impact on PV performance
in terms of dust ingredients. A 1.4 kW PV system was installed in Sohar, Oman, with ten
monocrystalline PV modules with rated power equal to 140 W. The PV modules have been
connected to produce a 1.4 kW PV system. The effect of dust on the system performance
has been investigated. Furthermore, dust collected from six locations has been tested. The
ingredient was analyzed, and their effect was discussed. The proposed model is used to
investigate natural and artificial dust in Oman. The proposed model was validated using
proper mathematical indicators. However, in the current study, the proposed model is
ANN compared to the analytical model of Ref. [15]. On the other hand, the artificial neural
network ANN is used for prediction applications in many fields. Ziółkowski et al. [16]
used ANN to predict the fuel consumption of vehicles. Multi-Layer perceptron MLP is
used for modeling and prediction. Some performance parameters are used to evaluate
the prediction errors and accuracy, such as MAPE, r, and R2. De Silva et al. [17] used
neural network autoregression NNAR and MLP to predict electricity consumption in the
industrial sector in Brazil. MAPE is used to evaluate the prediction accuracy. The results
show that the MLP model presents the best prediction. Elsheikh et al. [18] reviewed ANN
techniques. The study is a comprehensive revision and contains a comparison between
different techniques. It is worth mentioning that ANN is applicable to model and evaluate
different solar energy applications, as has been discussed, such as photovoltaic design, solar
thermal collector, PV/T, solar water heater, etc. Furthermore, different statistical criteria
used to evaluate ANN models were discussed. Elsheikh et al. [19] proposed two ANN
models to predict the water yield of a solar distiller integrated with the evacuated tube.
ANN and moth-flame optimizers are used to find the optimal internal parameters of hybrid
long short-term memory. Experimental data was used to test and train the proposed model.
The lower values of error indicators (RMSE, MAE, MRE) and higher accuracy indicators
(R2, OI, EC) approved the proposed model.

Table 1 illustrates some published studies in the literature. It is found that the PV
power losses were investigated based on the dust accumulation period (daily, weekly,
monthly, and yearly), PV technologies, etc. However, the review literature indicated many
multiple parameters that affect the function and power generation of the PV system, such
as location, dust characteristics, and pollution in the province.

Table 1. Summary of some published studies in literature.

Reference Year Country % Reduction Days of Experiment
(Days)

Appels R et al. [5] 2013 Belgium Ploss = 3% and 4% 365

Rajput et al. [6] 2013 India Ploss = 0.33% and efficiency
reduction = 89% 365

Guo et al. [7] 2015 Qatar Ploss =
0.46%/day/10–20%/month 365

Klugmann-Radziemska [8] 2015 Poland Ploss = 0.8% 365

Saidan et al. [9] 2016 Iraq
Ploss = 6.24%/day,
11.8%/week and
18.74%/month

30

ALI et al. [10] 2017 Pakistan
Ploss = 20% and 16%

efficiency reduction = 3.55%
and 3.01%,

90

Gholami et al. [11] 2018 Iran Ploss = 21.47% 70
Chen et al. [12] 2018 China Ploss = 34% 80

Hachicha et al. [13] 2019 UAE Ploos = 12.7% 150
Kazem et al. [14] 2020 Oman Ploss = 0.05% 365

The current study investigates the effect of dust and temperature on PV module
technologies. This study installed monocrystalline, polycrystalline, and flexible monocrys-
talline PV modules horizontally in Sohar, Oman. A pair of PV modules were used for
each technology—one to be cleaned daily and one to be kept dusty for 30 days in Novem-
ber 2021. Measurements were taken for the PV performance parameters and evaluated.
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Additionally, ANN techniques were used to investigate the pattern and predict different
scenarios. Analysis, discussion, and comparison of experimental and ANN model results
are presented.

2. Experimental Setup
2.1. Photovoltaic System Description

Despite the power of solar radiation suitable for use in photovoltaic cells in the Arab
Gulf region, specifically the Sultanate of Oman, there are many influences from weather
conditions that affect solar cells’ performance. Oman is one of the most solar-density
countries in the world. From this standpoint comes the role of Oman to provide sufficient
electrical production from solar energy to contribute to meeting local electricity needs.
Climatically, Oman is characterized by the diversity of the climate and its negative factors
that affect the productivity of solar energy, such as dust, humidity, and high temperatures.
Oman is divided into desert regions with a high solar density and coastal areas (the southern
part of Oman) characterized by a low solar density [20]. Hence, it was necessary to present
a study that analyzes the effect of (dust, humidity, radiation strength, and temperature)
and the extent of sensitivity that affects solar cells’ efficiency over time. A stand-alone
photovoltaic system containing six solar modules, each with a capacity of 100 W and a
total power of 0.6 kW, as shown in Figure 1a, is installed at the Faculty of Engineering at
Sohar University. One PV module is cleaned manually with water early morning every
day, and one remains dusty, as shown in Figure 1b. In Figure 2, a block diagram indicates
that the system used three solar modules (Mono-crystalline, Polycrystalline, and Fixable
Mono-crystalline) connected to the controller charger with six separate batteries and load
resistance (50 Ω) for each module. This system measures current, voltage, power, solar cell
temperature, and resistance.
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Figure 2. Block diagram of stand-alone photovoltaic systems.

In order to study the effect of dust accumulation on PV modules, one type of pair
module used in this system is cleaned daily. Figure 3 illustrates a schematic of the installed
stand-alone photovoltaic systems.
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Table 2 illustrates the photovoltaic modules specifications.

Table 2. PV module specifications.

Mono-Crystalline
Photovoltaic

Polycrystalline
Photovoltaic

Fixable Mono-Crystalline
Photovoltaic

Parameters Value Unit Value Unit Value Unit
Maximum power 100 W 100 W 100 W

Maximum power voltage (Vmp) 18 V 18 V 18 V
Maximum power Current (Imp) 5.56 A 5.56 A 5.56 A

Open circuit Voltage (Voc) 21.5 V 22.0 V 21.5 V
Current short circuit (Isc) 6.22 A 6.06 A 6.20 A
Maximum System Voltage 1000 V 1000 V 600 V

Maximum series Fuse 15 A 15 A 15 A
Operating Temperature −20◦–90◦ C −20◦–85◦ C −40◦–90◦ C

Size
Length 1200 mm 1200 mm 320 mm
Width 540 mm 540 mm 240 mm
Height 35 mm 35 mm 3 mm

Weight 7.3 kg 7.3 kg 0.4 kg

2.2. Sohar Metrological Data

Solar energy is one of the main renewable energy sources for ease of use nowadays.
Many photovoltaic cells that implement solar energy methods are implemented as a result
of the rapid development of the world and society. The primary source in Oman is natural
gas and oil (fossil fuels) used to produce electricity, which are non-renewable energy sources
and a source of air pollution.

Oman is in the solar belt between latitudes 16◦40′ N and 26◦20′ N and longitudes
51◦50′ E and 59◦40′ E, and climatic conditions are desert to the north of the Sultanate. The
subtropical conditions in the south indicated that the average solar radiation in this country
is 5.197 kW/m2/day [21]. The duration of the irradiance ranges between 8.0 and 10.5 h per
day. Figure 4a shows the map of the Sultanate of Oman, and Figure 4b shows the hourly
variation in solar radiation intensity for Sohar city.

2.3. Performance Evaluation Criteria

Several standard performance evaluation metrics were proposed to evaluate the
accuracy of simulated results, such as Mean Squared Error (MSE), Mean Square Error
(RMSE), and Mean Absolute Error (MAE). Coefficient of Determination (R2) and Root
Mean Absolute Percentage Error (MAPE) [22]. The MSE determines the average squared
difference between the estimated results and the actual data, and MAE computes the
average deviation of predicted results from observed data. The RMSE measures the square
root of the average of the square’s errors. Table 3 presents some standard performance
evaluation metrics.

2.4. ANN Approach and Design

The artificial neural network (ANN) simulates linear or nonlinear associations and
reduces the dimensionality of complex data relationships. ANN emulates and mimics
the biological brain functions as a mathematical module [23]. The ANN has unique
characteristics, such as learning from experience and generalization of the outcomes. It
provides parallelism and recurrent computing, making it proper for data classification
and recognition applications, approximating and predicting unseen data, etc. Numerous
ANN architectures were designed and created to simulate and predicate the behavior of
renewable power production systems [24].
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Figure 4. (a) Map of Oman (Source: https://www.cbd.int/doc/world/om/om-nr-05-en.pdf, 25
April 2022); (b) Mean hourly solar radiation for Sohar city collected by the author.
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Table 3. The used standard performance evaluation metrics [21].

Evaluation Matric Equation Variables Meaning

Mean square error (MSE) MSE = 1
N ∑N

i=1 ( fi − yi)
2

yi: experimental data
fi: predicted data

N: number of the exemplars

Determine the average squared
difference between the estimated

results and the actual data.

Mean absolute error (MAE) MAP = 1
N ∑N

i=1

∣∣∣ fi − yi

∣∣∣ yi: experimental data
fi: predicted data

N: number of the exemplars

Determine the average deviation
of predicted results from observed

data

Root mean square error
(RMSE)

RMSE =√
MSE =

√
1
N ∑N

i=1 ( fi − yi)
2

yi: experimental data
fi: predicted data

N: number of the exemplars

Measure the square root of the
average of the square’s errors.

Coefficient of determination
(R2) R2 = 1− ∑N

i ( yi− fi)
2

∑N
i ( yi−yi)

2

yi: experimental data
yi : mean of the experimental data

fi: predicted data
N: number of the exemplars

Evaluate the validity of
performance results of predicted
are indicated by a (R2) value that

is close to 1.

Normalized mean squared
error (NMSE) NMSE = P∗N∗MSE

∑
p
j=0

N ∑N
i=0(dij

2)−(∑N
i=0 dij )

2

N

P: number of processing elements
N: number of the exemplars

dij: experimental output

Determine the percentage of
normalized MSE between the
observed data and predicted

results.

The correlation coefficient (r) r = ∑N
i=1( xi−xi)( yi−yi)√

∑N
i ( xi−xi)

2 ∑N
i ( yi−yi)

2

xi: x-variable values
xi : mean of the xi values

yi: y-variable values
yi : mean of the yi values

N: number of the exemplars

The degree to which the estimated
data are aligned with a linear

regression line.

Adjust (R2) adj.R2 = 1− (1−)(n−1)
(n−k−1)

n: number of the exemplars
k: number of the model variables

Calculate the percentage of
variation explained by only the

independent variables that affect
the dependent variable

To set up the dimensions of solar power applications, it is necessary to predict and
examine solar irradiance and power accurately. As a result, finding robust mathematical
solutions is critical for effectively controlling and managing the electrical grid. ANN
can provide manageable and accurate prediction models [25]. It can train with a small
number of datasets and control uncertainty in resource computation, which improves the
performance of forecasting models. Furthermore, using hidden layers and a recurrent
approach improves the results and better fits the actual data. In addition, the ANN
performs a robust sensitivity analysis of input variables to determine the best selection of
variables that improve model performance. A modular neural network comprises several
neural network models connected by an intermediary. Modular neural networks enable
more complex management and manipulation of simpler neural network systems [26].
In this case, the multiple neural networks function as modules, each solving a portion of
the problem. An integrator is in charge of splitting the problem into sub-modules and
combining the output from those modules to create the system’s outcome. The “divide and
conquer” principle divides significant issues into smaller, more manageable chunks [27].

A modular neural network is defined as in Equation (1).

Net = (n, j, m, h, p, I, D) (1)

where the number of inputs is n, and the number of modules is m. The number of classes
is j, and the type of the intermediate connection is h. p is the permutation function, the
input layer module is I, and D is the decision module. The proposed module is based on a
modular neural network that consists of one input (Solar Rad.) and one output (Power), as
shown in Figure 5.
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The training dataset is TS, which can be defined as in Equation (2)

TS =
(

xj
1, xj

2, . . . , xj
n; dj

)
, where xj

i ∈ IR (2)

the class number dj, j in [1,..,t], t is epoch training number.
The mapping (Φ) function of input layer is defined as in Equation (3).

Φ : Rn∗m → Rn∗log2 k (3)

The response r of each vector j of input layer is defined as in Equation (4).

rj = Φ
(

xj
1, xj

2, . . . , xj
n

)
, where xj

i ∈ IR (4)

The training set for the decision network is defined as in Equation (5).

TSd =
{(

rj; dj
BIT

)∣∣∣ j = 1, . . . , t
}

, where dj
BIT is the output class of dj (5)

Therefore, the training for the decision network will be redefined as in Equation (6).

TSd =
{(

Φ
(

xj
1, xj

2, . . . , xj
n

)
; dj

BIT

)∣∣∣ j = 1, .., t
}

(6)

3. Results and Discussion

Different computation formulas measure the energy generated from other solar cells,
as shown in Table 4 [28,29]. This study deployed many computation formulas in practical
experiments and predictive calculations to measure electrical energy production. It is
presented in the following.

• Energy production (E) and yields (SY), life cycle costs (LCC), and Cost of energy (CoE).
• Performance ratio (R), Efficiencies (η), losses (Ploss), and recovery period (PBP).
• Present worth (MC), the replacement cost percentage (RC), and capacity factor (CF).
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Table 4. The equations to compute the PV-power production.

Equation Meaning

YFd =
EPV (kWh/year)

PVWP(kW p)

Specify the yield or factor (SY or YF), which is the AC energy
output of the system divided by the peak power of the installed
PV array at standard test conditions (STC) at a temperature of

25 ◦C.

CF = SY
8760 = EPVannual

(PR×8760)
Estimate the capacity factor (CF) benefits obtained from the

system.

PR = SY
YR

The full rated power (PR) for 24 h per day for a year, which
used to evaluate the used PV system quality.

LCC = Ccapital +
n
∑
1

CO&M·RPW +
n
∑
1

Creplacement·RPW − Csalvage·RPW

Life cycle cost (LCC) is the sum of the capital cost (Ccapital) plus all present costs (R) minuse (Csalvage)
RPW = F/(1 + i)N Rated power (W)

Ccapital = CAi ×UCi + ICI The capital cost of a project

MCr = MC0r ×
(

1+ f
i− f

)
×
[

1−
(

1+ f
1+i

)N
]

The maintenance cost (USD)

MC0r = kr × ICr The maintenance cost of the rth

MC =
r
∑
1

MCr The system total maintenance cost

RCk = ICk ×
Nr

∑
j=1

(
1+FR
1+IR

)( LP×j
Nr+1 ) The replacement cost of the kth component (USD)

CoE = LCC
n
∑
1

EPV

Cost of Energy

PPV(t) = Ppeak

(
G (t)
Gstc

)
− αT [Tc(t)− Tstc] PV generated power

Tc(t)− Tamb =
(

NOCT−20
800

)
G(t) The cell temperature (◦C)

EAC,t1 =
N
∑

t=1
EAC,t2

PV electrical energy generated

ηPV = EDC
G(t)×Ac

× 100% The PV array

ηsys =
EAC

G(t)×Ac
× 100% The PV system

3.1. Experimental Results

The six PV modules were tested for 35 days in this study, including monocrystalline
(PV1: clean, and PV2: dusty), polycrystalline (PV3: clean, and PV4: dusty), and flexible
monocrystalline (PV5: dusty, and PV6: clean). The three technologies of PV modules have
been compared, as shown in Figure 5 for dusty and clean in terms of current, voltage, and
power, respectively. By comparing the results of Figure 6a,b, the following points have
been observed:

• Clean monocrystalline (PV1) always have the highest current, voltage, and power,
while flexible module (PV5) has the lowest parameters. However, the polycrystalline
current is higher than the flexible module and lower than the monocrystalline module;

• In the middle of the day, the current drop due to the dust increased from 24.24% to
28.57%, for the first and 35th days, respectively. The voltage drops are insignificant on
the first day of the experiment for the three technologies. However, the flexible PV
module showed the highest drop on the last day of the experiment, which could be
due to the small PV size compared to the other two technologies;

• The power degradation for the three technologies is 30.24%, 28.94%, and 36.21%, for
monocrystalline, polycrystalline, and flexible PV modules, respectively. In general,
the monocrystalline is more affected by dust accumulation.
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Figure 6. Comparison of electrical performance for (a) first day, and (b) after 35 days of the experiment.

There are many types of cleaning methods to clean PV modules from dust accumu-
lation [30]. The study used water and a sponge (regular cleaning material) to clean the
surfaces manually.
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The dust degradation was compared on the first day and after three weeks for
monocrystalline (mono) and polycrystalline (poly) PV modules, as shown in Figure 7.
The mono PV power was reduced on the first day and 21st day from 74.25 W to 57.68 W
and from 73.28 W to 50.29 W, respectively. The poly PV power was reduced on the first day
and 21st day from 61.94 W to 60.75 W, and from 57.82 W to 56.32 W, respectively. However,
the degradation is higher at the beginning and end of the day compared to the middle of
the day.
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Figure 7. Comparison of clean and dusty PV performance for: (a) first day; and (b) after three weeks
of the experiment.

Figure 8 illustrates the effect of solar cell temperature considering dust on PV modules.
It is observed that the clean solar cell temperature is higher compared to the dusty one.
However, cell temperatures are close for clean and dusty PV early on the day and end. In
the middle of the day, the temperature difference increases obviously. The dust reduces the
temperature and solar irradiance penetration of the PV module.
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Figure 8. Effect of solar cell temperature considering dust on the PV module.
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3.2. ANN Results

The proposed predicting mathematical module is based on a modular neural network
that consists of one input (Solar Rad.) and one output (Power), using 600 datasets, as
shown in Figure 5. The modular neural network classifies the tested six PV modules
into three categories. The first-class is for the module using monocrystalline (PV1: clean,
and PV2: dusty). The second class is PV based on polycrystalline (PV3: clean, and PV4:
dusty), and the third is the PV module that uses flexible monocrystalline (PV5: dusty,
and PV6: clean). The datasets were separated into three classes (60% for training the
ANN module, 20% for the cross-validation process, and 20% for testing the results of the
proposed module). Several epochs and hidden layers were deployed to choose the ideal
number that achieved the highest performance. The experiments tested (100, 500, 1000)
epochs, showing that the 1000-epochs are ideal. Furthermore, a different number of hidden
layers were implemented and tested, and then the one hidden layer was fixed. The ANN
implemented an activation function of TanhAxon and a momentum learning method with
α = 0.7. Table 5 presents the descriptive statistics quantitative data of the experimental
datasets. It indicates that the number of observations is 600 pairs (solar irradiance, power),
and there are no missing values. The power of six photovoltaic panels was recorded,
which indicates that the maximum power rate is 77.634 (PV1), and the minimum is 2.222
(PV4). The mean value indicated that the PV1 has the highest value 60.759 and PV5 has the
minimum value (23.786).

Table 5. The descriptive summary statistics of the experimental datasets.

Variable Observations
Obs. with
Missing

Data

Obs.
without
Missing

Data

Minimum Maximum Mean Std.
Deviation

SolarRad. 600 0 600 60.700 762.200 467.454 157.977
Pow-PV1 600 0 600 19.136 77.634 60.759 14.069
Pow-PV2 600 0 600 10.100 61.548 46.539 12.339
Pow-PV3 600 0 600 9.246 60.420 47.937 12.877
Pow-PV4 600 0 600 2.222 62.491 46.371 16.250
Pow-PV5 600 0 600 6.650 27.126 23.786 3.958
Pow-PV6 600 0 600 12.648 39.116 31.992 5.288

The best network specifications indicate that the deployed number of epochs is 1000,
the MSE value for the training of data is 0.0232, and the cross-validation is 0.0244. Table 6
depicts the comparison results using different performance indicators, including MSE,
NMSE, MAE, Min Abs Error, and r. There are numerous methods for determining a
model’s accuracy. The Mean Absolute Error (MAE) is used for evaluating the quality of
the ANN machine learning model. It is the average of all absolute errors, indicating the
differences between the actual and predicted values. The results show that the accuracy of
power predicting of the six PV modules has a considerable accuracy of 97.5%, 97.4%, 97.6%,
96.7%, 96.5%, and 95.5%, respectively. The dust is negatively impacting the performance
of the panel’s power production. The power production is reduced by about 1% in PV
panels four and six. Furthermore, it was evident from the results that the negative effect of
the dust on the PV panel production was based on the values of RMSE, which measures
the square root of the average of the square’s errors. The average errors in predicting the
power production of the six PV modules are 0.36406, 0.38912, 0.34964, 0.49769, 0.46486,
and 0.68238. The adjusted r-square calculates the percentage of variation, and can be only
explained by the independent variables that affect the dependent variable.
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Table 6. Comparison results using different performance indicators.

Performance Pow-PV1 Pow-PV2 Pow-PV3 Pow-PV4 Pow-PV5 Pow-PV6

MSE 0.13254 0.15142 0.12225 0.24770 0.2161 0.46565
RMSE 0.36406 0.38912 0.34964 0.49769 0.46486 0.68238
NMSE 0.06594 0.09803 0.06529 0.082361 0.77494 0.78537
MAE 2.59588 2.62270 2.46235 3.38632 3.53922 4.56511

Min Abs Error 0.04102 0.04285 0.05226 0.09093 0.11083 0.18580
r 0.97264 0.96343 0.97485 0.97116 0.56483 0.55038

R2 0.94602 0.92819 0.95033 0.94315 0.31903 0.30291
Adj. R2 0.94592 0.92806 0.95024 0.94305 0.31789 0.30174

The comparison of the prediction of power production for the six PV panels with the
actual power production is shown in Figure 9. The proposed modular neural network
model accurately forecasts the actual power values with small error rates. However, some
production points have more errors than others as a result of the random choice of tested
datasets and the batch method’s use in updating the weights’ values through epochs.
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Figure 9. The comparison of prediction of power production for the six PV panels with the actual
power production.

Some of the variables were initialized with random values, such as weights and biases,
in the ANN testing process. This usually shows some of the production points with high
errors in the first 100 epochs of the testing process and is stabilized in the final epochs.

Sensitivity Analysis (SA) is a process to measure the impact of uncertainties in one
or more input variables that can lead to uncertainties in the output variables [31]. This
analysis improves the model’s prediction by studying how the model responds to changes
in input variables and analyzing interactions between variables. Figure 10a depicts the SA
of the proposed ANN model, demonstrating that the input variable (solar radiation) is less
sensitive to changes in the power values of PV panels five and six (flexible monocrystalline).
Additionally, Figure 10b shows the effects of varied input solar radiation on power produc-
tion, which illustrates that the high-power production is PV panel one, and the lowest is
PV 5 and 6.
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Figure 10. The sensitivity analysis of the input and output variables. (a) the SA of the proposed ANN
model; (b) effects of varied input solar radiation on power production.

To compare the results accurately, all experiments must be subjected to the same
climatic conditions and other factors used in the experiment. However, this does not
prevent us from finding a common factor for comparison, for example, the hot climate or
the same type of solar panels, and other factors. Table 7 compares the proposed systems
with some of the systems known in the literature survey. The power reduction is increased
when the average dust accumulation is high. The dust concentration affected the cell panels
more, which required weekly cleaning.

Table 7. Comparison results with other studies.

Reference Year Country % Reduction Daily Days of Experiment

Guo et al. [7] 2015 Qatar Ploss = 0.46% 365
Saidan et al. [9] 2016 Iraq Ploss = 0.208% 30

Gholami et al. [11] 2018 Iran Ploss = 0.306% 70
Hachicha et al. [13] 2019 UAE Ploos = 0.084% 150

Kazem et al. [14] 2020 Oman Ploss = 0.05% 365

Proposed Pow-PV2 2022 Oman Ploos = 1.008%
(monocrystalline cell) 30

Proposed Pow-PV4 2022 Oman Ploss = 0.964%
(polycrystalline) 30

Proposed Pow-PV4 2022 Oman Ploss = 1.207%
(flexible) 30
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4. Conclusions

This paper experimented with three PV technologies and evaluated them using an
artificial neural networks module. It employed six PV modules for the three technologies
(mono, poly, and flexible monocrystalline), for clean and dusty PV panels at Sohar city. This
case study proved that the monocrystalline is more affected by dust accumulation than other
technologies. Furthermore, we found a 30.24%, 28.94%, and 36.21% degradation in power
production for monocrystalline, polycrystalline, and flexible PV modules, respectively.

On the other hand, the ANN module is designed and implemented to evaluate the
accuracy of power production in different technologies’ PV panels using clean and dusty
cells. The results show that the accuracy of predicting power of the six PV modules has
a considerable accuracy of 97.5%, 97.4%, 97.6%, 96.7%, 96.5%, and 95.5%, respectively.
The dust negatively impacts the performance of panel power production. The power
production is reduced by about 1% in PV panels four and six. Moreover, the results clearly
show the negative effect of the dust on the PV panel production is based on the values of
RMSE, which measure the average errors in predicting the power production of the six PV
modules of 0.364, 0.389, 0.34964, 0.49769, 0.46486, and 0.68238, accordingly.

Future work should focus on evaluating the negative impact of the dust in the long-
term period (3-months, 6-months, 9-months), as well as examining the effect of dust type,
density, and size on PV panel performance.
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