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Abstract: This paper investigates the nonlinear modeling and stability of a doubly-fed variable speed
pumped storage power station (DFVSPSPS). Firstly, the mathematical model of DFVSPSPS with
surge tank considering nonlinear pump turbine characteristics was derived and established. Then,
Hopf bifurcation analysis of DFVSPSPS was performed. The stable region was identified and verified
by example analysis. Moreover, the effect mechanism of nonlinear pump turbine characteristics
on the stability of DFVSPSPS was explored. Finally, the influence of factors on the stability and
dynamic response of DFVSPSPS was studied. The results indicate that the emerged Hopf bifurcation
of DFVSPSPS is supercritical and the region on the low side of the bifurcation line is the stable region.
Nonlinear head characteristics have a significant influence on the stability and dynamic response
of DFVSPSPS. Nonlinear speed characteristics have an obvious effect on the stability and dynamic
response of DFVSPSPS only under positive load disturbance and unstable surge tank. Nonlinear
head characteristics are unfavorable for the stability of DFVSPSPS under positive load disturbance
and favorable under negative load disturbance. A smaller flow inertia of penstock, a smaller head
loss of penstock and a greater unit inertia time constant are favorable for the stability of DFVSPSPS.
The stable region under the positive disturbance of active power is larger than that under the negative
disturbance of active power. The time constant of the surge tank presents a saturation characteristic
on the stability of DFVSPSPS.

Keywords: doubly-fed variable speed pumped storage power station; nonlinear modeling; Hopf
bifurcation; stability analysis; nonlinear pump turbine characteristics

1. Introduction

Vigorously developing renewable energy is an important strategic measure to deal
with the problems of fossil fuel shortage, global warming and energy security. It is also
an effective way of maintaining the sustainable development of national societies and
economies. In recent years, the large-scale development and grid connection of intermittent
renewable energy, such as wind power and photovoltaic, has created a serious threat to the
safe and stable operation of the power grid [1,2]. Pumped storage power stations (PSPS)
are the main regulating power supply in power systems [3]. It is of great importance to
ensure the safety of the power grid, promote the consumption of renewable energy and
promote the green and low-carbon transformation of energy [4,5]. Under the guidance
of the goal of carbon peak and carbon neutralization, vigorously developing PSPS is an
urgent task to implement the dual carbon goal [6].

At present, most PSPS use synchronous generators, which can only operate at a con-
stant speed, resulting in a series of problems: (a) Under generator operation mode, the
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power regulation of the unit is slow; (b) The constant speed PSPS (CSPSPS) can only operate
stably at the rated synchronous speed. When the operating head or load change, the unit
speed will deviate from the optimal speed and the efficiency of the pump turbine will
decrease, resulting in the deterioration of the unit operation; (c) In pumping mode, the
input electromagnetic power lacks controllability. The variable speed pumped storage
unit (VSPSU) is a new type of PSU, where an AC-excited asynchronous motor is used to
replace the traditional DC-excited synchronous motor. The speed control of the unit is
realized by changing the excitation current, which overcomes the disadvantage that the
speed of the traditional PSU is not adjustable. Compared with the CSPSPS, the variable
speed PSPS (VSPSPS) has the following advantages: (a) Accelerated regulation of active
power; (b) Increased operation efficiency of the pump turbine in generator and pumping
modes; (c) Widened operating range of the pump turbine; (d) Reduced cavitation process;
(e) Increased stability and flexibility of pump turbine [7–9]. However, the modeling and op-
eration control of VSPSPS are more complex due to the use of an AC-excited asynchronous
motor and converter.

Most of the research into VSPSPS are focused on mathematical modeling, numerical
simulation, operation stability, reliability, dynamic characteristics and control. Mathemat-
ical modeling is the foundation of numerical simulation, operation stability, reliability,
dynamic characteristics and control. Stability is the primary requirement for the normal
operation of the system. The relevant research on modeling, control and stability of VSPSPS
is presented below.

Kuwabara et al. [10] took the 400 MW VSPSU of the Ohkawachi PSPS as an example to
study the principal design and actual performance of the machine. The excellent dynamic
performance and significant potential for contribution to the power system have been
verified by field test data. Unsteady numerical simulations of the VSPSPS and the CSPSPS
were performed and the corresponding dynamic performance was compared [11]. The
simulation results demonstrate that VSPSPS improves power system stability. Tests of
the VSPSPS in the Hydraulics Laboratory of the Polytechnic University of Madrid were
also performed [8]. The results show that the VSPSPS has greater flexibility under off-
designed conditions, which is mainly reflected by the improvements in efficiency, operation
performance and operating range. Integrated modeling of VSPSPS and wind power was
established with MATLAB/Simulink and validated by on-site measurements [12]. The
advantage of VSPSPS for mitigating wind was analyzed by performance assessment.
The different control strategies for VSPSPS connected to an isolated power system with
high penetration of intermittent renewable energy were studied. The effect mechanism
of penstock length and initial operating point on the dynamic performance was then
investigated [13].

Relevant scholars have conducted in depth research into modeling, numerical sim-
ulation and control, and have done a lot of work. However, there has been relatively
little work conducted on the stability of VSPSPS [14]. Guo et al. [15] derived a nonlin-
ear mathematical model of VSPSPS. The influence of factors on stability were studied.
However, nonlinear pump turbine characteristics were ignored and a linear model was
used. A novel mathematical model of VSPSPS concerning the electromechanical transient
model of doubly-fed induction (DFIG) was established and the stability was investigated
based on Hopf bifurcation theory under turbine and pump modes [16,17]. Unfortunately,
the pump turbine model was still linear. Zhu et al. [18] studied the stability of VSPSPS
considering nonlinear head loss and the parameter sensitivity analysis of the model was
analyzed systematically. However, the model did not consider pump turbine nonlinear
characteristics.

From the above literature review, it can be shown that pump turbine nonlinear charac-
teristics are often ignored and the simplified linear model is used in most of the existing
research. However, the stability of a VSPSPS is affected by all the components of the
hydropower station. Among those components, the pump turbine is the core component
of PSPS and has an important effect on the stability of VSPSPS [19]. On the other hand,
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the surge tank also has an obvious influence on the stability and dynamic performance
of VSPSPS but this influence is always neglected [20–22]. Therefore, it is difficult to fully
understand the stability and dynamic characteristics of VSPSPS based on the simplified
model; the effect mechanism of nonlinear pump turbine characteristics on stability and
dynamic characteristics of VSPSPS can not be calculated. Moreover, most of the established
models are focused on numerical simulation and control and are not suitable for stability
analysis [14]. Therefore, a complete and reasonable mathematical model should be estab-
lished for stability and dynamic characteristics analysis of VSPSPS. To overcome the above
problems, using a doubly-fed VSPSPS (DFVSPSPS) as the research object, a novel nonlinear
model of DFVSPSPS with surge tank and consideration of nonlinear pump turbine char-
acteristics was established, and the dynamic performance and parameter sensitivity were
studied. The novelty and innovation of the paper are:

(1) The establishment of a novel, nonlinear model of DFVSPSPS considering surge tank
and nonlinear pump turbine characteristics.

(2) Clarification of the stability of DFVSPSPS based on theoretical analysis and numerical
simulation.

(3) Revealing of the effect mechanism of nonlinear pump turbine characteristics on the
stability of DFVSPSPS.

(4) Revealing of the influence of factors on the stability of DFVSPSPS.

The rest of this paper is organized as follows: The mathematical model of DFVSPSPS
considering surge tank and nonlinear pump turbine characteristics is established in Sec-
tion 2; in Section 3, the stability of DFVSPSPS is analyzed and verified by Hopf bifurcation
theory and numerical simulation; in Section 4, the influence of nonlinear pump turbine
characteristics on the stability and dynamic characteristics of DFVSPSPS are revealed; in
Section 5, the influence of system parameters on the stability and dynamic characteristics
of DFVSPSPS are studied; in Section 6, conclusions are given.

2. Nonlinear Modeling of DFVSPSPS

A typical layout schematic diagram of a DFVSPSPS is shown in Figure 1. In a DFVSP-
SPS system, the components include an upstream reservoir, headrace tunnel, surge tank,
penstock, pump turbine, DFIG, converter and tailwater. The pump turbine is designed in a
reversible way with high energy conversion efficiency in both power generation and pump-
ing functions. The surge tank is set to decrease water hammer pressure in the penstock.
The mathematical model of a DFVSPSPS is composed of the basic equations of components.
The nomenclature for variables is shown in Appendix A.
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2.1. Hydraulic System

The dynamic equations of the hydraulic system, including headrace tunnel, surge tank
and penstock, are determined by Newton’s Second Law of Motion.

Dynamic equation of headrace tunnel [23,24]:

hs = −TwH
dqH
dt
− hH0

H0
(1)

Dynamic equation of surge tank [23,24]:

q = qH + TF
dhs

dt
(2)

Dynamic equation of penstock [19]:

Tw
dq
dt

= −h− hs (3)

2.2. Model of DFIG Control System
2.2.1. Model of DFIG

DFIG is a complex system with strong nonlinearity and high coupling, therefore, it
is difficult to model. To facilitate the research, the model of DFIG was established in a
two-phase d-q synchronous coordinate. The basic equations of stator voltage and rotor
voltage are [16]: 

vds = Rsids +
d
dt ϕds −ω1 ϕqs

vqs = Rsiqs +
d
dt ϕqs + ω1 ϕds

vdr = Rridr +
d
dt ϕdr − (ω1 −ω)ϕqr

vqr = Rriqr +
d
dt ϕqr + (ω1 −ω)ϕdr

(4)

The equations of the stator and rotor flux linkages are represented as follows:
ϕds = Lsids + Lmidr
ϕqs = Lsiqs + Lmiqr
ϕdr = Lmids + Lridr
ϕqr = Lmiqs + Lriqr

(5)

The torque equation and motion equation of the DFIG are represented as follows:{
dω
dt = 1

Ta
(TL − Te − Fω)

Te = 1.5np
(

ϕdsiqs − ϕqsids
) (6)

2.2.2. Control System

An AC-DC-AC bidirectional converter was adopted for this paper. The rotor-side
converter adopts vector control based on the stator flux direction to realize the decoupling of
active and reactive power of DFIG and control the active and reactive power independently.
The grid-side converter adopts double closed-loop control based on the voltage direction
to keep the DC bus voltage constant.

The control of the rotor side is shown as follows: idr−re f =
Ls
Lm

(
Kp3 +

Ki3
s

)(
Qdre f −Qd

)
+ ϕ1

Lm

vdr−re f =
(

Kp4 +
Ki4
s

)(
idr−re f − idr

)
+ vdrc

(7)

 iqr−re f =
Ls
Lm

(
Kp1 +

Ki1
s

)(
Pre f − P

)
vqr−re f =

(
Kp2 +

Ki2
s

)(
iqr−re f − iqr

)
+ vqrc

(8)
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vdrc and vqrc are defined as follows:

vdrc = −
1
Ls

(LrLs − LmLm)(ω1 −ω)iqr (9)

vqrc =
1
Ls

(LrLs − LmLm)(ω1 −ωr)idr −
Lm

Ls
(ω1 −ω)ϕ1 (10)

The control of the grid side is shown as follows: idg−re f =
(

Kp5 +
Ki5
s

)(
Qg−re f −Qg

)
vdg−re f =

(
Kp6 +

Ki6
s

)(
idg−re f − idg

) (11)

 iqg−re f =
(

Kp7 +
Ki7
s

)(
vdc−re f − vdc

)
vqg−re f =

(
Kp8 +

Ki8
s

)(
iqg−re f − iqg

) (12)

Now, the mathematical model of the DFIG control system was established, and con-
sisted of Equations (4)–(12).

2.2.3. Model Simplifying of DFIG Control System

The response time of the electromagnetic transient, including the switching action
of the power electronic devices and the dynamic process of the power converter, is very
short. The electromechanical transient process is relatively slow (hundreds of millisec-
onds). Therefore, the model of the DFIG control system can be simplified by ignoring the
electromagnetic transient process.

Under the reference coordinate system of stator flux linkage orientation, the d-q axis
voltage and flux linkage have the following constraints:

vds = 0
vqs = −u1
ϕds = ϕ1
ϕqs = 0

(13)

Under operation, the voltage dip of the stator resistance is far less than the reactance
voltage dip and counter electromotive force. Therefore, the stator resistance of the motor
can be ignored. By substituting Rs = 0 and Equation (13) into Equations (4)–(5) we yield [16]:[

didr
dt

diqr
dt

]
=

[ Rr Ls
L2

m−Ls Lr
ω1

−ω1
Rr Ls

L2
m−Ls Lr

][
idr
iqr

]
+ ω

[
0 −1
1 0

][
idr
iqr

]
+

Ls
L2

m−Ls Lr

[
−1 0
0 −1

][
vdr
vqr

]
+ Lm ϕ1(ω1−ω)

L2
m−Ls Lr

[
0
1

] (14)

where ϕ1 = −u1/ω1.
The dynamic characteristics of a DFVSPSPS are only related to the active power

regulation. Therefore, under decoupling control, the grid voltage and the d-axis current can
be considered constant. Consequently, in the study of stability and dynamic characteristics
of DFVSPSPS, only the change of q-axis current is considered. For Equation (14), the
equation for change of q-axis current can be obtained when the change of the d-axis current
is ignored [16]:

diqr

dt
=

RrLs

L2
m − LsLr

iqr −
Ls

L2
m − LsLr

vqr + (ω1 −ω)

(
Lm ϕ1

L2
m − LsLr

− idr

)
(15)
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The simplified model of DFIG can be obtained by combining Equations (6) and (15):
diqr
dt = Rr Ls

L2
m−Ls Lr

iqr − Ls
L2

m−Ls Lr
vqr + (ω1 −ω)

(
Lm ϕ1

L2
m−Ls Lr

− idr

)
Te = −1.5np ϕ1

Lm
Ls

iqr
dω
dt =

np
J (Te − Tm)

(16)

The response time of the electromagnetic transient is far less than the electromechanical
transient process. Therefore, the dynamic process of the converter and the inner current
loop can be ignored. A simplified DFIG control system model can be obtained further by
combining Equations (8), (10) and (16):

.
x1 = p +

3np ϕ1Lmω0
2Ls

iqr +
3Iqr0np ϕ1Lm

2Ls
ω +

3np ϕ1Lm
2Ls

ωiqr
.
iqr = − LS

Lm

(
Kp1

.
x1 + Ki1x1

)
.

ω = 1
Ta

(
mt +

3np ϕ1Lm
2Ls

iqr

) (17)

2.3. Mechanical System

The governor is the core control component of the DFVSPSPS and consists of the
controller and servosystem, which is mainly used to regulate the frequency, guide vane
opening and power of a pump turbine. The traditional proportional-integral-derivative
(PID) controller is used in the governor of a DFVSPSPS. The transfer function of the PID is
defined as [25]:

GPID(s) = KP +
KI
s

+ KDs (18)

The servosystem is the actuator of the governor, which is used to convert the electrical
signal from the controller output into a mechanical signal to provide power to operate the
guide vane. The servosystem can be described by a typical first-order transfer function:

y(s)
σ(s)

=
1

1 + Ty(s)
(19)

The mechanical system consists of pump turbine and governor. The model for a pump
turbine can be defined as a moment function and a flow function of guide vane opening,
generator speed and water head, shown as follows [26]:{

Mt = ft(α, n, H)
Q = f (α, n, H)

(20)

For small perturbation in the neighborhood of a steady-state operating point, the non-
linear pump turbine model shown in Equation (20) can be approximated as a linear model
by using the Taylor series expansion without considering higher-order terms. Equation (20)
can be rewritten as: {

∆Mt =
∂Mt
∂α ∆α + ∂Mt

∂n ∆n + ∂Mt
∂H ∆H

∆Q = ∂Q
∂α ∆α + ∂Q

∂n ∆n + ∂Q
∂H ∆H

(21)

The relative values of the above equations are obtained:
∆Mt
Mr

=
∂Mt
Mr

∂ α
αmax

∆α
αmax

+
∂Mt
Mr

∂ n
nr

∆n
nr

+
∂Mt
Mr

∂ H
Hr

∆H
Hr

∆Q
Qr

=
∂Q
Qr

∂ α
αmax

∆α
αmax

+
∂Q
Qr

∂ n
nr

∆n
nr

+
∂Q
Qr

∂ H
Hr

∆H
Hr

(22)
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Meanwhile, the six transfer coefficients are defined as follows:
ey =

∂Mt
Mr

∂ α
αmax

ex =
∂Mt
Mr

∂ n
nr

eh =
∂Mt
Mr

∂ H
Hr

eqy =
∂Q
Qr

∂ α
αmax

eqx =
∂Q
Qr

∂ n
nr

eqh =
∂Q
Qr

∂ H
Hr

(23)

Thus, Equation (22) can be expressed as [27,28]:{
mt = eyy + exω + ehh
q = eqyy + eqxω + eqhh (24)

where six transfer coefficients of pump turbine ex, ey, eh, eqx, eqy and eqh are the partial
derivatives of the torque and flow concerning speed n, guide vane opening y and water
head h, respectively [29].

The mathematical model of the DFVSPSPS system not only includes the description of
the dynamic characteristics of each component of the system, but also includes the control
strategy, which is composed of Equations (1)–(3), Equations (17)–(19) and Equation (24).
The control block diagram of the DFVSPSPS is shown in Figure 2.

Energies 2022, 15, 4131 9 of 28 
 

 

PI1 -Ls/Lm S-1Pref

q

+

P

iqr 

+

1/Tas-1
ω 

 ωrθ 
Tm

X

++
13

2
p m

s

n L
L
ϕ− Te

Optimal 
speed 

generator
H

PID Servo Pump 
turbine

Penstock

 ωopt  ωr 
u

h
y

−

−

 
Figure 2. Control block diagram of the DFVSPSPS. 

Therefore, according to the control block diagram of the system, the state space 
equation of the DFVSPSPS can be obtained from Equation (25): 

( )

( )

0

0

1 0 0 1 1
1

1 1 1 1

1

21

1

1

3 3 3

1

2 2 2

1.51

1

1

H
H s H

wH wH

s qh qx qy H
F

qx qy s
qh w w

p m r qr p m p m
qr qr

s s s

s
qr p i

m

p m
x y h qr

a s

hq h q
T T H

h e h e e y q
T

h e e y h h
e T T

n L i n L n L
x p i i

L L L
Li k x k x
L

n L
e e y e h i

T L

y
T

ω

ω

ϕ ω ϕ ϕ
ω ω

ϕ
ω ω

= −

= + + −

 
= − − − − 

 

= + + +

= − +

 
= + + + 

 

=





  



 



 ( )ip d
y

k z k z k y

z ap

ω

ω

















+ − −








 = −





 (25) 

Equation (25) is an eighth-order state equation with eight state variables, Hq , sh , h
, 1x , qri , ω , y  and z. When the six transfer coefficients of pump turbine ex, ey, eh, eqx, eqy 
and eqh are considered as constants, the pump turbine is a linear model. The six transfer 
coefficients can be obtained from the model synthetic characteristic curve of the pump 
turbine. The synthetic characteristic curve of the pump turbine is shown in Figure 3. To 
calculate the six transfer coefficients in a certain steady operating point 0, the four 
neighboring operating points should be determined. In Figure 3, points 1 and 2 are located 
on the equal speed curve and points 3 and 4 are located on the equal guide vane opening 
curve. The six transfer coefficients can be defined as: 

4 3 2 1 4 3

4 3 2 1 max 4 3

4 3 2 1 4 3

4 3 2 1 max 4 3

             ( ) / ( ) / ( ) /
( ) / ( ) / ( )

 
 

        

/
( ) / ( ) / ( ) /
( ) / ( )

    
/ /

 
(

 
)

r r r
x y h

r r

r r r
qx qx qh

r r

M M M M M M M M Me e e
n n n H H H

Q Q Q Q Q Q Q Q Qe e e
n n n H H H

α α α

α α α

− − − = = = − − −
 − − − = = =
 − − −

 (26)

Figure 2. Control block diagram of the DFVSPSPS.

As shown in Figure 2, the optimal speed ωopt is obtained from the power reference
value Pref and head h through the optimal speed generator, and the pump turbine can
operate under the optimal working conditions. The control signal u of PID controller can
be obtained from the difference between the optimal speed ωopt and the real-time speed
ω. The guide vane opening y can then be obtained through the hydraulic servosystem to
control the mechanical torque of the hydraulic turbine unit. The rotor side controls the
active output of the generator according to the difference between the power reference
value Pref and the real-time power P. The speed optimization of the optimal speed generator
is used to obtain the optimal speed under different power reference value Pref and head h.

Therefore, according to the control block diagram of the system, the state space
equation of the DFVSPSPS can be obtained from Equation (25):
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.
qH = 1

TwH
hs − 2hH0

TwH H0
qH

.
hs =

1
TF

(
eqhh + eqxω + eqyy− qH

)
.
h = 1

eqh

(
−eqx

.
ω− eqy

.
y− 1

Tw
h− 1

Tw
hs

)
.
x1 = p +

3np ϕ1Lmωr0
2Ls

iqr +
3iqr0np ϕ1Lm

2Ls
ω +

3np ϕ1Lm
2Ls
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.
iqr = − Ls

Lm

(
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.
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)
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Ls

iqr

)
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)
.
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(25)
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synthetic characteristic curve of the pump turbine is shown in Figure 3. To calculate the six
transfer coefficients in a certain steady operating point 0, the four neighboring operating
points should be determined. In Figure 3, points 1 and 2 are located on the equal speed
curve and points 3 and 4 are located on the equal guide vane opening curve. The six
transfer coefficients can be defined as: ex = (M4−M3)/Mr

(n4−n3)/nr
ey = (M2−M1)/Mr

(α2−α1)/αmax
eh = (M4−M3)/Mr

(H4−H3)/Hr

eqx = (Q4−Q3)/Qr
(n4−n3)/nr

eqx = (Q2−Q1)/Qr
(α2−α1)/αmax

eqh = (Q4−Q3)/Qr
(H4−H3)/Hr

(26)


M = M11D3

1 H
Q = Q11D2

1

√
H

n = n11i
√

H/D1

Hi =
(

nD1
n11

)2

(27)
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From the above analysis, it can be seen that the values of six transfer coefficients are
dependent on the steady operating condition point and characteristic curve of the pump
turbine.

In the above mathematical model of DFVSPSPS shown in Equation (25), the six
coefficients are considered as constants. However, during the transient process, the system
parameters and operating condition point will change. Therefore, the values of transfer
coefficients of the pump turbine will change. Therefore, there are some limitations and
inaccuracies in the analysis of stability and dynamic characteristic of DFVSPSPS based
on the linear pump turbine model, resulting in a large deviation in the calculation results.
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Considering the nonlinear characteristics of the pump turbine reflected by the changing six
transfer coefficients with the change of operating conditions, the pump turbine nonlinear
model should be deduced to analyze and reveal the influence of nonlinear pump turbine
characteristics on the stability and dynamic characteristics of DFVSPSPS.

In the following paragraphs ey is taken as an example to illustrate the derivation
process of the nonlinear analytical expression [30].

ey = (M2−M1)/Mr
(α2−α1)/αmax

=
(M112D3

1 H−M111D3
1 H)/M11r D3

1 Hr
(α2−α1)/αmax

= (M112−M111)/M11r
(α2−α1)/αmax

H
Hr

= ey0(h + 1)
(28)

By using the same method, we can get [30]:

eqy = (Q2−Q1)/Qr
(α2−α1)/αmax

= eqy0
√

h + 1

ex = (M4−M3)/Mr
(n4−n3)/nr

= ex0
√

h + 1

eqx = (Q4−Q3)/Qr
(n4−n3)/nr

= eqx0

eh = (M4−M3)/Mr
(H4−H3)/Hr

= eh0

eqh = (Q4−Q3)/Qr
(H4−H3)/Hr

= eqh0
1

ω+1

(29)

Then the nonlinear pump turbine model can be obtained:{
m = eh0h + ex0

√
h + 1ω + ey0(h + 1)y

q = eqh0
1

ω+1 h + eqx0ω + eqy0
√

h + 1y
(30)

From Equation (30), we can find that the moment equation and discharge equation are
nonlinear and the six transfer coefficients can change with the head and speed. Therefore,
the nonlinear pump turbine characteristics consist of nonlinear head characteristics and
nonlinear speed characteristics. Considering the nonlinear pump turbine characteristics, a
novel nonlinear DFVSPSPS is established in Equation (31):



.
qH = 1

TwH
hs − 2hH0

TwH H0
qH

.
hs =

1
TF

( eqh0
ω+1 h + eqx0ω + eqy0

√
h + 1y− qH

)
.
x1 = p +

3np ϕ1 Lmωr0
2Ls

iqr +
3iqr0np ϕ1 Lm

2Ls
ω +

3np ϕ1 Lm
2Ls

ωiqr
.
iqr = − Ki1 Ls x1

Lm
− pKp1 Ls

Lm
− 1.5Kp1np ϕ1ωro iqr − 1.5Kp1np ϕ1ωiqr − 1.5Kp1np ϕ1iqr0ω

.
ω = 1

Ta

(
ex0
√

h + 1ω + ey0(h + 1)y + eh0h +
1.5np ϕ1 Lm

Ls
iqr

)
.
y =

(
− 1

Ty
− ey0(h+1)Kd

Ta Ty

)
y +

(
− ex0

√
h+1Kd

Ta Ty
− Kp

Ty

)
ω− eh0Kd

Ta Ty
h + Ki

Ty
z− 1.5Kd Lmnp ϕ1

Ta Ls Ty
iqr +

apKp
Ty

.
z = ap−ω
.
h =

(
Kdeh0eqy0

√
h+1

Taeqh0Ty
− eh0eqx0

Taeqh0
− 1

Tweqh0

)
(ω + 1)h +

(
1.5ϕ1Kdeqy0

√
h+1Lmnp

Taeqh0 Ls Ty
− 1.5ϕ1eqx0 Lmnp

Taeqh0 Ls

)
(ω + 1)iqr

+

(
Kdeqy0

√
h+1ex0

√
h+1

Taeqh0Ty
+

eqy0
√

h+1Kp
eqh0Ty

− eqx0ex0
√

h+1
Taeqh0

)
(ω + 1)ω

+

(
Kdeqy0

√
h+1ey0(h+1)

Taeqh0Ty
− eqx0ey0(h+1)

Taeqh0
+

eqy0
√

h+1
eqh0Ty

)
(ω + 1)y

− eqy0
√

h+1Ki
eqh0Ty

(ω + 1)z− 1
Tweqh0

(ω + 1)hs −
apeqy0

√
h+1Kp

eqh0Ty
(ω + 1)

(31)

3. Stability Analysis of DFVSPSPS
3.1. Hopf Bifurcation Theory

Hopf bifurcation theory is an effective method of investigating the stability of nonlinear
systems, whose basic concept is described below [31,32].

For a nonlinear system expressed by differential equations
.
x = f (x, µ), x is the state

vector and is the bifurcation parameter. The equilibrium point xE of the system can be
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found by setting
.
x = 0. The Jacobian matrix of the system at the equilibrium point xE can

be obtained as J(µ) = D fx(xE, µ), whose characteristic equation det(J(µ)− λI) = 0 is:

a0(µ)λ
n + a1(µ)λ

n−1 + . . . + an−2(µ)λ
2 + an−1(µ)λ + an(µ) = 0 (32)

where ai(µ)(i = 1, 2, . . . , n) are the coefficients of characteristic equation and λ is the
eigenvalue.

If the following conditions are met, the nonlinear system will achieve Hopf bifurca-
tion [27]:

(i) ai(µc) > 0(i = 1, 2, . . . , m)
(ii) ∆i(µc) > 0(i = 1, 2, . . . , m− 2), ∆n−1(µc) = 0

∆j(µc) =

∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0
a3 a2 a1 · · · 0
a5 a4 a3 · · · 0
...

...
...

. . .
...

a2j−1 a2j−2 a2j−3 · · · aj

∣∣∣∣∣∣∣∣∣∣∣
· (j = 1, 2, . . . , m− 1)

(iii) σ′(µc) = Re
(

dλ
dµ

∣∣
µ=µc

)
6= 0

If the bifurcation parameter µ = µc satisfies the above conditions, then µ = µc is
the bifurcation point of the system. At µ = µc, the dynamic response of the system will
oscillate periodically, and the phase space trajectory is a stable limit cycle. In addition, the
type of bifurcation can be determined by the transversal coefficient σ′(µc). If σ′(µc) > 0,
the occurred Hopf bifurcation is supercritical and the system is stable when µ < µc. If
σ′(µc) > 0, the occurred Hopf bifurcation is subcritical and the system is stable when
µ > µc.

3.2. Hopf Bifurcation Analysis of DFVSPSPS

For the eighth-order DFVSPSPS nonlinear model described by Equation (31) in this
paper, the equilibrium point xE = (hsE, qHE, x1E, iqrE, ωE, yE, zE) can be obtained by setting:

hsE = −hE

qHE = −hE H0
2hH0

x1E = 0
iqrE = − Ls p

1.5np ϕ1Lm(ωr0+ap) −
apIqr0

ωr0+ap

ωE = ap
yE = − 1.5np ϕ1Lm

Lsey0(hE+1) iqrE − ex0
√

hE+1ωE
ey0(hE+1) −

eh0hE
ey0(hE+1)

zE = yE
Ki

(33)

Then the Jacobian matrix of the system
.
x = f (x, µ) at the equilibrium point xE can

be obtained and the detailed expression of D fx(xE, µ) is presented in Appendix B. The
characteristic equation J(µ) is:

a0λ8 + a1λ7 + a2λ6 + a3λ5 + a4λ4 + a5λ3 + a6λ2 + a7λ + a8 = 0 (34){
ai > 0 (i = 1, 2, . . . , 8), ∆i > 0 (i = 1, 2, . . . , 7), ∆7= 0
σ′(µc) 6= 0

(35)

3.3. Stable Region of DFVSPSPS

The Hopf bifurcation criteria for DFVSPSPS has been obtained in Section 3.2 as shown
in Equation (35). The bifurcation line can be obtained by solving Equation (35), which
consists of all bifurcation points on the parameter plane and divides the whole parameter
plane into a stable region and an unstable region. The stable region of DFVSPSPS can be
determined based on the bifurcation line and transversal coefficient σ′(µc). In this section,
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an actual DFVSPSPS is taken as a specific engineering example to present the application
procedures of Hopf bifurcation analysis of DFVSPSPS. The stable region and dynamic
response of DFVSPSPS can be clarified, and the essence and laws of stability of DFVSPSPS
can be revealed based on the example analysis. The basic parameters of the DFVSPSPS are
shown in Table 1.

Table 1. Parameters of the DFVSPSPS.

Parameters Values Parameters Values

H0 43.45 Ta 9.46
hH0 3.8 a 0.373
TwH 42.8 p 0.1
Tw 1.8 Lm 2.9
TF 1500 Ls 3.08
ex −1 np 7
ey 1 ϕ1 1.0
eh 1.5 ω0 1.022
eqx 0 iqr0 −0.099

The governor parameters Kp, Ki and Kd are the important variables and are closely
related to the stability and dynamic characteristic of the DFVSPSPS. Therefore, the Kp-Ki
plane is selected as the parameter plane and Kd is considered as a constant. Usually, Kp is
chosen as the abscissa, Ki is chosen as the ordinate and the bifurcation parameter. For a
given value of Kp, the value of Ki can be obtained by Equation (35).

In actual applications, the stable region of DFVSPSPS is determined by the following
procedure:

Step 1: For a specific engineering example of DFVSPSPS, the equilibrium point of the
system (Equation (31)) is calculated based on Equation (33);

Step 2: Calculate the Jacobian matrix of the system at the equilibrium point;
Step 3: Calculate the coefficients of the characteristic equation of the Jacobian matrix;
Step 4: For a value of Kp, calculate the corresponding bifurcation parameter Ki using

Equation (35)
Step 5: For all the values of Kp, the repetition of Step 4 yields all the bifurcation points.

The bifurcation line is then determined.
Step 6: Calculate the transversal coefficient σ′(µc) for all the bifurcation points. The

type of emerged Hopf bifurcation can then be determined.
The step disturbance of power is applied to excite the system, and the bifurcation line

of the system can be determined based on the above six steps. The results are shown in
Figure 4. Meanwhile, according to the obtained bifurcation points and the aforementioned
definition of σ′(µc), the corresponding transversal coefficients σ′(µc) are calculated and
shown in Figure 5.

From Figure 4, we can see that the bifurcation line is a smooth curve, and the controller
parameter KI of the bifurcation line presents a trend of first slowly increasing and then
rapidly decreasing with the increase of KP. The KP-KI plane is divided into three parts,
namely, the unstable region, stable region and critical stable region (bifurcation line).
Figure 5 shows that the values of σ′(µc) are greater than zero, which indicates that the
emerged Hopf bifurcation of DFVSPSPS is supercritical. Therefore, the region at the lower
side of the bifurcation line is the stable region and the other side is the unstable region. The
bifurcation line and stable region can quantificationally and intuitively reflect the stability
and dynamic characteristics of DFVSPSPS.
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3.4. Numerical Simulation and Verification of Stability

To verify the correctness of the obtained stable region in Section 3.3, and investigate
the dynamic characteristic of DFVSPSPS under different governor parameter values, there
are three points S1, S2 and S3 in Figure 4 which were selected as the representatives for
numerical simulation of the dynamic response S1 and S2 are located within the stable
region, S3 is located on the bifurcation line and S3 is located within the unstable region. To
reflect the changes of state variables more intuitively, the phase space trajectories are also
presented.

The Runge-Kutta method can be used to solve the nonlinear derivative equations
of DFVSPSPS for numerical simulation, and the dynamic response process of the state
variables x, y, and ω under the four points S1, S2, S3 and S4 are calculated, as shown
in Figure 6. The corresponding phase space trajectories are shown in Figure 7. From
Figures 6 and 7, we can conclude that the numerical simulation results are consistent with
the Hopf bifurcation theory analysis. For the stable state points S1 and S2, the dynamic
responses of state variables present a damped oscillation and finally converge to a steady
state. The phase space trajectories of S1 and S2 stabilize to the equilibrium point after several
periods of damped attenuated motion. For the bifurcation point S3, the dynamic responses
gradually enter a constant amplitude oscillation after several periods of oscillation. The
corresponding phase space trajectory of S3 stabilizes at the limit cycle. For the unstable state
point S4, the dynamic responses are divergent oscillation, and its phase space trajectory
enters a gradually divergent motion.
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4. Effect Mechanism of Nonlinear Pump Turbine Characteristics on Stability and
Dynamic Characteristics

The stability and dynamic characteristics of DFVSPSPS have been investigated based
on the engineering example in Section 3. In this section, we will focus on the effect mecha-
nism of nonlinear pump turbine characteristics. In particular, the influence mechanism of
nonlinear head characteristics and nonlinear speed characteristics on stability and dynamic
characteristics of the DFVSPSPS are revealed.

A contrastive analysis is used to explore the effect mechanism of nonlinear head
characteristics and nonlinear speed characteristics. Equation (30) is the nonlinear pump
turbine model including nonlinear head characteristics and nonlinear speed characteristics,
which is denoted as Model A. If nonlinear speed characteristics are ignored, the model
of DFVSPSPS is denoted as Model B, where eqh0/(ω + 1) is replaced by eqh0. If the pump
turbine only considers nonlinear head characteristics, the model of DFVSPSPS is denoted
as Model C. The state equation can be obtained by replacing ex0

√
h + 1, ey0(h + 1) and

eqy0
√

h + 1 with ex0, ey0 and eqy0, respectively. If both nonlinear head characteristics and
nonlinear speed characteristics are ignored then a linear pump turbine model can be
denoted as Model D, where eqh0/(ω + 1), ex0

√
h + 1, ey0(h+ 1) and eqy0

√
h + 1 are replaced

by eqh0, ex0, ey0 and eqy0, respectively. The corresponding equations of pump turbines of
Model B, Model C and Model D are presented as follows:

Model B :
{

m = eh0h + ex0
√

h + 1ω + ey0(h + 1)y
q = eqh0h + eqx0ω + eqy0

√
h + 1y

(36)

Model C :
{

m = eh0h + ex0ω + ey0y
q = eqh0

1
ω+1 h + eqx0ω + eqy0y

(37)

Model D :
{

m = eh0h + ex0ω + ey0y
q = eqh0h + eqx0ω + eqy0y (38)

The stability and dynamic characteristics of DFVSPSPS under Model A have been
analyzed in Section 3. The same stability analysis method can be used for Model B, Model
C and Model D. Most research shows that the surge tank and the external disturbance have
a significant influence on the stability of DFVSPSPS [19]. Therefore, different time constants
of the surge tank and step load disturbance are considered, i.e., TF = 1500 s, TF =250 s, p =
0,1 and p = −0.1. The stable region and dynamic responses for Model A, Model B, Model C
and Model D are shown in Figures 8 and 9.
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Figures 8 and 9 show that:

1. When p = 0.1 and TF = 1500 s, the stable regions of Model A and Model B are almost
coincident. Similarly, the stable regions of Model C and Model D are almost coincident.
Moreover, the stable regions of Model A and Model B are significantly smaller than
those of Model C and Model D. Therefore, under p = 0.1 and TF = 1500 s, we can see
that nonlinear speed characteristics have almost no effect on stability, but nonlinear
head characteristics have a significant effect on stability. Therefore, nonlinear pump
turbine characteristics are mainly realized by the nonlinear head and nonlinear head
characteristics are unfavorable for the stability of DFVSPSPS. The same conclusion
can be drawn for dynamic response. Nonlinear speed characteristics have almost no
effect on dynamic response, but nonlinear head characteristics have a significant effect
on dynamic response. Comparing the dynamic responses of Model A and Model C in
Figure 8b, nonlinear head characteristics can increase the oscillation amplitude and
prolong the stability time. Nonlinear head characteristics have a negative effect on the
dynamic performance of DFVSPSPS.

2. For the DFVSPSPS under p = 0.1 and TF = 250 s, the stable regions of Model A and
Model B are obviously smaller than that under p = 0.1 and TF = 1500 s. The stable
regions of Model C and Model D are almost coincident with that under p = 0.1 and
TF = 1500 s. However, the stable region of Model A is obviously smaller than Model
B. The results indicate that nonlinear head characteristics have a significant effect on
stability. Nonlinear speed characteristics have no effect on stability when the pump
turbine does not contain nonlinear head characteristics as seen by comparing the
stable regions of Model C and Model D. However, nonlinear speed characteristics
have an obvious effect on stability when the pump turbine model contains nonlinear
head characteristics as seen by comparing the stable regions of Model A and Model
B. Therefore, under p = 0.1 and TF = 1500 s, nonlinear speed characteristics rely on
nonlinear head characteristics. Nonlinear speed characteristics and nonlinear head
characteristics are unfavorable for the stability of DFVSPSPS.

3. For the DFVSPSPS under p = −0.1 and TF = 1500 s, the stable regions of Model A
and Model B are almost coincident. The stable regions of Model C and Model D are
also almost coincident. The stable region of Model C under p = 0.1 and TF = 1500 s
is the same as that under p = −0.1 and TF = 1500 s. However, the stable regions
of Model A and Model B are significantly larger than those of Model C and Model
D. Therefore, under p = −0.1 and TF = 1500 s, we can draw the same conclusion as
that under p = 0.1 and TF = 1500 s. Nonlinear speed characteristics have almost no
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effect on the stability and dynamic characteristics, but nonlinear head characteristics
have a significant effect on the stability and dynamic characteristics. Nonlinear pump
turbine characteristics are mainly realized by the nonlinear head. Nonlinear head
characteristics are favorable for the stability dynamic characteristics of DFVSPSPS.
Moreover, external disturbance only has an obvious effect on the stability of Model A
and Model B and has no effect on the stability of Model C and Model D. Therefore, the
influence of external disturbance on stability relies on nonlinear head characteristics.
From Figure 9, we can see that the results under TF = 1500 s are the same as that under
TF = 250 s.

5. Analysis of Influence Factors on Stability of DFVSPSPS

The effect mechanism of nonlinear pump turbine characteristics on the stability and
dynamic characteristics of DFVSPSPS was investigated in Section 4. In this section, the effect
mechanism of influence factors of DFVSPSPS on the stability and dynamic characteristics
are further explored. The analysis results clarify the effect mechanism of influence factors
on the stability and dynamic characteristics of DFVSPSPS, and provide guidance for
the improvement of stability and dynamic performance of DFVSPSPS. Five important
parameters of DFVSPSPS, Tw, hH0, Ta, p and TF, were chosen as the influence factors. The
different values of the five influence factors were considered, and the other parameters
remained unchanged, as shown in Table 1. For each value of the influence factors, the stable
region of DFVSPSPS was obtained and a state point under the stable region was chosen
for numerical simulation of the dynamic response of ω. The stable region and dynamic
response of DFVSPSPS are shown in Figures 10–14.
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• Effect of Tw on stability and dynamic characteristics of DFVSPSPS

Tw was set as 1.6 s, 1.7 s, 1.8 s and 1.9 s, respectively. The stable regions and dynamic
responses are shown in Figure 10. From Figure 10a, it can clearly be seen that Tw has a
significant effect on stability. The stable region becomes obviously smaller as Tw increases.
Therefore, a smaller Tw is favorable for the stability of DFVSPSPS. Tw also has a signifi-
cant effect on the response process shown in Figure 10b. As Tw increases, the dynamic
performance of DFVSPSPS becomes significantly worse.

• Effect of hH0 on stability and dynamic characteristics of DFVSPSPS

hH0 was set as 5 m, 6 m, 7 m and 8 m, respectively. The stable regions under different
hH0 are shown in Figure 11a. Figure 11a shows that hH0 has an obvious effect on the
stability of DFVSPSPS. The stable region becomes smaller as hH0 increases.Therefore, a
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smaller hH0 is favorable for the stability of DFVSPSPS. However, from Figure 11b, the
dynamic responses are coincident under different values of hH0. Therefore, hH0 has almost
no effect on the dynamic response of DFVSPSPS.

• Effect of Ta on stability and dynamic characteristics of DFVSPSPS

Ta was set as 7 s, 8 s, 9 s and 10 s, respectively. The stable regions and dynamic
responses are shown in Figure 12. From Figure 12a, it can clearly be seen that Ta has a
significant effect on stability. The stable region becomes obviously larger as Ta increases.
Therefore, a larger Ta is favorable for the stability of DFVSPSPS. Ta also has a significant
effect on the response as shown in Figure 12b. As Ta increases, the dynamic performance of
DFVSPSPS becomes significantly improved.

• Effect of p on stability and dynamic characteristics of DFVSPSPS

p was set as −0.2, −0.1, 0.1 and 0.2, respectively. The stable regions and dynamic
responses are shown in Figure 13. From Figure 13a, it can clearly be seen that p has a
significant effect on stability. The stable region under p < 0 is larger than that under p > 0.
Moreover, when p < 0, the stable region becomes obviously larger as p increases. However,
when p > 0, the stable region becomes obviously smaller with increasing p. Therefore, a
larger absolute value of p is favorable for the stability of DFVSPSPS.

p also has a significant effect on the response process of ω as shown in Figure 13b.
When p > 0, the response process of ω first decreases and then increases. The oscillation
amplitude becomes larger with increasing p. When p < 0, the response process of ω first
increases and then decreases. The oscillation amplitude becomes larger with decreasing p.
After several periods, the response process of ω stabilizes at a positive steady-state value.
Therefore, the oscillation amplitude relies on the absolute value of p and the sign of the
steady-state value depends on the sign of p.

• Effect of TF on stability and dynamic characteristics of DFVSPSPS

TF was set as 270 s, 280 s, 300 s, 350 s, 400 s and 1500 s, respectively. The stable regions
under different TF are shown in Figure 14a. Figure 14a shows that TF has an obvious
effect on the stability of DFVSPSPS when TF < 350. The stable region becomes larger as
TF increases. However, when TF > 350, the stable region keeps almost unchanged with
increasing TF. Therefore, a larger TF is favorable for the stability of DFVSPSPS. However,
from Figure 14b, the dynamic responses of ω are coincident under different values of TF.
Therefore, TF has almost no effect on the dynamic responses of DFVSPSPS.
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6. Conclusions

A novel nonlinear model of DFVSPSPS considering surge tank and nonlinear pump
turbine characteristics was established. Hopf bifurcation analysis of the DFVSPSPS was
carried out and the stability region was obtained. The effect mechanism of nonlinear
pump turbine characteristics on the stability and dynamic characteristics of DFVSPSPS was
studied. Finally, the influence factors on the stability and dynamic response of DFVSPSPS
were analysed. The conclusions are as follows:

1. The mathematical model of the DFVSPSPS considering surge tank and nonlinear
pump turbine characteristics is described by an eight-dimensional nonlinear state
equation. The emerged Hopf bifurcation of DFVSPSPS is supercritical and the whole
Kp-Ki plane is divided into two parts, where the region at the lower side of the
bifurcation line is the stable region. This has been verified by numerical simulation.

2. Nonlinear head characteristics have a significant effect on the stability and dynamic
characteristics of DFVSPSPS under all situations. However, nonlinear speed character-
istics have obvious influence on the stability and dynamic characteristics of DFVSPSPS
only under p = 0.1, TF = 250 s due to the instability of the surge tank. Under other
situations, nonlinear speed characteristics have no effect on the stability and dynamic
characteristics of DFVSPSPS. The influence of nonlinear speed characteristics relies
on nonlinear head characteristics. Nonlinear head characteristics are unfavorable
for the stability of DFVSPSPS under positive load disturbance and favorable under
negative load disturbance. The stable region of Model C and Model D are also almost
coincident in all situations.

3. Tw has a significant influence on the stability and dynamic characteristics of DFVSP-
SPS. A smaller Tw is favorable for the stability and dynamic performance of DFVSPSPS.
hH0 has a significant influence on stability but has no effect on the dynamic character-
istics of DFVSPSPS. A smaller hH0 is favorable for the stability of DFVSPSPS. Ta has
a significant influence on the stability and dynamic characteristics of DFVSPSPS. A
greater Ta is favorable for the stability and dynamic performance of DFVSPSPS.

4. p has a significant effect on the stability of DFVSPSPS. The stable region under p < 0
is larger than that under p > 0. Under p < 0, the stable region becomes larger with
increasing p. However, under p > 0, the stable region becomes smaller with increasing
p. TF has an obvious effect on the stability of DFVSPSPS and presents a saturation
characteristic. Under TF < 350the stable region becomes larger with increasing TF.
However, when TF >350, the stable region keeps almost unchanged with increasing
TF. Therefore, a larger TF is favorable for the stability of DFVSPSPS. However, the TF
has almost no effect on the dynamic characteristics of DFVSPSPS.

A novel nonlinear mathematical model of DFVSPSPS considering surge tank and
nonlinear pump turbine characteristics was established and stability was studied in this
paper. However, there are still some limitations to the model of DFVSPSPS. There is only
one pump turbine for one headrace tunnel considered in this paper, which is a simplified
model. In an actual engineering application, in order to obtain a large water level drop and
save project investment, the layout of the water conveyance system of PSPS mostly uses
multiple units sharing one common tunnel. Additionally, there is hydraulic disturbance
and interaction between different pump turbines for PSPS with multiple pump turbines.
The hydraulic disturbance and interactions between different turbines have an obvious
influence on the stability of PSPS. Therefore, a refined nonlinear model of the DFVSPSPS
with a layout of multiple units sharing one common tunnel should be established and the
stability needs to be investigated.

On the other hand, the specific nonlinearities in the governor system (delay, saturation,
backlash and so on) are ignored in this paper and have a non-negligible impact on the
stability and dynamic characteristics of DFVSPSPS. Therefore, it is necessary to consider
the nonlinear characteristics of the governor and a more precise nonlinear mathematical
model should be established to investigate the effect mechanism on the stability of system.
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Appendix A

Nomenclature

QH discharge in headrace tunnel, m3/s
Q discharge in penstock, m3/s
Hs change of water level of surge tank, m
H pump turbine net head, m
hH0 head loss of headrace tunnel, m
TwH flow inertia time constant of headrace tunnel, s
TF time constant of surge tank, s
Tw flow inertia time constant of penstock, s
Mt kinetic moment
n unit speed
α guide vane opening
ex, ey, eh moment transfer coefficients of turbine
eqx, eqy, eqh discharge transfer coefficients of turbine
Ty time constant of the servomotor
Kp, Ki, Kd controller parameters of governor

vds, vqs, vdr, vqr
d, q axis components of the stator and rotor
voltage

ids, iqs, idr, iqr
d, q axis components of the stator and rotor
current

ϕds, ϕqs, ϕdr, ϕqr d, q axis components of the stator and rotor flux
ϕ1 the stator flux linkage
Rs, Rr resistance of stator and rotor
ω1 angular velocity of the synchronous rotation
ω Unit speed
Lm mutual inductance between the stator and rotor
Ls, Lr self-inductance of the stator and rotor
Ta unit inertia time constant
TL, Te active torque and load torque of pump turbine
F friction coefficient
np number of pole pairs

idr−re f , iqr−re f
d, q axis components of the rotor current
reference

vdr−re f , vqr−re f
d, q axis components of the rotor voltage
reference

vdrc, vqrc d, q axis voltage compensation of rotor
P, Qd active power and reactive power
Pre f , Qdre f power reference
Kp1, Ki1, Kp2, Ki2, Kp3, Ki3, Kp4, Ki4 control parameters
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Nomenclature

s Laplace operator
idg−re f , iqg−re f d, q axis current reference of grid-side
vdg−re f , vqg−re f d, q axis voltage reference of grid-side
Kp5, Ki5, Kp6, Ki6, Kp7, Ki7, Kp8, Ki8 control parameters
vdc, vdc−re f DC bus voltage and DC bus reference voltage
idg, iqg d, q axis current compensation of grid-side
Qg, Qg−re f reactive power of grid side and reference value
u1 grid voltage
x1 intermediate variable

Definition of variates{
hs =

Hs−H0
Hr

qH = QH−QH0
Qr

ω = n−n0
nr

p =
Pre f−Pre f 0

nr

h = H−H0
Hr

q = Q−Q0
Qr

y = α−α0
αmax

mt =
Mt−M0

Mr

are the relative deviations of corresponding variables, where subscripts r and 0 denote the
rated condition value and the initial value, respectively.

Appendix B

D fx(xE, µ) =
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∂
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