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Abstract: The phase-synchronized rotation of a pair of closely spaced vertical-axis wind turbines
has been found in wind tunnel experiments and computational fluid dynamics (CFD) simulations.
During phase synchronization, the two wind turbine rotors rotate inversely at the same mean
angular velocity. The blades of the two rotors pass through the gap between the turbines almost
simultaneously, while the angular velocities oscillate with a small amplitude. A pressure drop in
the gap region, explained by Bernoulli’s law, has been proposed to generate the interaction torque
required for phase synchronization. In this study, an analytical model of the interaction torques
was developed. In our simulations using the model, (i) phase synchronization occurred, (ii) the
angular velocities of the rotors oscillated during the phase synchronization, and (iii) the oscillation
period became shorter and the amplitude became larger as the interaction became stronger. These
observations agree qualitatively with the experiments and CFD simulations. Phase synchronization
was found to occur even for a pair of rotors with slightly different torque characteristics. Our
simulation also shows that the induced flow velocities influence the dependence of the angular
velocities during phase synchronization on the rotation directions of the rotors and the distance
between the rotors.

Keywords: vertical-axis wind turbine; phase synchronization; analytical model; Bernoulli’s law

1. Introduction

A pair of closely spaced vertical-axis wind turbines (VAWTs) can yield more power
than two isolated VAWTs [1]. This idea was extended to a wind farm where many pairs of
small-sized VAWTs were placed in a limited area in order to yield a high power density [2].
VAWTs accept wind from all directions; thus, it is possible to place them in proximity
to each other. In order to investigate the performance and characteristics of such closely
spaced VAWTs, wind tunnel experiments [3–8] and computational fluid dynamics (CFD)
simulations of a pair of VAWTs were performed in two dimensions [9–14], as well as in
three dimensions [6,15].

In Ref. [4,5], wind tunnel experiments of a pair of two-bladed H-type Darrieus turbines
were reported, and synchronization of the rotations was found in both counter-down
(CD) and counter-up (CU) layouts. Note that, in the CD layout, the blades of the two
rotors move in the downwind direction in the gap region between the rotors. In the CU
layout, the blades move in the upwind direction in the gap region. It was found that the
rotational speeds equalize and the power output increases. Let us call this phenomenon
phase synchronization. It was also found that the phase difference between the rotors
oscillates around a mean value, and converges to it during the phase synchronization period.
However, the mechanism of phase synchronization was not discussed in their papers.

Jodai et al. performed wind tunnel experiments on a pair of closely spaced, small-
sized rotors made by a 3D printer and found that phase synchronization occurs when the
distance between the rotors is sufficiently small in the CD layout [7,8]. It was found that
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the rotational speed with phase synchronization was 13% greater than that for a single
rotor under the extremely small gap condition; the gap distance was 10% of the rotor
diameter. This was the first report on the steep rise of the rotational speed under phase
synchronization of a pair of closely spaced VAWTs with the extremely small gap. The
oscillation of the phase difference was not reported in their papers.

Hara et al. performed a two-dimensional CFD analysis [13,14] to simulate the experi-
ments by Jodai et al. They adopted a dynamic fluid–body interaction (DFBI) model that
enabled the angular velocities of the rotors to change dynamically. The simulation results
showed that phase synchronization also occurred in the CFD analysis for both the CD and
CU layouts. They also found that the angular velocities of the rotors oscillated around the
mean value during phase synchronization. Note that the oscillation of the angular velocities
around the mean value means the same as the oscillation of the phase difference. From the
observations of the CFD simulation results, it was proposed that phase synchronization and
the oscillation of the angular velocities occur because of the interaction torques generated
by pressure fluctuations in the gap between the rotors. In fact, they found that the velocity
increases and the pressure decreases according to Bernoulli’s law when blades of the two
rotors come closer together in the gap region.

In this study, we developed an analytical model for the interaction torques that can
be included in evolution equations of the angular velocities of rotors considered as solid
bodies. Such a model is useful to understand the physics of the observed phenomena.
Here, we present the details of the derivation, as well as numerical results showing the
phase synchronization and the oscillation of the angular velocities. We also perform a
simulation of a pair of rotors with slightly different torque characteristics and show that
phase synchronization also occurs if interaction torques exist.

This paper is organized as follows. The details of the model, including the derivation
of the interaction torques, are explained in Section 2. Then, Section 3 shows the numerical
results based on the model. In particular, in Section 3.2, we report that the phase synchro-
nization and oscillation of the angular velocities occur when using our model. We also
report the dependence of the angular velocities in the phase synchronization regime on
the gap in Section 3.3. The oscillations of the difference in angular velocities are shown
in Section 3.4. The conclusions are given in Section 4. Appendix A shows the verifica-
tion of our model based on comparison with CFD as well as experimental results, while
Appendix B summarizes normalized expressions of our model.

2. Model

Let us consider a pair of VAWTs. The geometry of the layout is shown in Figure 1. The
upstream wind flows from the left of the figure. The rotation directions of the rotors are
shown by the arrows. Co-rotating, Counter Down, and Counter Up layouts are written
as CO, CD, and CU, respectively. In the CD layout, the blades of the rotors move in the
downwind direction in the gap region between the rotors. In contrast, in the CU layout, the
blades move in the upwind direction.

upstream
wind

rotor 1

rotor 2

rotor 1

rotor 2

rotor 1

rotor 2

CO CD CU

Figure 1. Layouts of rotors.
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Figure 2 explains the definitions of variables. The diameter and the radius of a rotor i
are denoted by Di and Ri, respectively. The gap between rotors i and j is given by gij. In
this study, we only considered a pair of rotors. A rotor i has ni blades, and the position of
a blade k is expressed as (xik, yik) in the two-dimensional plane, of which the origin is at
the center of rotor 1. An azimuthal angle of a blade k of a rotor i is expressed by ψik, which
is zero in the direction of the y axis and increases in the counterclockwise direction. The
blades of a rotor are equally spaced in the azimuthal angle, and thus the angle between the
neighboring blades is 2π/ni. The chord length and the area projected along the rotation
direction of a blade k of a rotor i are denoted cik and Sik, respectively.

The distance between the blade k of the rotor i and the blade ` of the rotor j is written
as Wik,j`, which varies in time due to the rotation. As we explain later in this section, we
adopted a model to describe a change in the flow velocity according to the temporal change
of Wik,j`, leading to a pressure fluctuation between the blades according to Bernoulli’s law.
The center of the rotor j is in the direction of an angle φij seen from the center of rotor i.
As with the azimuthal angle ψik, the angle φij is also zero in the direction of the y axis and
increases in the counterclockwise direction. The angle of the center of the rotor i seen from
the center of the rotor j is φji, although only φ12 with i = 1 and j = 2 is shown in Figure 2.

The wind flows in the direction of the x axis. The upstream speed is denoted by V.
The flow velocity experienced by the rotor differs for each rotor. The effective flow velocity
immediately in front of rotor i is written as Vi.

upstream
wind speed

rotor 1

rotor 2

effective
wind speed

effective
wind speed

projected
 area

Figure 2. Definitions of variables.

As mentioned above, we only considered a pair of rotors. The evolution equations
governing the rotation are

Ii
dωi
dt

= Qi − Li + Qpi, (1)

dψi
dt

= ωi, (2)

where i = 1, 2 represent the two rotors, ωi is the angular velocity, ψi := ψi1 is the azimuthal
angle of a representative blade, Ii is the moment of inertia, Qi is the rotor torque, Li is the
load torque, and Qpi is the torque due to the interaction with the other rotor j ( 6= i) through
pressure fluctuation in the gap between them. Note that ψi is not necessarily ψi1 but can be
another ψik with k 6= 1; the meaning is the same for any choice of k = 1, · · · , ni.

In the following section, we explain our torque models. First, we take the rotor torque
Qi as

Qi = −
3
√

3Qmax(Vi)

2ω3
0(Vi)

ωi(ωi + ω0(Vi))(ωi −ω0(Vi))Fni (ψi). (3)
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This torque, without the last term Fni (ψi), simulates the torque characteristics in the two-
dimensional CFD by Hara et al., as shown in Figure 2 of Ref. [14]. Note that the rotor
is operated at an angular velocity, in a sense of average over phase, where the torque in
Equation (3) is balanced by a load torque introduced below. Since the balanced state occurs
at an angular velocity larger than that at the maximum torque in the present choice of
the load torque for a given flow velocity, the rotor torque characteristics at small angular
velocity regime is not essential. Here, Fni (ψi) expresses a modulation in the rotor torque
depending on the angle of the blades, which we explain shortly. Without this modulation,
or setting Fni (ψi) ≡ 1, Qi is a cubic function of ωi for a given Vi and takes a maximum value
Qmax(Vi) when ωi = ω0(Vi)/

√
3 on the positive ωi side. When ωi = ω0 at the positive ωi

side, the rotor torque becomes zero. Thus, ω0 is sometimes called no-load angular velocity.
Here, we take

Qmax(Vi) = c1V2
i , (4)

ω0(Vi) = c2Vi, (5)

where c1 and c2 are constants. As shown in Appendix A, we chose these expressions
by observing the CFD [13,14], as well as the experimental [7,8] data. The actual values
used in our simulation are given in the next section. Note that normalized expressions of
Equations (3)–(5), as well as equations to appear below are given in Appendix B, where it is
shown that the normalized rotor torque Qi is expressed by a tip–speed ratio λi := Riωi/Vi
for the rotor i and normalized Qmax and ω0 only.

The average of Fni (ψ) over ψ is taken to be unity. As shown in Appendix A, it is
known that the rotor torque by a single blade is finite at the upstream side and becomes
maximal when a blade comes to the position ψi = π/2. It decreases to almost zero at the
downstream side when the rotor solidity σi := nicik/(πDi) is large. We assume that

F1(ψ) =

{
4 sin2 ψ (0 ≤ ψ ≤ π)

0 (π < ψ < 2π)
(6)

for a single blade. Figure 3 shows the azimuthal angle ψ dependence of Fn(ψ). In the
figure, n = 1 plots Equation (6). The curve of n = 3 plots a summation of the modulation
function for n = 1 over three blades equally spaced in the azimuthal angle and normalized
such that

∫ 2π
0 F3(ψ)dψ/(2π) = 1. Note that the function for the modulation can be rather

flexibly chosen since it is enough to simulate qualitative aspects of the torque modulation.
Any function with its maximum at ψ = π/2 and almost zero in the downstream half may
be acceptable.

For the effective wind speed, we use

Vi = (1− ai)V + ∑
j 6=i

Γj

2π(Ri + Rj + gij)
cos φij, (7)

where ai is a coefficient of self-induced velocity, and Γj is the circulation of rotor j. The
second term expresses the velocity induced by another rotor. This assumption, assigning a
circulation for a rotor, is similar to the one in Ref. [16]. We take

Γj = c3Vj, (8)

where c3 is a constant. This dependence was also obtained by the CFD results as shown
in Appendix A. By using the effective wind speed Vi, the rotor torque on rotor i can be
calculated. Note that Vi in Equation (7), especially its mutually induced velocity in the
second term of the right-hand side, is evaluated by using the coordinate of the center of
rotor i. In reality, the effective flow velocity is different for each blade, and the summation
of the torques on every blade of a rotor determines the rotor torque. However, in this study,
the effective velocity Vi is used for calculating the rotor torque as an average of the effective
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velocities for all blades in the rotor, and we assume that Vi is the flow velocity immediately
in front of rotor i. Instead of considering the torques on each blade, we take into account
the torque modulation of the rotor torque via Fni (ψ). The modulation expresses the fact
that the blade experiences significantly smaller flow than the upstream when it is in the
downstream half of the rotation.

Figure 3. Modulation function Fn(ψ) of the rotor torque on the azimuthal angle of the blade. The
curves n = 1 and n = 3 plot the modulation for a single blade and a summation over three blades,
respectively. The average of Fn(ψ) over ψ is taken to be unity.

Secondly, we take the load torque as

Li = c4ω2
i . (9)

The dependence, square of angular velocity, is known as the ideal load torque to obtain
highest power at each instance [17]. The CFD simulations by Hara et al. [13,14] also adopted
the ideal load torque of the same form. Within our torque model, it is shown that the load
torque in Equation (9) works to keep the highest power as follows. According to the rotor
torque in Equation (3), the power Qiωi takes a maximum value when ωi = ω0(Vi)/

√
2, and

the corresponding rotor torque is Qi = 3
√

3Qmax(Vi)/4
√

2. By using Equations (4) and (5),
these are written such that the maximum power is obtained when ωi = c2Vi/

√
2 and the

corresponding torque is Qi = 3
√

3c1V2
i /4
√

2. The ideal operation of the turbine is achieved
by balancing the rotor torque Qi by the load torque Li for whatever Vi. This is realized
by setting Li ∝ ω2

i , which is obtained by eliminating Vi in Q by using ωi = c2Vi/
√

2. The
coefficient c4 is determined so that the load torque takes 95% of Qi when the power becomes
maximal for a given Vi in Section 3.1.

Finally, we come to the torque caused by pressure fluctuations between the blades.
The positions of the blades of rotors 1 and 2 are given by

x1k = −R1 sin ψ1k, (10)

y1k = R1 cos ψ1k, (11)

x2` = −R2 sin ψ2`, (12)

y2` = R2 cos ψ2` − (R1 + R2 + g12). (13)

The distance W1k,2` between two blades at (x1k, y1k) and (x2`, y2`) is

W1k,2` =
√
(x1k − x2`)2 + (y1k − y2`)2. (14)
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Here, we consider the flow to be incompressible and assume that

Vav(R1 + R2 + g12) = (Vav + δV)W1k,2`, (15)

where Vav := (V1 + V2)/2 is the average flow velocity, and δV expresses the change in the
flow velocity between the two blades due to a change in distance between them. Note that
the calculation of δV may be improved by taking not only the x component of the flow
velocity but also the y component, or taking the distance in the y direction between the
blades k and ` instead of the distance W1k,2` itself. Let us leave this refinement as a future
issue. We roughly estimate the change of velocity δV in this study. Then, we obtain the
pressure fluctuation δp using Bernoulli’s law

1
2

ρV2
av + p =

1
2

ρ(Vav + δV)2 + p + δp, (16)

as
δp = −1

2
ρ
(

2VavδV + (δV)2
)

. (17)

Here, the air pressure is written as p. Note that we neglected the effects of viscous force
and unsteadiness of the flow. We adopted the Bernoulli’s law to explain interactions
between the blades due to pressure fluctuation through the increase in the flow velocity
in the x direction observed in the CFD results, as shown in Figure 20 of Ref. [14]. The
force on a blade due to this pressure fluctuation is calculated by integrating −∇δp with
the blade volume. The necessary force component is that along the rotation direction
−(∂δp/∂ψik)/Ri for the blade k of the rotor i. As an example, for i = 1, this is calculated as

∂δp
∂ψ1k

= −ρ(Vav + δV)
∂δV
∂ψ1k

= −ρ
R1 + R2 + g12

W1k,2`
Vav

∂δV
∂ψ1k

. (18)

By using Equation (15),

∂δV
∂ψ1k

= −R1 + R2 + g12

W2
1k,2`

Vav
∂W1k,2`

∂ψ1k

= −R1 + R2 + g12

W3
1k,2`

Vav

[
(x1k − x2`)

(
∂x1k
∂ψ1k

− ∂x2`
∂ψ1k

)
+(y1k − y2`)

(
∂y1k
∂ψ1k

− ∂y2`
∂ψ1k

)]
. (19)

Then, we can obtain

∂δp
∂ψ1k

= ρV2
av
(R1 + R2 + g12)

2

W4
1k,2`

R1[R2 sin(ψ1k − ψ2`)

−(R1 + R2 + g12) sin ψ1k], (20)

∂δp
∂ψ2`

= −ρV2
av
(R1 + R2 + g12)

2

W4
1k,2`

R2[R1 sin(ψ1k − ψ2`)

−(R1 + R2 + g12) sin ψ2`]. (21)
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The torque on a blade due to pressure fluctuations may be approximated by multiplying
the blade volume cikSik by the rotor radius Ri. Now, we also assume that the total torque
on a rotor can be obtained by adding contributions from all blades. Then, we obtain

Qp1 = −α
ni

∑
k=1

nj

∑
`=1

c1kS1kρV2
av
(R1 + R2 + g12)

2

W4
1k,2`

R1[R2 sin(ψ1k − ψ2`)

−(R1 + R2 + g12) sin ψ1k], (22)

Qp2 = α

nj

∑
`=1

ni

∑
k=1

c2`S2`ρV2
av
(R1 + R2 + g12)

2

W4
1k,2`

R2[R1 sin(ψ1k − ψ2`)

−(R1 + R2 + g12) sin ψ2`]. (23)

Here, a coefficient α is included to control the strength of the interaction between the blades
due to the pressure fluctuation, since the summation over all blades may be rather rough.
Readers may think that it is strange to add a contribution from a blade at the opposite
side of the gap between the rotors; it is natural to count only contributions from blades
in the gap region. We also considered a model where rotors are taken as solid cylinders
and only considered a narrowed channel between the gap region. This may not be a bad
choice for high solidity rotors; however, the flow goes into the region surrounded by the
blades of a rotor in reality. Thus, we decided to consider all combinations of blades and to
add contributions from all pairs of blades in our model as an average in a sense, although
big contributions must arise when two blades come to the gap region, and thus, other
contributions may not play major roles. From a numerical computation viewpoint, this
assumption, summation over all blades, is far simpler than taking the azimuthal angle of
each blade into account to judge whether we should add its contribution or not. The on/off
nature of the contributions can yield abrupt changes in torque, leading to a strange time
evolution. Thus, we avoid this confusion.

3. Numerical Results
3.1. Characteristics of Rotors

We only consider a pair of rotors and assume that they have completely the same char-
acteristics, except when otherwise stated. The following parameters are chosen. These are
the same as those used in the CFD simulations in Hara et al. [13,14]. The number of blades
per rotor is n1 = n2 = 3. The radius of the rotor is R1 = R2 = 25 mm. The chord length
is c1k = c2` = 20 mm, and the area projected along the rotation direction is S1k = S2` =
43.4 mm× 3.8 mm for k, ` = 1, 2, 3. The moment of inertia is I1 = I2 = 5.574× 10−6 kg m2.
Note that the previous CFD simulation [13,14] was two-dimensional, where the rotor height
was 1 m instead of 43.4 mm, as used for the three-dimensional model, and the moment of
inertia was set at I1 = I2 = 1.284× 10−4 kg m2(= 5.574× 10−6 kg m2 × (1 m/43.4 mm)).

From the CFD simulation for a single rotor with the above parameters, under a
fixed angular velocity condition, it was found that the maximum power is obtained
when ω = 366.52 rad/s for V = 10 m/s. The time-averaged rotor torque in this case is
Q = 0.525 mN ·m. By using these values, we determined Qmax(Vi) and ω0(Vi) for the
rotor torque, Equation (3), and c4 for the load torque, Equation (9). We further determined
that c1 and c2 from Qmax(Vi) and ω0(Vi) via Equations (4) and (5).

In the case of our rotor torque (3), the power Qiωi becomes maximal at ωi = ω0(Vi)/
√

2
for a given Vi. The rotor torque at this angular velocity is Qi = 3

√
3Qmax(Vi)/4

√
2.

We chose this to match the CFD value Q = 0.525 mN ·m. Therefore, it is assumed that
ω0(10 m/s) =

√
2× 366.52 rad/s and Qmax(10 m/s) = (4

√
2/3
√

3)× 0.525 mN ·m. From
Equation (4), we determine that
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c1 =
Qmax(Vi)

V2
i

=
4
√

2× 0.525 mN ·m
3
√

3× (10 m/s)2

= 5.72× 10−6 kg. (24)

Additionally, from Equation (5), we obtain

c2 =

√
2× 366.52 rad/s

10 m/s

= 51.8
rad
m

. (25)

Furthermore, in the CFD simulation, the angular velocity becomes stationary when the
load torque is chosen to be 95% of the optimum rotor torque. We assume the same and
thus obtain

c4 =
Li

ω2
i

=
0.95× 0.525 mN ·m
(366.52 rad/s)2

= 3.71× 10−9 kg ·m2

rad2 . (26)

We will set the value of c3 in Section 3.3.
By using these parameters, we obtain the torque curves shown in Figure 4. The rotor

torque is plotted for V = 6, 8, 10 and 12 m/s without considering the modulation by Fni (ψ)
and the induced velocities. Note that the rotor torque characteristics at angular velocities
lower than the maximum torque for each V are assumed to be different from those of
the CFD and the experimental wind turbines to simplify the analysis. The intersection of
the rotor torque curve for a given flow velocity and the load torque curve is the a stable
steady state. For example, ω ' 370 rad/s is the angular velocity at the steady state when
V = 10 m/s. Note that the angular velocity at the steady state for a given flow velocity does
not change when the rotor torque Q or Qmax(V) is multiplied by a constant factor, since
the load torque L was chosen to also be multiplied by the same factor in the present study.

Note that the adopted angular velocity values ω = 366.52 rad/s (3500 rpm) and the
torque Q = 0.525 mN ·m at the maximum power are slightly different from the values at
the steady state ωSI = 366.1 rad/s (3496 rpm) and QSI = 0.485 mN ·m obtained in the CFD
simulation based on the DFBI for a single rotor [14]. “SI” stands for single. We can use
these values of ωSI and QSI instead of those used above to determine Qmax(V), ω0(V) and
c4 and then c1 and c2 via Equations (4) and (5) by assuming the following three conditions:
(i) the rotor torque balances the load torque at ω = ωSI, (ii) the balanced torque is Q = QSI,
and (iii) QSI is 95% of the torque at the maximum power. We can immediately obtain
Qmax(V) or c1 from the second condition and c4 from the third condition, respectively.
We can also obtain ω0(V) from the first one, which becomes a cubic equation for ω0(V)
for a given ωSI. The resulting values are c1 = 5.56 × 10−6 kg, c2 = 49.5 rad/m, and
c4 = 3.62× 10−9 kg ·m2/rad2, of which relative differences from the values obtained in
Equations (24)–(26) and used in the simulations presented in Sections 3.2–3.4 are within 5%.
Note that ω0(V) was calculated from the cubic equation by a perturbation technique based
on a trivial approximate solution ω0(V)/

√
2 ' ωSI that gives the maximum power in

our model.
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Figure 4. The rotor torques for V = 6, 8, 10, and 12 m/s and load torques are plotted against the
angular velocity of the rotor.

3.2. Phase Synchronization

In this Section 3.2, we demonstrate that phase synchronization occurs due to the
interaction torque generated by the pressure fluctuation. In order to focus on the effect
of the interaction torque, we set ai = 0 and c3 = 0, so that Vi = V, i.e., the effective flow
velocity is the same as the upstream flow velocity. The upstream velocity used in this
section is V = 10 m/s. Furthermore, we set Fni (ψi) ≡ 1 to exclude the effects of torque
modulation due to the azimuthal angle of the blade.

We solve the evolution Equations (1) and (2) for i = 1, 2 by the fourth-order Runge–
Kutta method. The step size is (2π/nωav(0))/30, where ωav(0) = (|ω1(0)|+ |ω2(0)|)/2.

Figure 5 shows the time evolution of ωi for α = 0, 0.05, 0.1, and 0.2 in the CD layout.
The gap between the rotors is g12 = 10 mm. The initial conditions are ω1(0) = 420 rad/s,
ω2(0) = −320 rad/s, ψ1(0) = π, and ψ2(0) = −0.5. The initial angular velocities have
different magnitudes. One of the blades of rotor 1 is at the narrowest position in the gap
initially and that of rotor 2 is slightly ahead.

When α = 0, the rotors just reach their individual steady states since there is no
interaction between the rotors. The rotors have identical characteristics, and thus they
rotate at the same angular velocity at the steady state.

When α is finite, the angular velocities oscillate. This simulates the phase synchro-
nization observed in the experiments as well as in the CFD simulations. Such phase
synchronization and oscillation of phase difference in the wind tunnel experiments of a
pair of two-bladed H-type Darrieus turbines were reported in Section 6.2 of Ref. [4] and in
Section 4.4 of Ref. [5]. The phase synchronization and the oscillation of angular velocities in
the two-dimensional CFD were reported in Section 3.5 and Figures 17–19 of Ref. [14]. The
oscillation period becomes shorter as α increases since the interaction between the rotors
becomes stronger. The oscillation period of the angular velocities is about 0.5 s for α = 0.05
at t ' 4 s, while it is about 0.25 s for α = 0.2. Moreover, the oscillation period becomes
shorter over time.

The oscillation amplitude of the angular velocity becomes larger as α is increased. This
is also because the interaction becomes stronger as α is increased.



Energies 2022, 15, 4130 10 of 19

(a) α = 0. (b) α = 0.05.

(c) α = 0.1. (d) α = 0.2.
Figure 5. Time evolution of ωi for α = 0, 0.05, 0.1, and 0.2 in the CD layout with a 10 mm gap.

Figure 6 shows the time evolution of the phase differences δψk = (ψ11 + ψ2k)mod 2π
when α = 0.05 and α = 0.2. The index k takes a value of 1, 2, or 3. Before the phase synchro-
nization, δψk runs over the whole range of azimuthal angles. During phase synchronization,
on the other hand, δψk oscillates around a fixed angle. One of the three blades of rotor 2 has
a phase difference of π with blade 1 of rotor 1, which means that those blades meet in the
gap region every rotation. We see that the oscillation period of the angular velocity during
phase synchronization is shorter for larger α values, as shown in Figure 6. Moreover, the
phase synchronization starts earlier for larger α values.

(a) α = 0.05. (b) α = 0.2.
Figure 6. Time evolution of phase differences δψk = (ψ11 + ψ2k)mod 2π for α = 0.05 and 0.2 in the
CD layout with 10 mm gap.

Phase synchronization occurs also in the CU layout. Since the induced velocity is not
taken into account in the simulations presented in this section, the oscillation period and
amplitude are the same as those in the CD layout.

Surprisingly, phase synchronization also occurs in the CO layout. The time evolution
of ω for α = 0.05 and 0.2 is shown in Figure 7. Compared with the data presented in
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Figure 5 for the CD layout, the oscillation period of the angular velocities of the CO layout
is longer than those of the CD layout with the same α values. We can also see that the
oscillation amplitude of the angular velocities is smaller in the CO layout than that in the
CD layout. This is of course because the interaction in the CO layout is much weaker than
in the CD and CU layouts. In this simulation, the characteristics of the rotors are identical,
and thus, the angular velocity is the same at the steady state without the interaction. In the
beginning, the magnitudes of ω1 and ω2 are largely different. Thus, they have almost no
interaction. However, as the magnitudes of ω1 and ω2 become closer to their steady-state
values, the time period that the blades of the rotors stay in the narrow gap region together
becomes longer, although it must still be much shorter than that for the CD and CU layouts.
This makes the interaction effect visible, even in the CO layout.

(a) α = 0.05. (b) α = 0.2.
Figure 7. Time evolution of ωi for α = 0.05 and 0.2 in the CO layout with 10 mm gap. Induced
velocities are not taken into account.

In fact, it becomes difficult for phase synchronization to occur if the angular velocities
of the rotors at steady state without interaction are different from each other. We set the
rotor torque of rotor 2 as 95% of that of rotor 1 while keeping the load torque unchanged.
The other parameters are the same as those used in Figure 7. This makes the angular
velocity of rotor 2 about 366 rad/s at its steady state without interaction, which is about
1.7% smaller than that of rotor 1. The time evolution of ω for α = 0.1 is plotted in Figure 8a.
Phase synchronization does not occur in this case. The angular velocities oscillate around
each steady-state value. Note that phase synchronization occurs when α ≥ 0.5, even in
this case.

(a) CO layout. (b) CD layout.
Figure 8. Time evolution of ωi for the (a) CO and (b) CD layouts with α = 0.1 and g12 = 10 mm when
the rotor torque of rotor 2 is 95% that of rotor 1. The induced velocities are not taken into account.

On the other hand, phase synchronization occurs for the CD layout, even at α = 0.1,
which is shown in Figure 8b. The angular velocity of the rotors during phase synchroniza-
tion is about 369 rad/s, which is about an average of the natural values of the two rotors
without interaction. Phase synchronization occurs for smaller interactions because the
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relative speed of the blades of the two rotors is smaller for the CD layout than for the CO
layout, leading to a longer interaction duration.

It may be worth pointing out that α can be used to qualitatively reproduce the param-
eter dependence of the experimental and CFD results on aspects such as the solidity and
upstream flow velocity by assuming that α is dependent on these parameters. This is left as
a future issue.

3.3. Dependence of the Synchronized Angular Velocity on the Gap

In this Section 3.3, we focus on the dependence of the synchronized angular velocity
on the gap, especially when we take into account the mutually induced velocities generated
by each component. Therefore, we set |c3| = 0.0427 m according to the CFD simulation
results [13,14]. The sign of c3 is positive when ω > 0 and negative when ω < 0. On the
contrary, we set ai = 0, since the self-induced velocity by the rotor itself should be the same
for identical rotors. When a1 = a2, the effect is only a change in the upstream velocity by a
factor of a1 = a2 for both rotors. Note that the torque modulation Fni (ψi) in Equation (3)
with ni = 3 is taken into account in the results presented in this section.

The angular velocity at steady state is plotted against the gap width in Figure 9. Each
angular velocity is obtained using the Fourier transform of the time series data at the steady
state. We show the results for α = 0.05, although they are the same for different α values.
Additionally, Fni (ψi) just introduces modulation of the angular velocity, of which the period
is one-third of the rotation period of the rotor and does not affect the phase-synchronized
angular velocity.

The magnitudes of the angular velocities ω1 and ω2 agree well in both the CD and
CU layouts. The dashed line at ω ' 372 rad/s is the angular velocity without the mutually
induced velocity. The angular velocities at each g12/D are larger (smaller) than this value
in the CD (CU) layout. This is due to the induced velocity. The effective velocity is
larger (smaller) than the upstream velocity in the CD (CU) layout, as found in the CFD
simulation [13,14]. Furthermore, the angular velocity increases (decreases) as the gap is
narrowed in the CD (CU) layout because the magnitude of the induced velocity becomes
larger for smaller gaps. This dependence can be clearly observed for the CD layout in the
experiments [7,8] and the CFD simulations, except for the small gap distances [13,14]. For
the CU layout, on the other hand, further analysis is required for comparison with the
experiments and the CFD simulations.

Figure 9. The angular velocity in the phase-synchronized steady state is plotted against the gap
g12/D. The dashed line around ω ' 372 rad/s shows the angular velocity at the steady state without
the mutually induced velocity.
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3.4. Oscillation Period of the Difference in Angular Velocities

In this Section 3.4, we analyze the oscillation period of the difference of angular
velocities ∆ω := |ω1| − |ω2|. The parameters used are the same as those in Section 3.3.
Figure 10 shows the time evolution of ∆ω for the CD and CU layouts with g12/D = 0.2 and
0.3. The parameter α = 0.05 was chosen to control the interaction strength for which the
oscillation period of ∆ω has a comparable order of magnitude with the experiments [4,5]
and the CFD simulations [13,14]. The difference ∆ω oscillates around 0 during phase
synchronization and decays gradually. The oscillation period becomes shorter as time
proceeds in all cases, as shown in Figure 10.

First, we found that the oscillation period is longer for the CU layout than the CD
layout if the gap distance is the same. For example, the oscillation period is about 0.36 s for
the CD layout with g12/D = 0.2 at around t = 5 s, while it is about 0.55 s for the CU layout.

Second, we found that the oscillation period is longer for a larger gap distance for a
given layout. For example, the oscillation period is about 0.36 s when g12/D = 0.2 for the
CD layout at around t = 5 s, while it is about 0.62 s when g12/D = 0.3.

The oscillation period of ∆ω seems to be related to the mean angular velocity during
phase synchronization; ∆ω is longer for smaller mean angular velocities. The mean angular
velocity is smaller in the CU layout than in the CD layout because of the mutual induced
velocity (see Figure 9). Additionaly, the interaction becomes weaker if the gap distance is
larger, thereby the oscillation period becomes longer.

Note that it is difficult to find such trends for the amplitude of ∆ω, since it decays over
time. However, we found that the decay is slower for the CU layout than the CD layout if
the gap distance is the same. The damping rate seems to be smaller for longer oscillation
periods. The oscillation amplitude for the CD layout with g12/D = 0.2 is about 7 rad/s
at around t = 5 s. The relative magnitude for the mean angular velocity ω ' 415 rad/s
is about 1.7%. The relative magnitude is a bit larger for the CU layout, since the mean
angular velocity is smaller while the oscillation amplitude is comparable if the gap distance
is the same.

Figure 10. Time evolution of difference of angular velocities ∆ω := |ω1| − |ω2| is shown. The
oscillation period is longer for larger gap distances, as well as for the CU layout compared with the
CD layout.

4. Conclusions

We developed an analytical model of the interaction torque between two vertical-axis
wind turbines through pressure fluctuation. In this model, the pressure fluctuation is
obtained according to Bernoulli’s law, taking into account the temporal change in distance
between the blades. Although rather crude assumptions were made in the development of
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the model, our simulations successfully demonstrated the phase synchronization as well as
the oscillation of angular velocities around the mean value observed in the experiments
and CFD simulations.

Our simulation results show that the angular velocities of the rotors oscillate in time
during phase synchronization. When an artificial parameter is changed to strengthen the
interaction, the oscillation period becomes shorter and the amplitude becomes larger. This
is reasonable physically.

It was also found that phase synchronization occurs even for a pair of rotors with
slightly different torque characteristics. This is important because the characteristics of the
rotors cannot be identical in experiments.

Our model includes the induced velocities, which change the effective wind speed at
each rotor. The simulation results also show that the mutually induced velocity can explain
the qualitative dependence of the phase-synchronized angular velocities on the rotational
direction of the rotors and the gap distance between them.

The oscillation period of the difference in angular velocities was found to be longer
in the CU layout than in the CD layout. Additionally, the oscillation period was found
to be longer for larger gap distances. This dependence seems to be related to the mean
angular velocity of the rotors during phase synchronization. The mutually induced velocity
changed the mean angular velocity in our simulations. The weaker interaction for larger
gap distance made the oscillation period longer.
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Nomenclature
Di Diameter of rotor i
Ri Radius of rotor i
gij Gap between rotors i and j
ni Number of blades on rotor i
x Coordinate in streamwise direction
y Coordinate in spanwise direction
xik x coordinate of blade k of rotor i
yik y coordinate of blade k of rotor i
ψik Azimuthal angle of blade k of rotor i
cik Chord length of blade k of rotor i
Sik Projected area of blade k of rotor i along rotation direction
Wik,j` Distance between blade k of rotor i and blade ` of rotor j
φij Angle of rotor j observed from rotor i
V Upstream flow speed
Vi Effective flow velocity at rotor i
Ii Moment of inertia of rotor i
ωi Angular velocity of rotor i
Qi Rotor torque on rotor i
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Li Load torque on rotor i
Qpi Torque due to pressure fluctuation on rotor i
ψi Azimuthal angle of representative blade of rotor i
Qmax(Vi) Maximum rotor torque for given Vi
ω0(Vi) No-load angular velocity for given Vi
Fn(ψ) Torque-modulation function for n-blades rotor
c1 Parameter for Qmax(Vi)

c2 Parameter for ω0(Vi)

λi Tip-speed ratio of rotor i
ψ Azimuthal angle fixed in space
σi Solidity of rotor i
F1(ψ) Torque-modulation function for single-blade rotor
ai Parameter for self-induced velocity
Γj Circulation of rotor j
c3 Parameter for Γj
c4 Parameter for Li
Vav Average flow velocity (V1 + V2)/2
δV Change in flow velocity
δp Pressure fluctuation
p Air pressure
α Parameter controlling strength of interaction between rotors
ωSI Steady-state angular velocity of single rotor by CFD using DFBI model
QSI Steady-state rotor torque of single rotor by CFD using DFBI model
ωav(0) Average of initial angular velocities (|ω1(0)|+ |ω2(0)|)/2
δψk Phase differences between representative blade of rotor 1 and blade k of rotor 2
∆ω Difference of angular velocities |ω1| − |ω2|
Cqi Torque coefficient of rotor i
Q̂max Normalized maximum rotor torque
λ0 No-load tip-speed ratio
ρ Mass density of air
Ai Swept area of rotor i
Γ̂j Normalized circulation of rotor j
CLi Normalized load torque for rotor i
cL Parameter for CLi

Appendix A. Verification of Parameter Dependence

In this Appendix A, CFD and experimental data to determine dependence of Qmax
on flow velocity V in Equation (4), dependence of ω0 on V in Equation (5), CFD data to
determine expression of the torque-modulation function in Equation (6), and dependence
of Γ on V in Equation (8) are shown.

First, let us show the dependence of Qmax on flow velocity V read from Figure 2 of
Ref. [14] and Figure 3 of Ref. [8]. Figure A1 shows the CFD and experimental data, as well
as their fitting curves taken to be quadratic in V. The fitting curves agree well with the
CFD and experimental data.
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Figure A1. Qmax from Figure 2 of Ref. [14], Figure 3 of Ref. [8], and their fitting curves are shown.

Second, let us show the dependence of ω0 on flow velocity V, also read from Figure 2
of Ref. [14] and Figure 3 of Ref. [8]. Figure A2 shows the CFD and experimental data, as
well as their fitting curves taken to be linear in V. Although the number of data points is
not enough, the fitting curves appear to agree well with the CFD and experimental data.

Figure A2. ω0 from Figure 2 of Ref. [14], Figure 3 of Ref. [8], and their fitting curves are shown.

Third, the torque dependence on the azimuthal angle obtained by the CFD is shown.
A rotor with three blades, of which dimensions are the same as described in Section 3.1,
was placed in the flow field of which upstream flow velocity was 10 m/s. The modulation
of the torque, expressed by Equation (6), tries to simulate this dependence. Figure A3
shows the averaged torques over the 16th–20th rotations of the CFD data, which was not
published previously. For n = 3, the torque is the summation of torques on all blades of the
rotor. The torque for a single blade has its maximum at ψ ' π/2. In the downstream half,
the torque on a single blade becomes negative in the CFD, although it is set to be zero in
Equation (6) for simplicity.



Energies 2022, 15, 4130 17 of 19

Figure A3. Torque dependence on the azimuthal angle obtained by CFD. Equation (6) tries to simulate
this dependence.

Finally, let us show the dependence of Γ on flow velocity. Figure A4 shows Γ obtained
by CFD simulations, and their fitting curves taken to be linear in flow velocity. The CFD
data were obtained by the time average of the simulation results. In the figure, “inf” means
a plot of asymptotic values of Γ at infinity against upstream flow speeds, and the “ep”, or
evaluation point, means a plot of Γ evaluated on a circle with a 36.1 mm radius centered
at the rotor against flow speeds on the upstream side at 36.1 mm from the rotor center.
Precisely, the flow speeds of the “ep” case are obtained by averaging over a 50 mm range
in the spanwise direction. Note that the horizontal axis is not the upstream velocity for the
“ep” case, although it is labeled by V. The fitting curves agree well with the CFD data.

Figure A4. Γ obtained by CFD results and the fitting curves are shown.
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Appendix B. Normalized Expression

In this Appendix B, normalized expressions of our model are summarized. First, let
us normalize Qmax(Vi) and ω0(Vi) given in Equations (4) and (5), respectively, as follows:

Q̂max :=
Qmax(Vi)

ρV2
i AiRi/2

=
2c1

ρAiRi
, (A1)

λ0 :=
ω0(Vi)

Vi/Ri

= c2Ri, (A2)

where ρ is the mass density of air, and Ai is the swept area of rotor i. Note that Q̂max and
λ0 are independent of Vi. By using Equations (A1) and (A2), the torque coefficient Cqi, or
normalized rotor torque Qi given in Equation (3) with Fni (ψi) ≡ 1, can be expressed as

Cqi :=
Qi

ρV2
i AiRi/2

= − 3
√

3Q̂max

2λ3
0

λi(λi + λ0)(λi − λ0), (A3)

where λi := Riωi/Vi is the tip–speed ratio of rotor i. The torque coefficient Cqi is expressed
only by λi, and the dimensionless parameters Q̂max and λ0 only. The rotor torque becomes
zero when λ becomes equal to the no-load tip–speed ratio λ0.

Next, the circulation in Equation (8) is normalized as

Γ̂j :=
Γj

RiVi

=
c3

Rj
. (A4)

Note that Γ̂j is independent of Vi.
Lastly, let us normalize the load torque given in Equation (9) as

CLi :=
Li

ρV2
i AiRi/2

= cLλ2
i , (A5)

where
cL :=

2c4

ρAiR3
i

. (A6)

Again, the parameter cL is independent of Vi.
By using these expressions, numerical values of Q̂max, λ0, Γ̂, and cL corresponding to

the parameters used in Section 3 are obtained as follows:

Q̂max = 0.176, (A7)

λ0 = 1.30, (A8)

Γ̂ = 1.71, (A9)

cL = 0.182. (A10)

Note that the mass density of air is assumed to be ρ = 1.20 kg/m3. The rotor radius is
R = 50 mm and the swept area is A = 50 mm× 43.4 mm = 2.17× 10−3 m2.
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Let us point out that the simulation results shown in Section 3 can be interpreted, if ωi
is expressed by the tip–speed ratio λi, as results with a different set of a flow velocity Vi, a
rotor radius Ri, and a swept are Ai that give the same dimensionless parameters Q̂max, λ0,
Γ̂, and cL.
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