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Abstract: The consensus control method based on a multi-agent system has been widely applied
in the distributed control and optimization of microgrids. However, the following drawbacks are
still common in current research: (1) ignoring the influence of consensus control commands on the
synchronization stability of the physical grid under primary control; (2) only focusing on improving
one property ofcontrol performance, lacking comprehensive considerations of multiple properties.
With the aim of solving these problems, in this paper we propose a weight-adaptive robust control
strategy for implementing distributed frequency regulation of islanded microgrids. Firstly, the frequency
synchronization stability of the physical layer is analyzed by means of a coupled oscillator theory and the
design objectives of the controllable parameters for the information layer are formed. Subsequently, the
relationship between the weight coefficients and the two important control performances of convergence
speed and delay robustness is strictly analyzed. Based on this, an adaptive coefficient that can be
autonomously adjusted according to the frequency deviation is designed to achieve a trade-off between
convergence speed and delay robustness. Finally, three simulation studies are presented to verify the
effectiveness of the proposed control strategy.

Keywords: adaptive control; distributed control; frequency regulation; islanded microgrid;
multi-agent system

1. Introduction

Microgrids, which are small autonomous power distribution systems, have signifi-
cantly improved the reliability and quality of power supply performance in built
environments [1], industrial zones [2], and large facilities [3]. They can operate in islanded
or grid-connected modes [4–6]. In islanded mode, the microgrid needs to independently
face the intermittent and random disturbances caused by distributed generators (DGs) in
the absence of a large external power grid [7], which means that the frequency stability
of islanded microgrids faces severe challenges. In early research, centralized control was
widely used to achieve frequency regulation [8–10]. Despite the simple control structure
used, the drawbacks of this control method are quite manifest. (1) A single-point failure
of the microgrid central controller will cause a breakdown of the entire system. (2) The
rigid structure of centralized control reduces the flexibility, scalability, and reliability of
the microgrid.

Alternatively, distributed control, especially the consensus control method based on
multi-agent systems (MAS), has become a research hotspot due to the need for matching
with the control requirements of microgrids. At present, the consensus control method
is generally usedto solve problems such as frequency/voltage regulation, power sharing,
economic dispatching, and state of charge (SoC) balancing. In [11], the secondary voltage
regulation target was transformed into a synchronization problem, which was solved by
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means of a feedback linearization method. The same method was used in [12] to achieve
secondary frequency support of microgrids based on sparse communication lines. In [13], a
distributed average control method was proposed, implementing secondary regulation and
power-sharing based only on local and neighbor information. The economic dispatching
problem was studied in [14], in which the convex optimization objective was implemented
via a first-order discrete consensus approach, through setting the incremental cost of each
DG as the consensus variable. In [15], a nonlinear sliding mode control method was
proposed for implementing SoC balancing among storage devices in a DC microgrid.

Other studies, presented in [16–25], have focused on enhancing the control perfor-
mance of consensus methods. In terms of convergence speed, a distributed diffusion
strategy was proposed in [16] for implementing microgrid optimization, which accelerated
the convergence process by adding a random gradient term. In [17,18], an improvement in
the convergence speed was achieved via the optimization design of weight coefficients in
feedback linearization control. A finite time control protocol with accelerated convergence
and disturbance attenuation capabilities was used in [19,20] to achieve frequency and
voltage restoration in an islanded microgrid. Compared with the convergence speed, less
research has been conducted on delay robustness. In [21], the upper bounds of the commu-
nication delay time in distributed economic dispatch control were strictly analyzed using
the Nyquist criterion. In [22], the influence of communication delays on the secondary con-
trol of microgrids was considered, and the sensitivity of time delays was fully investigated
using small-signal stability theory. In addition, other measures of control performance,
such as the robustness of uncertain topologies [23], global cooperation without leaders [24],
robustness under the influence of noise [25], etc., have gradually been taken seriously in
recent years. However, an outstanding problem of the above studies is the fact that they
only focus on improving one type of control performance and lack comprehensive consid-
erations of multiple properties. Generally, there is a potential conflict between different
measures of control performance; for example, only stressing the convergence speed may
result in poor delay robustness.

Another problem which needs to be addressed is the synchronization stability of the
physical layer. The microgrid under consensus control is a two-layer coupled network,
including the information layer formed by the communication network and the physical
layer formed by the transmission lines (as shown in Figure 1). As the upper-layer control,
the commands generated by the consensus control will inevitably change the operating
characteristics of the physical layer under primary control. Therefore, the synchronization
and the stability of the microgrid can be degraded or even destroyed if the commands
are not appropriate. Unfortunately, the current studies all focus on the design of control
strategies at the information layer [16–25], lacking a rigorous analysis of the stable operating
conditions of the physical power grid.

Information layer

Physical layer

Information 

flow

Power fl
ow

Load Controllable DG Agent

Transmission line Communication line

Figure 1. The two-layer model of an islanded microgrid.
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Motivated by the above problems, here we investigate a distributed frequency regu-
lation method for islanded microgrids, and achieve three main contributions as follows.
(1) We extend the Kuramoto theory proposed in [26] to the frequency regulation of mi-
crogrids, and the frequency synchronization stability of the physical layer under primary
control is analyzed, thereby forming the control objectives of the information layer. The
consensus control method designed based on these objectives does not alter the stability
of the physical layer under primary control. (2) Two control performances, convergence
speed and delay robustness, are considered comprehensively, and their relationship with
the weight coefficients is strictly analyzed. (3) A weight-adaptive robust control strategy
is proposed, which dynamically adjusts the weight coefficients based on frequency devi-
ations. Therefore, not only is the fast convergence capability of the traditional feedback
linearization control inherited, but the delay robustness is also significantly improved.

The rest of this paper is organized as follows. Section 2 discusses the synchronization
stability of the microgrid frequency in the physical layer. A weight-adaptive robust control
strategy is proposed in Section 3 to implement secondary frequency regulation. Three
simulation cases are designed in Section 4 to verify control performances. Section 5 presents
the conclusions of this paper.

2. Synchronization Stability Analysis of the Physical Layer

In this section, we analyze the basic conditions for the synchronization stability of the
physical layer, which will guide the design of the consensus control system at the informa-
tion layer.

2.1. Two-Layer Control Structure

A two-layer control structure for islanded microgrids is depicted in Figure 1, where
the bottom layer is the physical system consisting of DGs and loads. DGs can be divided
into non-dispatchable DGs (such as small diesel generators) that provide the generation of
renewable energy, and bidirectionally controllable DGs (such as controllable wind turbines,
photovoltaics, etc.) that can store and provide energy. Since our focus is on coordinated
control at the system level, the specific properties of each type of DG are not investigated
here. As in the studies in [8–22], all DGs are designated as controllable DGs in this paper.
The top layer is the information system, constructed by agents. Each controllable DG
corresponds to an agent. In the physical layer, natural coupling is formed through the
transmission lines. Furthermore, in the information layer, auxiliary coupling is constructed
by sparse communication lines.

2.2. Graph Theory

The networks of the physical layer and information layer can be regarded as two
weighted graphs. We define a graph G = (V,E,A), where V = {1,2, ..., n} represents the set of
nodes, E⊆ V × V represents the set of edges, and A = [aij]n×n represents the n-dimensional
adjacency matrix. For aij, if (i,j)∈ E, then aij = 0; otherwise aij > 0 and satisfies aij = aji.
Let Ni = {j∈V: (j,i)∈ E} represent the set of neighbors of node i and define the matrix
D = diag{di}, where di = ∑j∈Ni aij. Then, the Laplacian matrix satisfies L = D − A, which is
a semi-definite matrix.

2.3. Physical Layer Model

The physical layer consists of DGs, loads, and transmission lines, among which
the loads and transmission lines, as passive nodes, do not affect the synchronization
stability of the system frequency [27]. In fact, through Kron reduction, the microgrid can be
equivalently transformed into a system where only controllable DGs are interconnected
(the detailed simplification process can be found in [28,29]. We do not describe this in detail
in this paper). Therefore, we only need to focus our analysis on DG. The DG is connected to
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the AC microgrid with the inverter as the interface. The primary control of the i-th inverter
is as follows [27]. {

θ̇i = ωi −ω0
Pi = P∗i − Ki θ̇i

(1)

where θ and ω are the phase angle and the angular frequency, respectively. ω0 is the
nominal system frequency. K is the frequency droop coefficient. P and P∗ are the measured
and the nominal active power, respectively, where P∗ is updated through the control of the
information layer.

According to the power flow relationship, the output active power of inverter-i can be
written as follows [30,31].

Pi = ∑
i,j∈Vp ,j∈Npi

ViVjyijsin(θi − θj) (2)

where Vp represents the set of controllable DGs. Npi represents the set of neighbor DGs of
DGi. V is the AC voltage. yij is the absolute value of the admittance of line (i, j).

Then, the unified model of DGs can be described as

Ki θ̇i = P∗i − ∑
i,j∈Vp ,j∈Npi

ViVjyijsin(θi − θj) (3)

which is equivalent to

θ̇i =
P∗i
Ki
− ∑

i,j∈Vp ,j∈Npi

ViVjyij

Ki
sin(θi − θj) (4)

2.4. Synchronization Stability Analysis

As a classical phase-coupled oscillator model, the Kuramoto model has been widely
investigated in mathematics and physics. Its generalized form can be written as

ξ̇i = Ωi −
n

∑
i=1

aijsin(ξi − ξ j) (5)

where ξ i is the phase of oscillator i. Ωi is the natural frequency of oscillator i. n is the
number of oscillators. aij is the coupling strength between oscillator i and oscillator j.

Comparing (4) and (5), we can observe that they are very similar in structure. This
similarity was discovered by John W.S.P. et al in [27]. They rigorously demonstrated the
equivalence between the microgrid physical layer model and the Kuramoto model in [24]
(see Lemma 1 in [27]). Their research results provide support for the application of the
Kuramoto coupled oscillator theory in microgrids.

The authors in [26] studied the stability domain of the Kuramoto model and their
results are shown in Lemma 1.

Lemma 1 ([26]). The Kuramoto model with fixed topology satisfies

D(δ(t)) ≤ D(δ(0))e−CcosD(ξ(0)t) (6)

if

0 < D(ξ(0)) < π, C >
D(Ω)

sinD(ξ(0))
(7)

where D(x) = max{xi − xj}(i,j = 1,2,...,n. x represents ξ, δ, or Ω). δ is the angular frequency of the
oscillator, δi = ξ̇ i. Both 0 and t in parentheses represent time. C is a constant that satisfies

C = min
i 6=j
{aij + aji + ∑

k 6=i,j
min{aik, ajk}} (8)
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On the basis of [26,27], by constructing the mapping relationship shown in Table 1, we
can obtain the basic conditions for the synchronization stability of the physical layer under
primary control.

0 < max
i,j∈Vp

|θi(0)− θj(0)| < π

C >
max
i,j∈Vp

|
P∗i
Ki
−

P∗j
Kj
|

sin( max
i,j∈Vp

|θi(0)−θj(0)|)

C = min
i 6=j
{ViVjyij

Ki
+

VjViyji
Kj

+ ∑
l∈Vp ,k 6=i,j

min{ViVkyik
Ki

,
VjVkyjk

Kj
}}

(9)

Table 1. Correspondence between the parameters of the physical layer microgrid model and the
Kuramoto model.

Kuramoto Physical Layer

ξ i θi
δi ωi
Ωi P∗i /Ki
aij ViV jyij/Ki

From Lemma 1, we know that when t→ ∞, the maximum frequency deviation tends
to 0, and the synchronization stability of the physical layer is achieved. Since the consensus
control of the information layer will change the controllable parameters of the physical
layer, it becomes necessary to analyze the relationship between the parameters and the
stability conditions.

In (9), the parameters P∗i , Ki, Vi/j, yij, and θi/j can affect the stability of physical layer
frequency, where Vi/j, yij, and θi/j cannot be changed by the consensus control due to
their direct correlation with the microgrid’s physical structure. Therefore, we only need to
analyze the controllable parameters P∗i and Ki.

Without the loss of generality, the droop coefficient can be designed as follows [19].

Ki =
P∗i

ωmax
i −ω0

(10)

where ωmax is the upper limit of angular frequency. In an AC microgrid, the upper limit of
each DG is the same, i.e., ωmax

i = ωmax (i = 1,...,n).
Bringing (10) into (9), we can prove that C>| P∗i /Ki − P∗j /Kj | = 0 always holds under

droop control. This indicates that the physical layer under primary control is sufficient to
achieve frequency exponential convergence, and the stabilized synchronization solution is
a common value as follows.

ωsyn =
∑ P∗i −∑ Pl

i
∑ Ki

+ ω0 (11)

Since the consensus control of the information layer may update P∗, its changes are
discussed next. When the droop coefficient is constant, the change in P∗ is equivalent to
the translation of the droop characteristic curve, as shown in Figure 2, where two DGs are
defined to represent a microgrid (blue lines corresponds to DG1 and red lines corresponds
to DG2). When P∗i changes ∆P∗ (dotted lines, P̄∗i = P∗i +∆P∗i ), three cases may occur.

• Case 1: ∆P∗i /Ki = ∆P∗j /K j. Because C > 0 is always true, it perfectly inherits the
frequency synchronization capability of primary control;

• Case 2: ∆P∗i /Ki 6=∆P∗j /K j and the conditions in (9) are satisfied. At this point, the
synchronization of system frequency can still be achieved, but the synchronization
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capability is worse than the primary control. This is because as the deviation of
|∆P∗i /Ki − ∆P∗j /K j| increases, the conditions in (9) gradually approach the boundary.

• Case 3: ∆P∗i /Ki 6=∆P∗j /K j and the conditions in (9) do not hold with the further
increase in the maximum deviation between P∗i /Ki. The microgrid frequency is not
synchronized in this case.

To avoid disrupting the frequency convergence capability of the primary droop control,
Case 1 is the best choice. It should also be noted that even if ∆P∗i /Ki = ∆P∗j /K j, P∗ cannot
continuously increase (or decrease). This is because in a physical system, parameters such
as P and ω are bounded.

The variation of the droop coefficient K can be equivalently converted to the change in
P∗. Assuming that the droop coefficient changes ∆K based on (1) we can obtain

Pi = [P∗i − ∆Ki(ωi −ω0)]− Ki(ωi −ω0) (12)

Let ∆P∗i = ∆Ki(ωi − ω0). Through the above analysis, the frequency synchronization
of the physical layer under primary control can be guaranteed when ∆Ki/Ki = ∆K j/K j.

before DG1 changebefore DG1 changebefore DG1 change before DG2 changebefore DG2 change after DG1 changeafter DG1 changeafter DG1 change after DG2 changeafter DG2 changebefore DG1 change before DG2 change after DG1 change after DG2 change
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Figure 2. Three cases when P∗ changes.

3. Weight-Adaptive Robust Control

The distributed secondary frequency regulation objectives of the information layer are
summarized as follows.

1. To recovery the angular frequency ωi to the nominal value.

lim
t→∞

ωi(t) = ω0, ∀i ∈ Vp (13)

2. To ensure the synchronization stability of the physical layer. According to the analysis
presented in Section 2.4, the ideal situation is to make the controllable parameters
satisfy

lim
t→∞

∆P∗i
Ki

=
∆P∗j
Kj

, lim
t→∞

∆Ki
Ki

=
∆Kj

Kj
, ∀i, j ∈ Vp (14)

3.1. Distributed Implementation of Control Objectives

To synchronize the microgrid frequency to ω0, a distributed consensus control protocol
that considers time delays of the information layer is proposed as follows.

u̇i = − ∑
i,j∈Vin ,j∈Nni

ãij(ωi(t− τij)−ωj(t− τji))

+ g(ω0 −ωi(t− τij)) +
1
Ki

Ṗi(t)
(15)

where g is a positive constant. Vin is the set of agents in the information layer, which is equal
to Vp because of the one-to-one correspondence between DGs and agents. Nni is the set of
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neighbor agents of agent i. τij represents the constant communication delay between agent i
and agent j and τij = τji = τ. ãij represents the weighted coefficient between agent i and agent j.

To ensure the frequency synchronization stability of the physical layer, ∆K is set as 0
in this paper, and the control of ∆P∗ is implemented by a consensus protocol as

∆Ṗ∗i (t)
Ki

= − ∑
i,j∈Vin ,j∈Nni

ãij(
∆P∗i (t− τij)

Ki
−

∆P∗j (t− τji)

Kj
) (16)

where ∆Ṗ∗ = Ṗ under the fast dynamic response of the converters.
Then, the distributed frequency controller of the islanded microgrid can be described as

Pi(t) = P∗i − Ki(ωi(t)−ω0) + Kiui (17)

where the primary control is considered to operate in real time due to the extremely short
sampling delay. The information layer control command Kiui causes a change in the
nominal active power. According to the above analysis, we know that

∆P∗i = Kiui (18)

In (15) and (16), the weight coefficients directly affect the control performance
categories, such as stability, convergence speed, and delay robustness, so their design
is particularly important. Next, we will explore the influence of control parameters on
control performance.

3.2. Control Performance Analysis
3.2.1. Convergence Speed

Define an n×n Laplacian matrix Ln = [lij]n×n, where lii = ∑i 6=j ãij and lij = −ãij. Let
m eigenvalues of Ln satisfy 0 < λ2 ≤ λ3 ≤ ... ≤ λm, where λ2 and λm are the second
eigenvalue and the largest eigenvalue of Ln, respectively. According to the properties of
the Laplacian matrix, the following lemma can be obtained.

Lemma 2. (1) Based on the generalization of the Courant–Fischer theorem [32], if 1Tx = 0, one
has min{xTLnx} = λ2xTx. (2) Let G = gIn, where In is an n-dimensional unit matrix, then
xT(Ln + G)x≥ gxTx.

Since the correlation of power and frequency exists in (17), decoupling is required
before analysis. Deriving the derivative of (17) and combining it with (15) and (16), we
obtain

ėi(t) = −
Ṗi(t)

Ki
+ u̇i

= − ∑
j∈Ni

ãij[ei(t− τi)− ej(t− τji))]− gei(t− τi)
(19)

where ei = ωi −ω0.

Theorem 1. For the frequency control system shown in (16) and (19), the relationship between
the weight coefficients and the convergence speed satisfies V(t) ≤ V(0)exp(−2min{λ2,g}t), where
V(t) is a Lyapunov function, which corresponds to the total deviation of the system, and V(0) is
the initial value of V(t).

Proof of Theorem 1. The matrix form of (16) and (19) can be written as

ṗ = −Ln p (20)

ė = −(Ln + G)e (21)
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where p = [∆P∗1 /K1 − p0, ..., ∆P∗q /Kq − p0], e = [e1,...,eq]T , and p0 = 1/q ∑ ∆(P∗i /Ki). q
represent the number of agents in the information layer.

Define a Lyapunov function as

V =
1
2
(pT p + eTe) (22)

This then yields

V̇ = pT ṗ + eT ė = −pT Ln p− eT(Ln + G)e (23)

Applying (2) and (3) of Lemma 2, we have

V̇ ≤ −pTλ2 p− eT ge ≤ −min{λ2, g}[pT p + eTe]

= −2min{λ2, g}V
(24)

By solving the differential equation, one can observe that

V(t) ≤ V(0)e−2min{λ2,g}t, (25)

which completes the proof.

The results show that the total deviation (V(t)) asymptotically converges to 0 with the
speed of 2 min{λ2,g}. To highlight the role of the weight coefficients, λ2 ≤ g is set in this study.

3.2.2. Delay Robustness

Delay robustness refers to the ability of the control system to maintain stable operation
under the influence of a time delay. It can be simply measured by means of indicators such
as the volatility and stability of the output results.

Since (16) is a special case of (19) with g = 0, only the delay robustness of (19) needs to
be investigated.

Theorem 2. The consensus protocol depicted in (19) is globally asymptotically stable if τ<[π/(2λm
+ 2g)]is satisfied.

Proof of Theorem 2. After the Laplace transform, (19) can be written as

sei(s)− ei(0) = − ∑
j∈Ni

ãije−τs(ei(s)− ej(s))− ge−τsei(s) (26)

Its matrix form is
e(s)[(s + ge−τs)In + e−τsLn] = e(0) (27)

Let
F(s) = (s + ge−τs)In + e−τsLn (28)

Then, the system is stable if and only if all zeros of F(s) are on the open left-half
complex plane. Let vk (vk 6= 0) represent an eigenvector of Ln associated with the eigenvalue
λk. If s i zero, we obtain

F(s)vk = [(s + ge−τs) + e−τsλk]vk = 0 (29)

which is equivalent to
(s + ge−τs) + e−τsλk = 0 (30)

when the delay time reaches its upper bound, the system is critically stable, and the zeros
of F(s) are located on the imaginary axis. Therefore, replacing s in (30) with jw and −jw
(w ≥ 0), respectively, we obtain
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jw + ge−jwτ + λke−jwτ = 0 (31)

− jw + gejwτ + λkejwτ = 0 (32)

Multiplying the above two equations and using the Euler transform, we have

w2 + (g + λk)
2 − 2w(g + λk)sin(wτ) = 0 (33)

which is equivalent to

(w− (g + λk))
2 + 2w(g + λk)(1− sin(wτ)) = 0 (34)

Since w, g, and λk are greater than 0, the latter equation holds when

w− (g + λk) = 0 and 1− sin(wτ) = 0 (35)

that is
w = g + λk and wτ = 2kπ + 1/2π(k = 1, 2, ...) (36)

To ensure the stability of the system, τ satisfies

τ < min{2kπ + 1/2π

g + λk
} = π

2g + 2λm
(37)

Thus, the proof is completed.

The delay time of (16), τ < π
2λm

, can be easily obtained when g = 0. Thus, the sufficient
delay time of the entire system satisfies

τ < min{ π

2λm
,

π

2λm + 2g
} = π

2λm + 2g
(38)

This indicates that the upper bound of the delay time is inversely proportional to the
sum of the largest eigenvalue λm and g. The larger the value of λm, the worse the delay
robustness of the system.

3.3. Weight-Adaptive Robust Control

In order to improve the convergence speed, the authors of previous studies have
always set larger weight coefficients, which may lead to a decrease in delay robustness.
Taking a four-node communication network in Figure 3 as an example, we analyze the
widely used improved weight coefficient design method proposed in [17].

In the classic Metropolis method [33], the weight coefficients are set as

aij =
1

max(ni, nj) + 1
, i, j ∈ Vin, j ∈ Nni (39)

where ni is the number of neighboring agents of agent i. The corresponding Laplacian
matrix of Figure 3 is

Ln1 =


1
3 + 1

4 − 1
3 − 1

4 0
− 1

3
1
3 + 1

4 − 1
4 0

− 1
4 − 1

4
3
4 − 1

4
0 0 − 1

4
1
4

 (40)

Its second eigenvalue and largest eigenvalue are 0.25 and 1, respectively. If we set
g = 0.5, then under the control of (15), the convergence speed of the system in its ideal
operating state is 0.5, and the upper bound of the delay time is π/3(s).

1 2 3 4

Figure 3. A four-node communication network.
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Under the improved method of [17], the weight coefficients are updated as

aij =
2

ni + nj + ε
, i, j ∈ Vin, j ∈ Nni (41)

where ε is a very small number. We set ε=0.1 and obtain the laplace matrix corresponding
to Figure 3 as follows:

Ln2 =


2

4.1 + 2
5.1 − 2

4.1 − 2
5.1 0

− 2
4.1

2
4.1 + 2

5.1 − 2
5.1 0

− 2
5.1 − 2

5.1
4

5.1 + 2
4.1 − 2

4.1
0 0 − 2

4.1
2

4.1

 (42)

Its second eigenvalue and largest eigenvalue are 0.449 and 1.703, respectively. At this
time, the convergence speed of the system is 0.898, and the upper bound of the delay time
is π/4.406(s). Compared with the classic Metropolis method, the improved method of [17],
although improving the convergence speed, leads to a significant decrease in delay robustness.

Based on the above exemplary analysis, we know that there may be conflict between
the convergence speed and delay robustness. Emphasizing only one type of performance
can make our control of another type ofperformance worse. To achieve a comprehensive
trade-off between the two types of control performance, a simple and effective method
can be used for adaptive control, so that the weight coefficients can be adaptively adjusted
according to the changes in control scenarios or requirements.

Lemma 3. If λA is the eigenvalue of matrix A, then kλA is the eigenvalue of kA (where k is a constant).

In the frequency regulation process, we expect the frequency deviation to be quickly
reduced to a safe range and to operate robustly within this range. This requires a fast
convergence speed when the frequency deviation is large, and good delay robustness when
the frequency is within the safe range. To achieve this expectation, according to the properties
of the eigenvalues in Lemma 3, an adaptive coefficient c is added to (15) and (16). By
combining (15)–(18), we propose a distributed weight-adaptive control strategy as follows.

Pi(t) = P∗i − Ki(ωi(t)−ω0) + Kiui
u̇i = −c ∑

j∈Ni

ãij(ωi(t− τi)−ωj(t− τji))

−c ∑
j∈Ni

ãij(
∆P∗i (t−τi)

Ki
−

∆P∗j (t−τji)

Kj
) + g(ω0 −ωi(t− τi))

(43)

where c satisfies

c =

{
cmin +

|∆ f |
∆ fmax

(cmax − cmin) | ∆ f |≤ ∆ fmax

cmax | ∆ f |> ∆ fmax
(44)

where cmax and cmin are the maximum and minimum allowable values of the adaptive
coefficient, respectively. ∆ f and ∆ fmax are the microgrid system frequency deviation and
the maximum allowable frequency deviation, respectively.

Figure 4 shows the weight-adaptive frequency controller for an islanded microgrid. In
our strategy, the weight coefficients can be adaptively changed according to the frequency
deviation. When the frequency deviation approaches or exceeds ∆ fmax, the fast frequency
regulation capability is ensured by the large adaptive coefficient. When the frequency
deviation decreases, the weight coefficients are also adaptively reduced, which significantly
improves the delay robustness. Through the design of the adaptive coefficient, the
convergence speed and the upper bound of the delay time have been changed to 2cλ2 and
π/(2cλm + 2g), respectively. Compared with the previous studies, two important types of
control performance are considered instead of one, and a comprehensive trade-off between
convergence speed and delay robustness is achieved.
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Figure 4. The weight-adaptive frequency controller for an islanded microgrid.

4. Case Studies

To verify the effectiveness of the proposed control strategy, a five-node islanded microgrid
is designed here, which consists of four controllable DGs and five loads. The transmission
network of the physical layer and the communication network of the information layer are
clearly shown in Figure 5. The corresponding system and control parameters are summarized
in Table 2.

Load1

DG1

DG4

Load4

Load5

Load3

DG3

DG2

Load2

Communication 

network

DG1 DG2

DG3 DG4

transmission 

network

Figure 5. Five-node islanded microgrid test system.

Table 2. Parameters of the test system.

DGs DG1 DG2 DG3 DG4

Ki 0.55 × 104 0.55 × 104 1.1 × 104 1.1 × 104

P∗i 2.5 kW 5 kW 5 kW 2.5 kW

Loads load1 load2/4 load3 load5
30 kW 5 kW 4 kW 4 kW

Others g cmax/cmin ∆ fmax Lines
0.7 1.0/0.7 0.1 Hz 0.15 + j0.3Ω

Of course, even if the line impedances in Table 2 were different, this would not affect
the stable implementation of the control strategy. This is because yij>0 is always true as
long as there is impedance in the transmission lines. According to the system stability
conditions in (9), C > 0 is always established, which indicates that the AC voltage and
impedance do not affect the effectiveness of the frequency control strategy. In addition,
the weight coefficient ãij is designed by (39). Through the above analysis, the convergence
speed and the upper bound delay time are 1.33c and π/(2.67c + 1.4)(s), respectively.

4.1. Study 1: The Realization of Control Objectives

In order to verify the system’s capability to realize control objectives, a simulation
scenario was designed as follows: (1) 0–0.5 s, only the primary control is activated;
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(2) 0.5–2 s, the proposed adaptive secondary control is activated to participate in frequency
support; (3) at 2 s, load 5 is increased by 6 kW; (4) at 3.5 s, load 5 is decreased by 6 kW.
In this scenario, we set the delay time τ = 0.2 s and obtained the dynamic response
results as shown in Figure 6. It can be observed in Figure 6a that the proposed strategy
synchronized the frequency to 50 Hz, which could be achieved even if load disturbances
occurred. Figure 6c depicts the dynamic changes in ∆P∗i . Using our strategy, ∆P∗i /Ki can
always achieve synchronization after stabilization, which indicates that the frequency
synchronization stability of the physical layer is effectively guaranteed. Affected by
frequency deviations in Figure 6a, the adaptive coefficient c is dynamically adjusted in
Figure 6d. Obviously, even if weight coefficients are constantly changing, control objectives
1 and 2 can be accurately implemented.
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Figure 6. The dynamic responses of study 1 with delay time τ=0.2 s: (a) frequency; (b) active power;
(c) ratio of the incremental of power’s nominal valueto the droop coefficient; (d) adaptive coefficient.

4.2. Study 2: Convergence Speed

To verify the convergence performance, we compared the proposed strategy with
the classical feedback linearization strategy in [8]. Figure 7 presents a comparison of the
frequency and the active power of DG1. It can be observed from the simulation results that
the convergence speeds of the two strategies were exactly the same when the frequency
deviation was greater than 0.1 Hz. Furthermore, when the deviation was less than 0.1 Hz,
the convergence speed of the proposed strategy was theoretically slower than that of the
feedback linearization control method. However, due to the 0.2 s delay time, the speed
difference between the two strategies was not that large. This is because the classical
strategy showed worse robustness in the face of time delays (more shocking results are
shown in Study 3). Compared with the classical strategy, the proposed strategy can be
stabilized earlier in relation to the nominal value due to the inconspicuous overshoot and
oscillation times.



Energies 2022, 15, 4136 13 of 16

0.5 1 1.5

49.8

49.9

50

50.1

0.5 1 1.5

49.8

49.9

50

50.1

2 2.5 3

49.95

50

50.05

2 2.5 3

49.95

50

50.05

3.5 4 4.5
49.95

50

50.05

3.5 4 4.5
49.95

50

50.05

0.5 1 1.5

49.8

49.9

50

50.1

2 2.5 3

49.95

50

50.05

3.5 4 4.5
49.95

50

50.05

0 1 2 3 4 5
49.8

49.9

50

50.1

f 
(H

z)

Time(s)

Classical
Proposed
Classical
Proposed

0.5 1 1.5

49.8

49.9

50

50.1

2 2.5 3

49.95

50

50.05

3.5 4 4.5
49.95

50

50.05

0 1 2 3 4 5
49.8

49.9

50

50.1

f 
(H

z)

Time(s)

Classical
Proposed

0 1 2 3 4 5
7

8

9

10

0 1 2 3 4 5
7

8

9

10

0.5 1 1.5

7.8

8

8.2

8.4

0.5 1 1.5

7.8

8

8.2

8.4

2 2.5 3
8.5

9

9.5

10

2 2.5 3
8.5

9

9.5

10

3.5 4 4.5

7.5

8

8.5

3.5 4 4.5

7.5

8

8.5

0.5 1 1.5

7.8

8

8.2

8.4

2 2.5 3
8.5

9

9.5

10

3.5 4 4.5

7.5

8

8.5

Time(s)

P
 (

k
W

)

0 1 2 3 4 5
7

8

9

10

0.5 1 1.5

7.8

8

8.2

8.4

2 2.5 3
8.5

9

9.5

10

3.5 4 4.5

7.5

8

8.5

Time(s)

P
 (

k
W

)

Classical
Proposed
Classical
Proposed

0 1 2 3 4 5
7

8

9

10

0.5 1 1.5

7.8

8

8.2

8.4

2 2.5 3
8.5

9

9.5

10

3.5 4 4.5

7.5

8

8.5

Time(s)

P
 (

k
W

)

Classical
Proposed

(a) (b)

0.5 1 1.5

49.8

49.9

50

50.1

2 2.5 3

49.95

50

50.05

3.5 4 4.5
49.95

50

50.05

0 1 2 3 4 5
49.8

49.9

50

50.1

f 
(H

z)

Time(s)

Classical
Proposed

0 1 2 3 4 5
7

8

9

10

0.5 1 1.5

7.8

8

8.2

8.4

2 2.5 3
8.5

9

9.5

10

3.5 4 4.5

7.5

8

8.5

Time(s)

P
 (

k
W

)

Classical
Proposed

(a) (b)

Figure 7. Comparison of convergence speed between the proposed strategy and the classical feedback
linearization strategy when τ = 0.2 s: (a) frequency of DG1; (b) active power of DG1.

4.3. Study 3: Delay Robustness

Compared with the linearization feedback strategy presented in [8], the most obvious
advantage of the proposed strategy is its delay robustness. Figure 8 depicts the dynamic
responses of frequency and nominal active power with a delay time of 0.5 s. Under
the classical strategy, due to the increase in the delay time, the frequency fluctuations
shown in Figure 8a were more serious than those shown in Figure 7a, and ∆P∗/K was
not synchronized until approximately 2 s had passed.In contrast, the proposed strategy
achieved the synchronization of ∆P∗/K in less than 1.5 s, which not only significantly
improved the robustness, but also greatly reduced the regulation time.
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Figure 8. Comparison of the delay robustness of the proposed strategy and that of the classical
feedback linearization strategy when τ = 0.5 s: (a) frequency of DG1; (b) output active power of DG1;
(c) ∆P∗i /Ki of the feedback linearization strategy; (d) ∆P∗i /Ki of the proposed strategy.

When further increasing the delay time to 1 s, we obtained the simulation results
shown in Figure 9. Under the classical strategy, even without the addition of load
disturbances, the system cannot run stably, because the upper bound of the delay time is
π/(2.67 + 1.4) = 0.77 s < 1. In contrast, when the frequency was synchronized to 50 Hz, the
upper bound of the delay time of the proposed strategy was increased to 1.1 s. Therefore,
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the stability of the frequency can still be guaranteed, and the synchronization of ∆P∗/K
can also be realized.
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Figure 9. Comparison of delay robustness of the proposed strategy and that of the classical feedback
linearization strategy when τ = 1 s: (a) frequency of DG1; (b) output active power of DG1; (c) ∆P∗i /Ki

of the feedback linearization strategy; (d) ∆P∗i /Ki of the proposed strategy.

5. Conclusions
A weight-adaptive robust control strategy, which realizes a comprehensive trade-off

between convergence speed and delay robustness, is proposed for the distributed frequency
regulation of islanded microgrids. Improvementsnot only in frequency restoration, but
also in the design of the controllable parameters are proposed here through the analysis
of the frequency synchronization stability in the physical layer. We have also investigated
the relationship between weight coefficients and two important control properties, and
established the convergence speed and the upper bound of the delay time. An adaptive
coefficient, which can vary with frequency deviations, was added to the proposed strategy
to achieve a trade-off between convergence speed and delay robustness. The simulation
results showed that, compared with the classical feedback linearization strategy, the delay
robustness of the proposed strategy was significantly improved under the guarantee of a
good convergence speed. In our future work, we will consider more control performance
categories, such as the robustness of noise influences or uncertain topologies. In addition,
research on how to apply the proposed strategy to energy management systems [34–36]
in real-world microgrids is also an important direction of study in the future. Author
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