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 Abstract: Many environmental parameters affect the performance of solar photovoltaics (PV), 
such as dust and temperature. In this paper, three PV technologies have been investigated and 
experimentally analyzed (mono, poly, and flexible monocrystalline) in terms of the impact of dust 
and thermal energy on PV behavior. Furthermore, a modular neural network is designed to test the 
effects of dust and temperature on the PV power production of six PV modules installed at Sohar 
city, Oman. These experiments employed three pairs of PV modules (one cleaned daily and one 
kept dusty for 30 days). The performance of the PV power production was evaluated and examined 
for the three PV modules (monocrystalline, polycrystalline, and flexible), which achieved 30.24%, 
28.94%, and 36.21%, respectively. Moreover, the dust reduces the solar irradiance approaching the 
PV module and reduces the temperature, on the other hand. The neural network and practical 
models’ performance were compared using different indicators, including MSE, NMSE, MAE, Min 
Abs Error, and r. The Mean Absolute Error (MAE) is used for evaluating the accuracy of the ANN 
machine learning model. The results show that the accuracy of the predicting power of the six PV 
modules was considerable, at 97.5%, 97.4%, 97.6%, 96.7%, 96.5%, and 95.5%, respectively. The dust 
negatively reduces the PV modules’ power production performance by about 1% in PV modules 
four and six. Furthermore, the results were evident that the negative effect of the dust on the PV 
module production based on the values of RMSE, which measures the square root of the average of 
the square’s errors. The average errors in predicting the power production of the six PV modules 
are 0.36406, 0.38912, 0.34964, 0.49769, 0.46486, and 0.68238. 

Keywords: photovoltaic performance; solar energy; dust impact; monocrystalline; polycrystalline; 
ANN 
 

1. Introduction 
Renewable energy sources and technologies have become attractive and compete 

with fossil fuels. With the exacerbation of economic issues and the crisis of high envi-
ronmental pollution, the global trend towards renewable energy has become noticeable, 
especially solar energy. There has been a noticeable and renewed interest in the use of 
renewable energy recently [1]. This reduces the significant adverse environmental impact 
that results from the heavy use of fossil energy. With the increasing obstacles related to 
the use of fossil fuels from a political and ecological point of view, those interested in 
energy must exploit alternative natural sources for energy production. Solar energy is 
one of the most widespread renewable energies on the globe. Its energy is estimated at 
more than 150,000 terawatts of the total energy on the earth’s surface. Solar energy 
technologies spread fast in the last two decades. Photovoltaic, which converts solar en-
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ergy into direct electricity, has been used in many applications [2]. PV technologies have 
been investigated by much research from different views over the past few decades. It 
was concluded that there are some disadvantages of investing in photovoltaics, such as a 
sharp reduction in PV costs and improved PV efficiency [3]. 

The desert and coastal areas are among the most suitable regions for photovoltaic 
uses due to the abundance of solar radiation throughout the year. However, these areas 
have many challenges that affect the surfaces and efficiency of PV modules. The dust 
accumulation is the most noticeable effect in these areas on the surfaces of the photovol-
taic module  blocks and reflects the solar radiation. This situation leads to an impact on 
performance and efficiency over time. Dust accumulation occurs for various reasons, in-
cluding the type of installation, the photovoltaic module slope, amount of humidity, etc. 
[4]. 

Several research studies have investigated the  impact dust has on solar photovolta-
ics. Appels et al. [5] investigated the effect of dust accumulation on PV modules experi-
mentally. The study suggested using a coating to reduce dust accumulation and losses. 
The authors claimed that the rain removes the large dust particle (>60 µm) due to the 
coating compared with small dust particles. Rajput et al. [6] experimentally investigated 
the effect of environmental dust on the efficiency of solar cells over a year. Through the 
graphical results, the maximum efficiency obtained without dust was 0.64%, and the re-
sulting energy was 92.11%. The lowest efficiency is 0.33% with dust, equivalent to 89% of 
the energy. As dust significantly affects energy production, performance must be en-
sured by providing a source of dust cleaning for the surface of solar cells. Guo et al. [7] 
investigated the cleanliness index to study the percentage of loss resulting from dust 
deposition on photovoltaic modules for one year. The study showed that the average 
drop for one day is 0.46% if the modules are cleaned within two months and 10–20% per 
month. Wind speed and humidity are among the most important factors for dust depo-
sition on modules. Klugmann-Radziemska E [8] evaluated the negative impact of dust 
accumulation on the power generation of solar photovoltaic (PV) modules in dusty con-
ditions. The experiments showed a reduction of 3% annually in energy output. Saidan et 
al. [9] investigated the effect of dust on photovoltaic solar modules in Baghdad city ex-
perimentally. The dust density and aerosol size distribution on the modules were meas-
ured. The results showed a decrease in the current short circuit (ISC) and output power 
in each solar module with dust deposits compared to the clean modules. The average 
effect on efficiency was 6.24%, 11.8%, and 18.74%, which worked for periods of exposure 
to dust on the modules for one day, one week, and one month, respectively. ALI et al. [10] 
investigated the dust deposition on the surface of two types of PV modules (monocrys-
talline and polycrystalline) during three months of the winter season. The study showed 
that the amount of dust deposited on the module’s surfaces amounted to 0.98667 
mg/cm3, leading to a decrease in the average generated energy of 20% and 16% and a 
reduction in efficiency of 3.55% and 3.01%, respectively. 

Gholami et al. [11] have conducted 70 days of experiments to investigate the dust 
effect on PV performance in Iran. This study was carried out on days when the region 
suffered from a lack of rain. They were started in May 2017 to identify how the photo-
voltaic modules are affected by dust accumulation. The results show a decrease of 21.47% 
in energy output and a total reduction of 289 kW for every 4.845 kW of output power 
capacity. The energy reduction was estimated to be equivalent to three hectares of forest 
area absorbing (32.7 tons) of carbon per MW of capacity. Chen et al. [12] studied factors 
that affected dust accumulation on photovoltaic cells and investigated the effects of 
temperature, protection, and corrosion. It is found that the accumulation and increase in 
dust on the surfaces of photovoltaic cells reduces the efficiency of photoelectric conver-
sion (short-circuit current and voltage). This decrease in photovoltaic energy was esti-
mated by about 34% if the density of the accumulated dust was 10 g/m2. Hachicha et al. 
[13] examined the performance of solar photovoltaic (PV) modules in dusty conditions in 
the United Arab Emirates. The results showed a decrease of 1.7% per g/m2 in power 
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generation. Additionally, there was an increase of 5.44 g/m2 in dust density within five 
months. The accumulated dust reduced the power generation by 12.7%. Kazem et al. [14] 
implemented an experimental analysis to examine the impact of dust accumulation on 
the PV module’s energy losses. The results demonstrated that 64% of the dust particles’ 
diameters were 2–63 µm. The daily reduction of efficiency was 0.05% compared to 
neighboring countries, which is considered a small value. The results show the recom-
mended period of cleaning the cells should not exceed three months. 

Kazem et al. [15] proposed an analytical model for dust impact on PV performance 
in terms of dust ingredients. A 1.4 kW PV system was installed in Sohar, Oman, with ten 
monocrystalline PV modules with rated power equal to 140 W. The PV modules have 
been connected to produce a 1.4 kW PV system. The effect of dust on the system per-
formance has been investigated. Furthermore, dust collected from six locations has been 
tested. The ingredient was analyzed, and their effect was discussed. The proposed model 
is used to investigate natural and artificial dust in Oman. The proposed model was val-
idated using proper mathematical indicators. However, in the current study, the pro-
posed model is ANN compared to the analytical model of Ref. [15]. On the other hand, 
the artificial neural network ANN is used for prediction applications in many fields. 
Ziółkowski et al. [16] used ANN to predict the fuel consumption of vehicles. Multi-Layer 
perceptron MLP is used for modeling and prediction. Some performance parameters are 
used to evaluate the prediction errors and accuracy, such as MAPE, r, and R2. De Silva et 
al. [17] used neural network autoregression NNAR and MLP to predict electricity con-
sumption in the industrial sector in Brazil. MAPE is used to evaluate the prediction ac-
curacy. The results show that the MLP model presents the best prediction. Elsheikh et al. 
[18] reviewed ANN techniques. The study is a comprehensive revision and contains a 
comparison between different techniques. It is worth mentioning that ANN is applicable 
to model and evaluate different solar energy applications, as has been discussed, such as 
photovoltaic design, solar thermal collector, PV/T, solar water heater, etc. Furthermore, 
different statistical criteria used to evaluate ANN models were discussed. Elsheikh et al. 
[19] proposed two ANN models to predict the water yield of a solar distiller integrated 
with the evacuated tube. ANN and moth-flame optimizers are used to find the optimal 
internal parameters of hybrid long short-term memory. Experimental data was used to 
test and train the proposed model. The lower values of error indicators (RMSE, MAE, 
MRE) and higher accuracy indicators (R2, OI, EC) approved the proposed model. 

Table 1 illustrates some published studies in the literature. It is found that the PV 
power losses were investigated based on the dust accumulation period (daily, weekly, 
monthly, and yearly), PV technologies, etc. However, the review literature indicated 
many multiple parameters that affect the function and power generation of the PV sys-
tem, such as location, dust characteristics, and pollution in the province. 

Table 1. Summary of some published studies in literature. 

Reference Year Country % Reduction Days of Experiment 
(Days) 

Appels R et al. [5] 2013 Belgium Ploss = 3% and 4% 365 
Rajput et al. [6] 2013 India Ploss = 0.33% and efficiency reduction = 89% 365 

Guo et al. [7] 2015 Qatar Ploss = 0.46%/day/10–20%/month 365 
Klugmann-Radziemska [8] 2015 Poland Ploss = 0.8% 365 

Saidan et al. [9] 2016 Iraq Ploss = 6.24%/day, 11.8%/week and 
18.74%/month 

30 

ALI et al. [10] 2017 Pakistan Ploss = 20% and 16% efficiency reduction = 3.55%
and 3.01%, 

90 

Gholami et al. [11] 2018 Iran Ploss = 21.47% 70 
Chen et al. [12] 2018 China Ploss = 34% 80 

Hachicha et al. [13] 2019 UAE Ploos = 12.7% 150 
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Kazem et al. [14] 2020 Oman Ploss = 0.05% 365 

The current study investigates the effect of dust and temperature on PV module 
technologies. This study installed monocrystalline, polycrystalline, and flexible mono-
crystalline PV modules horizontally in Sohar, Oman. A pair of PV modules were used for 
each technology—one to be cleaned daily and one to be kept dusty for 30 days in No-
vember 2021. Measurements were taken for the PV performance parameters and evalu-
ated. Additionally, ANN techniques were used to investigate the pattern and predict 
different scenarios. Analysis, discussion, and comparison of experimental and ANN 
model results are presented. 

2. Experimental Setup 
2.1. Photovoltaic System Description 

Despite the power of solar radiation suitable for use in photovoltaic cells in the Arab 
Gulf region, specifically the Sultanate of Oman, there are many influences from weather 
conditions that affect solar cells’ performance. Oman is one of the most solar-density 
countries in the world. From this standpoint comes the role of Oman to provide sufficient 
electrical production from solar energy to contribute to meeting local electricity needs. 
Climatically, Oman is characterized by the diversity of the climate and its negative fac-
tors that affect the productivity of solar energy, such as dust, humidity, and high tem-
peratures. Oman is divided into desert regions with a high solar density and coastal areas 
(the southern part of Oman) characterized by a low solar density [20]. Hence, it was 
necessary to present a study that analyzes the effect of (dust, humidity, radiation 
strength, and temperature) and the extent of sensitivity that affects solar cells’ efficiency 
over time. A stand-alone photovoltaic system containing six solar modules, each with a 
capacity of 100 W and a total power of 0.6 kW, as shown in Figure 1a, is installed at the 
Faculty of Engineering at Sohar University. One PV module is cleaned manually with 
water early morning every day, and one remains dusty, as shown in Figure 1b. In Figure 
2, a block diagram indicates that the system used three solar modules (Mono-crystalline, 
Polycrystalline, and Fixable Mono-crystalline) connected to the controller charger with 
six separate batteries and load resistance (50 Ω) for each module. This system measures 
current, voltage, power, solar cell temperature, and resistance. 

  
(a) (b) 

Figure 1. (a) Stand-alone photovoltaic systems installed at the Faculty of Engineering at Sohar 
university; (b) PV module cleaning. 
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Figure 2. Block diagram of stand-alone photovoltaic systems. 

In order to study the effect of dust accumulation on PV modules, one type of pair 
module used in this system is cleaned daily. Figure 3 illustrates a schematic of the in-
stalled stand-alone photovoltaic systems.  
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Figure 3. Schematic of stand-alone photovoltaic systems. 

Table 2 illustrates the photovoltaic modules specifications. 

Table 2. PV module specifications. 

 Mono-Crystalline Photovoltaic Polycrystalline 
Photovoltaic 

Fixable Mono-Crystalline 
Photovoltaic 

Parameters Value Unit Value Unit Value Unit 
Maximum power 100 W 100 W 100 W 

Maximum power voltage (Vmp) 18 V 18 V 18 V 
Maximum power Current (Imp) 5.56 A 5.56 A 5.56 A 

Open circuit Voltage (Voc) 21.5 V 22.0 V 21.5 V 
Current short circuit (Isc) 6.22 A 6.06 A 6.20 A 

Maximum System Voltage 1000 V 1000 V 600 V 
Maximum series Fuse 15 A 15 A 15 A 

Operating Temperature −20°–90° C −20°–85° C −40°–90° C 

Size 
Length 1200 mm 1200 mm 320 mm 
Width 540 mm 540 mm 240 mm 
Height 35 mm 35 mm 3 mm 

Weight 7.3 kg 7.3 kg 0.4 kg 

2.2. Sohar Metrological Data 
Solar energy is one of the main renewable energy sources for ease of use nowadays. 

Many photovoltaic cells that implement solar energy methods are implemented as a re-
sult of the rapid development of the world and society. The primary source in Oman is 
natural gas and oil (fossil fuels) used to produce electricity, which are non-renewable 
energy sources and a source of air pollution. 
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Oman is in the solar belt between latitudes 16°40′ N and 26°20′ N and longitudes 
51°50′ E and 59°40′ E, and climatic conditions are desert to the north of the Sultanate. The 
subtropical conditions in the south indicated that the average solar radiation in this 
country is 5.197 kW/m2/day [21]. The duration of the irradiance ranges between 8.0 and 
10.5 h per day. Figure 4a shows the map of the Sultanate of Oman, and Figure 4b shows 
the hourly variation in solar radiation intensity for Sohar city. 

 
(a) 
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(b) 

Figure 4. (a) Map of Oman (Source: https://www.cbd.int/doc/world/om/om-nr-05-en.pdf); (b) 
Mean hourly solar radiation for Sohar city collected by the author. 

2.3. Performance Evaluation Criteria 
Several standard performance evaluation metrics were proposed to evaluate the 

accuracy of simulated results, such as Mean Squared Error (MSE), Mean Square Error 
(RMSE), and Mean Absolute Error (MAE). Coefficient of Determination (R2) and Root 
Mean Absolute Percentage Error (MAPE) [22]. The MSE determines the average squared 
difference between the estimated results and the actual data, and MAE computes the 
average deviation of predicted results from observed data. The RMSE measures the 
square root of the average of the square’s errors. Table 3 presents some standard per-
formance evaluation metrics. 

Table 3. The used standard performance evaluation metrics [21]. 

Evaluation Matric Equation Variables Meaning 

Mean square error 
(MSE) 

MSE = ଵே ∑ (𝑓௜ − 𝑦௜)ଶே௜ୀଵ  
yi: experimental data 

fi: predicted data 
N: number of the exemplars 

Determine the average 
squared difference between 

the estimated results and the 
actual data. 

Mean absolute error 
(MAE) 

MAP = ଵே ∑ |𝑓௜ − 𝑦௜ே௜ୀଵ | yi: experimental data 
fi: predicted data 

N: number of the exemplars 

Determine the average devia-
tion of predicted results from 

observed data 

Root mean square 
error (RMSE) RMSE = √𝑀𝑆𝐸 = ටଵே ∑ (𝑓௜ − 𝑦௜)ଶே௜ୀଵ  

yi: experimental data 
fi: predicted data 

N: number of the exemplars 

Measure the square root of 
the average of the square’s 

errors. 

Coefficient of de-
termination (R2) 𝑅ଶ = 1 − ∑ ( 𝑦௜ − 𝑓௜)ଶே௜∑ ( 𝑦௜ − ӯ௜)ଶே௜  

yi: experimental data 
ӯi: mean of the experimental 

data 
fi: predicted data 

N: number of the exemplars 

Evaluate the validity of per-
formance results of predicted 
are indicated by a (R2) value 

that is close to 1. 
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Normalized mean 
squared error 

(NMSE) 

𝑁𝑀𝑆𝐸= 𝑃 ∗ 𝑁 ∗ 𝑀𝑆𝐸∑ 𝑁 ∑ (𝑑௜௝ଶ) − (∑ 𝑑௜௝)ଶே௜ୀ଴ே௜ୀ଴ 𝑁௣௝ୀ଴  

P: number of processing ele-
ments 

N: number of the exemplars 
dij: experimental output 

Determine the percentage of 
normalized MSE between the 
observed data and predicted 

results. 

The correlation co-
efficient (r) 

𝑟 = ∑ ( 𝑥௜ − 𝑥పഥ )ே௜ୀଵ ( 𝑦௜ − ӯ௜)ඥ∑ ( 𝑥௜ − 𝑥పഥ )ଶே௜ ∑ ( 𝑦௜ − ӯ௜)ଶே௜  

xi: x-variable values 
x̄: mean of the xi values 

yi: y-variable values 
ӯi: mean of the yi values 

N: number of the exemplars 

The degree to which the es-
timated data are aligned with 

a linear regression line. 

Adjust (R2) 𝑎𝑑𝑗. 𝑅ଶ = 1 − (1−)(𝑛 − 1)(𝑛 − 𝑘 − 1)  
n: number of the exemplars 

k: number of the model varia-
bles 

Calculate the percentage of 
variation explained by only 
the independent variables 
that affect the dependent 

variable 

2.4. ANN Approach and Design 
The artificial neural network (ANN) simulates linear or nonlinear associations and 

reduces the dimensionality of complex data relationships. ANN emulates and mimics the 
biological brain functions as a mathematical module [23]. The ANN has unique charac-
teristics, such as learning from experience and generalization of the outcomes. It provides 
parallelism and recurrent computing, making it proper for data classification and recog-
nition applications, approximating and predicting unseen data, etc. Numerous ANN 
architectures were designed and created to simulate and predicate the behavior of re-
newable power production systems [24]. 

To set up the dimensions of solar power applications, it is necessary to predict and 
examine solar irradiance and power accurately. As a result, finding robust mathematical 
solutions is critical for effectively controlling and managing the electrical grid. ANN can 
provide manageable and accurate prediction models [25]. It can train with a small num-
ber of datasets and control uncertainty in resource computation, which improves the 
performance of forecasting models. Furthermore, using hidden layers and a recurrent 
approach improves the results and better fits the actual data. In addition, the ANN per-
forms a robust sensitivity analysis of input variables to determine the best selection of 
variables that improve model performance. A modular neural network comprises several 
neural network models connected by an intermediary. Modular neural networks enable 
more complex management and manipulation of simpler neural network systems [26]. In 
this case, the multiple neural networks function as modules, each solving a portion of the 
problem. An integrator is in charge of splitting the problem into sub-modules and com-
bining the output from those modules to create the system’s outcome. The “divide and 
conquer” principle divides significant issues into smaller, more manageable chunks [27]. 

A modular neural network is defined as in Equation (1). 

Net = (n, j, m, h, p, I, D) (1)

where the number of inputs is n, and the number of modules is m. The number of classes 
is j, and the type of the intermediate connection is h. p is the permutation function, the 
input layer module is I, and D is the decision module. The proposed module is based on a 
modular neural network that consists of one input (Solar Rad.) and one output (Power), 
as shown in Figure 5. 
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Figure 5. Proposed Modular Neural Network Architecture. 

The training dataset is TS, which can be defined as in Equation (2) TS = ൫xଵ୨ , xଶ୨ , … , x୬୨ ; d୨൯, where x୧୨ ∈ IR (2)

the class number dj, j in [1,..,t], t is epoch training number. 
The mapping (ɸ)function of input layer is defined as in Equation (3). ɸ: 𝑅௡∗௠ →  𝑅⌈௡∗୪୭୥మ ௞⌉ (3)

The response r of each vector j of input layer is defined as in Equation (4). 𝑟௝ = ɸ൫𝑥ଵ௝, 𝑥ଶ௝, … , 𝑥௡௝൯, 𝑤ℎ𝑒𝑟𝑒 𝑥௜௝ ∈ 𝐼𝑅 (4)

The training set for the decision network is defined as in Equation (5). 𝑇𝑆ௗ = ൛(𝑟௝; 𝑑஻ூ்௝ )| j = 1, . . . , tൟ, where 𝑑஻ூ்௝  is the output class of dj (5)

Therefore, the training for the decision network will be redefined as in Equation (6). 𝑇𝑆ௗ = ൛(ɸ൫𝑥ଵ௝, 𝑥ଶ௝, … , 𝑥௡௝൯; 𝑑஻ூ்௝ )| j = 1, . . , tൟ (6)

3. Results and Discussion 
Different computation formulas measure the energy generated from other solar 

cells, as shown in Table 4 [28,29]. This study deployed many computation formulas in 
practical experiments and predictive calculations to measure electrical energy produc-
tion. It is presented in the following. 
• Energy production (E) and yields (SY), life cycle costs (LCC), and Cost of energy 

(CoE). 
• Performance ratio (R), Efficiencies (η), losses (Ploss), and recovery period (PBP). 
• Present worth (MC), the replacement cost percentage (RC), and capacity factor (CF). 
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Table 4. The equations to compute the PV-power production. 

Equation Meaning 

)(
)/(

kWpPV
yearkWhEYF

WP

PV
d =  

Specify the yield or factor (SY or YF), which is the AC energy 
output of the system divided by the peak power of the installed 
PV array at standard test conditions (STC) at a temperature of 25 

°C. 𝐶𝐹 =  𝑆𝑌
8760 =  𝐸௉௏௔௡௡௨௔௟(𝑃ோ ൈ 8760) Estimate the capacity factor (CF) benefits obtained from the sys-

tem. 𝑃𝑅 =  𝑆𝑌𝑌ோ  The full rated power (PR) for 24 h per day for a year, which used 
to evaluate the used PV system quality. 

PWsalvage

n

PWtreplacemen

n

PWMOcapital RCRCRCCLCC ...
11

& −++= 
 

Life cycle cost (LCC) is the sum of the capital cost (Ccapital) plus all present costs (R) minuse (Csalvage) 
N

PW iFR )1/( +=  Rated power (W) 

ICIUCCAC iicapital +×=  The capital cost of a project 


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

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

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fi
fMCMC

1
111

0  The maintenance cost (USD) 

rrr ICkMC ×=0  The maintenance cost of the rth 

=
r

rMCMC
1

 The system total maintenance cost 


=









+
×









+
+×=

r
r

N

j

N
jLP

kk IR
FRICRC

1

1

1
1  The replacement cost of the kth component (USD) 


= n

PVE

LCCCoE

1

 
Cost of Energy 

𝑃௉௏(𝑡) =  𝑃௣௘௔௞  ቆ 𝐺 (𝑡)𝐺௦௧௖  ቇ − 𝛼்ሾ𝑇௖(𝑡) − 𝑇௦௧௖ሿ PV generated power 𝑇௖(𝑡) − 𝑇௔௠௕ = ൬𝑁𝑂𝐶𝑇 − 20
800 ൰ 𝐺(𝑡) The cell temperature (°C) 


=

=
N

t
tACtAC EE

1
2,1,  PV electrical energy generated 

%100
)(

×
×

=
c

DC
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3.1. Experimental Results 
The six PV modules were tested for 35 days in this study, including monocrystalline 

(PV1: clean, and PV2: dusty), polycrystalline (PV3: clean, and PV4: dusty), and flexible 
monocrystalline (PV5: dusty, and PV6: clean). The three technologies of PV modules have 
been compared, as shown in Figure 5 for dusty and clean in terms of current, voltage, and 
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power, respectively. By comparing the results of Figure 6a and Figure 6b, the following 
points have been observed: 
• Clean monocrystalline (PV1) always have the highest current, voltage, and power, 

while flexible module (PV5) has the lowest parameters. However, the polycrystal-
line current is higher than the flexible module and lower than the monocrystalline 
module; 

• In the middle of the day, the current drop due to the dust increased from 24.24% to 
28.57%, for the first and 35th days, respectively. The voltage drops are insignificant 
on the first day of the experiment for the three technologies. However, the flexible 
PV module showed the highest drop on the last day of the experiment, which could 
be due to the small PV size compared to the other two technologies; 

• The power degradation for the three technologies is 30.24%, 28.94%, and 36.21%, for 
monocrystalline, polycrystalline, and flexible PV modules, respectively. In general, 
the monocrystalline is more affected by dust accumulation. 
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Figure 6. Comparison of electrical performance for (a) first day, and (b) after 35 days of the ex-
periment. 

There are many types of cleaning methods to clean PV modules from dust accumu-
lation [30]. The study used water and a sponge (regular cleaning material) to clean the 
surfaces manually. 

The dust degradation was compared on the first day and after three weeks for 
monocrystalline (mono) and polycrystalline (poly) PV modules, as shown in Figure 7. 
The mono PV power was reduced on the first day and 21st day from 74.25 W to 57,68 W 
and from 73.28 W to 50.29 W, respectively. The poly PV power was reduced on the first 
day and 21st day from 61.94 W to 60,75 W, and from 57.82 W to 56.32 W, respectively. 
However, the degradation is higher at the beginning and end of the day compared to the 
middle of the day. 

  

(a) (b) 

Figure 7. Comparison of clean and dusty PV performance for: (a) first day; and (b) after three 
weeks of the experiment. 
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Figure 8 illustrates the effect of solar cell temperature considering dust on PV mod-
ules. It is observed that the clean solar cell temperature is higher compared to the dusty 
one. However, cell temperatures are close for clean and dusty PV early on the day and 
end. In the middle of the day, the temperature difference increases obviously. The dust 
reduces the temperature and solar irradiance penetration of the PV module. 

 
Figure 8. Effect of solar cell temperature considering dust on the PV module. 

3.2. ANN Results 
The proposed predicting mathematical module is based on a modular neural net-

work that consists of one input (Solar Rad.) and one output (Power), using 600 datasets, 
as shown in Figure 5. The modular neural network classifies the tested six PV modules 
into three categories. The first-class is for the module using monocrystalline (PV1: clean, 
and PV2: dusty). The second class is PV based on polycrystalline (PV3: clean, and PV4: 
dusty), and the third is the PV module that uses flexible monocrystalline (PV5: dusty, and 
PV6: clean). The datasets were separated into three classes (60% for training the ANN 
module, 20% for the cross-validation process, and 20% for testing the results of the pro-
posed module). Several epochs and hidden layers were deployed to choose the ideal 
number that achieved the highest performance. The experiments tested (100, 500, 1000) 
epochs, showing that the 1000-epochs are ideal. Furthermore, a different number of 
hidden layers were implemented and tested, and then the one hidden layer was fixed. 
The ANN implemented an activation function of TanhAxon and a momentum learning 
method with α = 0.7. Table 5 presents the descriptive statistics quantitative data of the 
experimental datasets. It indicates that the number of observations is 600 pairs (solar ir-
radiance, power), and there are no missing values. The power of six photovoltaic panels 
was recorded, which indicates that the maximum power rate is 77.634 (PV1), and the 
minimum is 2.222 (PV4). The mean value indicated that the PV1 has the highest value 
60.759 and PV5 has the minimum value (23.786). 

0
5
10
15
20
25
30
35
40
45
50

0

100

200

300

400

500

600

700

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
8:

30
9:

30
10

:3
0

11
:3

0
12

:3
0

13
:3

0
14

:3
0

15
:3

0
8:

00
9:

00
10

:0
0

11
:0

0
12

:0
0

13
:0

0
14

:0
0

15
:0

0
16

:0
0

Ce
ll 

Te
m

pe
ra

tu
re

 (o C
)

So
la

r I
rr

ad
ia

nc
e 

(W
/m

2 )

Time (hh:mm)

Clean Dusty Irradiance



Energies 2022, 15, 4138 15 of 19 
 

 

Table 5. The descriptive summary statistics of the experimental datasets. 

Variable Observations 
Obs. with Missing 

Data 
Obs. without 
Missing Data Minimum Maximum Mean Std. Deviation 

Solar-
Rad. 600 0 600 60.700 762.200 467.454 157.977 

Pow-PV1 600 0 600 19.136 77.634 60.759 14.069 
Pow-PV2 600 0 600 10.100 61.548 46.539 12.339 
Pow-PV3 600 0 600 9.246 60.420 47.937 12.877 
Pow-PV4 600 0 600 2.222 62.491 46.371 16.250 
Pow-PV5 600 0 600 6.650 27.126 23.786 3.958 
Pow-PV6 600 0 600 12.648 39.116 31.992 5.288 

The best network specifications indicate that the deployed number of epochs is 1000, 
the MSE value for the training of data is 0.0232, and the cross-validation is 0.0244. Table 6 
depicts the comparison results using different performance indicators, including MSE, 
NMSE, MAE, Min Abs Error, and r. There are numerous methods for determining a 
model’s accuracy. The Mean Absolute Error (MAE) is used for evaluating the quality of 
the ANN machine learning model. It is the average of all absolute errors, indicating the 
differences between the actual and predicted values. The results show that the accuracy 
of power predicting of the six PV modules has a considerable accuracy of 97.5%, 97.4%, 
97.6%, 96.7%, 96.5%, and 95.5%, respectively. The dust is negatively impacting the per-
formance of the panel’s power production. The power production is reduced by about 
1% in PV panels four and six. Furthermore, it was evident from the results that the nega-
tive effect of the dust on the PV panel production was based on the values of RMSE, 
which measures the square root of the average of the square’s errors. The average errors 
in predicting the power production of the six PV modules are 0.36406, 0.38912, 0.34964, 
0.49769, 0.46486, and 0.68238. The adjusted r-square calculates the percentage of varia-
tion, and can be only explained by the independent variables that affect the dependent 
variable. 

Table 6. Comparison results using different performance indicators. 

Performance Pow-PV1 Pow-PV2 Pow-PV3 Pow-PV4 Pow-PV5 Pow-PV6 
MSE 0.13254 0.15142 0.12225 0.24770 0.2161 0.46565 

RMSE 0.36406 0.38912 0.34964 0.49769 0.46486 0.68238 
NMSE 0.06594 0.09803 0.06529 0.082361 0.77494 0.78537 
MAE 2.59588 2.62270 2.46235 3.38632 3.53922 4.56511 

Min Abs Error 0.04102 0.04285 0.05226 0.09093 0.11083 0.18580 
r 0.97264 0.96343 0.97485 0.97116 0.56483 0.55038 

R2 0.94602 0.92819 0.95033 0.94315 0.31903 0.30291 
Adj. R2 0.94592 0.92806 0.95024 0.94305 0.31789 0.30174 

The comparison of the prediction of power production for the six PV panels with the 
actual power production is shown in Figure 9. The proposed modular neural network 
model accurately forecasts the actual power values with small error rates. However, 
some production points have more errors than others as a result of the random choice of 
tested datasets and the batch method’s use in updating the weights’ values through 
epochs. 
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Figure 9. The comparison of prediction of power production for the six PV panels with the actual 
power production. 

Some of the variables were initialized with random values, such as weights and bi-
ases, in the ANN testing process. This usually shows some of the production points with 
high errors in the first 100 epochs of the testing process and is stabilized in the final 
epochs. 

Sensitivity Analysis (SA) is a process to measure the impact of uncertainties in one 
or more input variables that can lead to uncertainties in the output variables [31]. This 
analysis improves the model’s prediction by studying how the model responds to 
changes in input variables and analyzing interactions between variables. Figure 10a de-
picts the SA of the proposed ANN model, demonstrating that the input variable (solar 
radiation) is less sensitive to changes in the power values of PV panels five and six 
(flexible monocrystalline). Additionally, Figure 10b shows the effects of varied input so-
lar radiation on power production, which illustrates that the high-power production is 
PV panel one, and the lowest is PV 5 and 6. 
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(b) 

Figure 10. The sensitivity analysis of the input and output variables. (a) the SA of the proposed 
ANN model; (b) effects of varied input solar radiation on power production 

To compare the results accurately, all experiments must be subjected to the same 
climatic conditions and other factors used in the experiment. However, this does not 
prevent us from finding a common factor for comparison, for example, the hot climate or 
the same type of solar panels, and other factors. Table 7 compares the proposed systems 
with some of the systems known in the literature survey. The power reduction is in-
creased when the average dust accumulation is high. The dust concentration affected the 
cell panels more, which required weekly cleaning. 

Table 7. Comparison results with other studies. 

Reference Year Country % Reduction Daily Days of Experiment 
Guo et al. [7] 2015 Qatar Ploss = 0.46% 365 

Saidan et al. [9] 2016 Iraq Ploss = 0.208% 30 
Gholami et al. [11] 2018 Iran Ploss = 0.306% 70 
Hachicha et al. [13] 2019 UAE Ploos = 0.084% 150 

Kazem et al. [14] 2020 Oman Ploss = 0.05% 365 
Proposed Pow-PV2 2022 Oman Ploos = 1.008% (monocrystalline cell) 30 
Proposed Pow-PV4 2022 Oman Ploss = 0.964% (polycrystalline) 30 
Proposed Pow-PV4 2022 Oman Ploss = 1.207% (flexible) 30 

4. Conclusions 
This paper experimented with three PV technologies and evaluated them using an 

artificial neural networks module. It employed six PV modules for the three technologies 
(mono, poly, and flexible monocrystalline), for clean and dusty PV panels at Sohar city. 
This case study proved that the monocrystalline is more affected by dust accumulation 
than other technologies. Furthermore, we found a 30.24%, 28.94%, and 36.21% degrada-
tion in power production for monocrystalline, polycrystalline, and flexible PV modules, 
respectively. 

On the other hand, the ANN module is designed and implemented to evaluate the 
accuracy of power production in different technologies’ PV panels using clean and dusty 
cells. The results show that the accuracy of predicting power of the six PV modules has a 
considerable accuracy of 97.5%, 97.4%, 97.6%, 96.7%, 96.5%, and 95.5%, respectively. The 
dust negatively impacts the performance of panel power production. The power pro-
duction is reduced by about 1% in PV panels four and six. Moreover, the results clearly 
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show the negative effect of the dust on the PV panel production is based on the values of 
RMSE, which measure the average errors in predicting the power production of the six 
PV modules of 0.364, 0.389, 0.34964, 0.49769, 0.46486, and 0.68238, accordingly. 

Future work should focus on evaluating the negative impact of the dust in the 
long-term period (3-months, 6-months, 9-months), as well as examining the effect of dust 
type, density, and size on PV panel performance. 
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