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Abstract: Multilevel Inverters (MLIs) are widely sought after in medium-voltage applications like
electric ships, electric aircraft, and renewable energy integration due to excellent advantages like
lower device stress, better power quality, and modularity. However, non-sinusoidal excitations from
MLIs pose a serious problem to motor-insulation and lead to their premature breakdown. This paper
investigates stress in medium-voltage motor insulation when the stator winding is excited by 3-, 5-,
and 7-level multilevel inverter output waveforms. The effect of firing angle on insulation stress is also
studied for each of the multilevel inverters. Results show that in addition to the number of output
voltage levels, PWM wave shape is a critical factor which affects the insulation stress. Both these
factors work together to impact the insulation health. A strong correlation is shown between the
increase in the voltage root mean square (RMS) value and increase in dielectric stress when ignoring
the dv/dt impact for a fixed DC input voltage and operating frequency of the inverter. Similarly, the
dielectric stress in the stator insulation increased with an increase in firing angle for each of the MLIs.
This paper shows a potential that both the RMSs can be optimized to reduce the insulation stress and
improve the power quality of MLIs in medium voltage drives.

Keywords: multilevel inverters; 3-level; 5-level; 7-level; voltage; dv/dt; frequency; stress; motor
stator ground-wall insulation; cable insulation; insulation stress; dielectric stress; leakage current;
RMS; THD

1. Introduction

Multilevel inverters (MLIs) have revolutionized the power electronic drives indus-
try [1]. With their many topologies and control schemes catering to a large variety of appli-
cations, MLIs have been replacing conventional 2-level inverters, especially in medium-
and high-voltage applications. One of the major advantages of MLIs is the higher power
quality when compared to the conventional two-level inverters. It is possible to produce
output voltages with very low Total Harmonic Distortion (THD) resembling sine waves,
reducing the effort for filtering [2].

Despite the numerous advantages, that have been widely explored, their effect on
insulation stress is relatively unknown. The operating voltages, switching frequencies, and
the wave shapes of inverter outputs tremendously affect the insulation systems in loads
that are fed by MLIs. Conventional insulation systems in motor drives were designed for
sinusoidal excitations at power frequency. High frequency staircases, such as waveform
outputs by multi-level inverters, stress the insulation differently and their effect on insula-
tion breakdown is not fully understood. Additionally, wide-bandgap devices like Silicon
Carbide (SiC) and Gallium Nitride (GaN) have a large dielectric breakdown strength and
enable high switching frequencies, which consequently increase the dv/dt in motor drives.
Owing to the large dv/dt, the insulation breaks down prematurely before its lifetime.
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Many recent studies employ Partial Discharge (PD) to study the insulation breakdown
behavior. According to IEC 60270, PD is defined as a localized dielectric breakdown (which
does not completely bridge the space between the two conductors) of a small portion of
a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. Ideally, it
would be desirable to not have PD, but since no material is perfect, some amount of PD
exists in insulation. PD is popularly known as both a symptom and a cause of electrical
aging. Thus, PD is a phenomenon that occurs inside an insulation material, which is
also used in its diagnosis. Ref. [3] monitors PD uses and neural networks for predictive
maintenance of high voltage apparatus. Hammarstrom et. al. have extensively worked
on the effect of MLIs on insulation PD in [4–6]. According to [4–6] medium-voltage, high-
frequency MLIs, report a decrease in number of PD events and partial discharge inception
voltage (PDIV) in the tested insulation material as the number of voltage levels increases.
This is explained by the decrease in dv/dt of MLIs as the number of voltage levels increase.
Refs. [4–7] model the insulation stress for 3-, 5- and 7-level MLIs to examine the cause of this
trend in medium voltage machines at a power frequency excited by MLI voltage outputs of
specific wave shapes. Another relevant work is [8], which studies the effect of the PWM
nature, i.e., voltage step sizes and voltage polarity, and the effect of rise time on insulation
stress. It shall be noted that these studies are all based on twisted-pair magnet wire coils
with relative low PD inception voltages, and thus further studies of the effects of power
quality of multilevel inverter on insulation are needed. Ref. [9] considers PD in the design
of the electrical insulation system for high power electrical motors used in hybrid electrical
propulsion of future regional aircrafts. Ref. [10] analyzes the coordination of insulation in a
modular MLI prototype. Conventionally, specific parts in an insulation system—cables and
motor insulation—are designed based on the power rating of the machine. However, there
is a need to consider the effects of inverter dv/dt while designing the insulation systems.

There are different insulation sub-systems in a machine-drive, such as power electronic
device insulation, cable insulation, and motor stator insulation. Among them, motor-stator
ground-wall insulation is very critical because it experiences the highest dielectric stress
and is the reason behind 70% of medium- and high-voltage machine failures [11,12]. Thus,
this paper evaluates the effect of MLI outputs on motor stator ground-wall insulation
systems as shown in Figure 1. Cable insulation and power electronics device insulation
have not been considered.
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Figure 1. Medium-voltage machine drive with stator ground-wall insulation considered.

There are many locations where insulation failure occurs in the machine, including
shorted phase-to-phase windings, shorted turn-to-turn, grounded windings at the edge
of a slot, windings grounded in the slot, etc. Reasons for these failures vary and include
unbalance in voltages, overload and overheating, air pockets in the insulation material
where PD is incipient, and many other reasons. Constant monitoring and diagnosis of
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insulation system health can prevent operational hazards, improve overall system efficiency,
and reduce maintenance cost and down time.

This paper reports two key parameters in evaluating insulation health to avoid failure:
dielectric stresses and leakage currents within ground-wall motor-stator insulation. For
all analyses, the finite element model of the medium voltage induction machine has been
simulated in Ansys Maxwell based on [13]. However, there is no literature that directly
studies the impact of firing angle on motor-stator insulation stress. Thus, this paper also
investigates the effect of firing angle on insulation stress as an extension of work presented
in [14].

2. Insulation Stress
2.1. Dielectric Stress

Dielectric stress in an insulation material is the electric field experienced by the mate-
rial. The dielectric stress at any point is equal to the potential gradient at that point. For a
single conductor, the electric field intensity at any distance R from the center of a cable is
given by Equation (1).

E =
Q

2πε0εrR
V/m (1)

where ε0 = absolute permittivity = 8.854 × 10−12 farad/meter and εr = relative permittivity.
Evaluation and understanding of dielectric stress of insulation under specific excitation

and geometry is crucial in choosing the right insulation for any application. For example,
medium-voltage motors excited by MLIs, especially those that use wideband gap devices,
experience large dv/dt and fast rise times. As a result, the dielectric stress in the stator
ground-wall insulation is greater in medium-voltage motors excited by wide-bandgap
MLIs when compared to motors excited by conventional Silicon (Si) based inverters.

Medium-voltage stator winding is usually form-wound as rectangular stator-bars in
contrast to random-wound stator windings in low-voltage machines. This causes higher
dielectric stress on the corners and is shown in the circled red parts of the zoomed-in
dielectric stress contour in Figure 2. Figure 2 shows the contour of dielectric stress in
machine stator insulation excited by a 3-level inverter with a phase voltage of 3 kV peak
and firing angle ϕ = π/8 rad in VIBGYOR color palette (red being the highest areas of
dielectric stress and blue being low dielectric stress).
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Material defects within the insulation, electrical aging, or improper choice of insulation
can cause insulation failure due to high dielectric stress. To ensure safe and reliable
operation of medium-voltage motors fed by MLIs, maximum dielectric stress within the
insulation must not exceed the onset field of rapid aging of the specific insulation used.
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2.2. Leakage Currents

Leakage capacitances are the main source of leakage currents, which is one of the key
indicators of insulation health. Leakage currents start to flow overtime as the insulation
ages. When an electrical system encounters a grounding fault, and if the insulation system
has aged, it can cause failure as the leakage currents can flow even when there is no sign
of insulation breakdown. Thus, monitoring of leakage currents is crucial. The leakage
capacitance values can be derived in a way that is similar to cable leakage capacitance,

C =
2πε0εr

ln
(

R2
R1

) µF/km (2)

where R1 and R2 are the insulator’s outer and inner radii.
The magnitude of leakage current density (J) in Figure 3 follows the same contour as

Figure 2, but the maximum values of electric field E and J do not happen simultaneously.
Rather, they have a phase lag of 90◦ between when they achieve their maxima. Leakage
current vectors also change orientation with changing phase in AC systems. Figure 3 shows
a snapshot of the leakage current density vector within the stator ground-wall insulation
and gives a clearer picture of leakage current directions due to turn-to-turn and ground-
wall capacitances. It is shown in VIBGYOR color palette with the color and length of the
vector denoting the magnitude and direction of leakage currents.
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2.3. Total Harmonic Distortion (THD)

THD of an MLI is defined as the amount of harmonic distortion present in its output
voltage waveform. It is mathematically represented as the ratio of the sum of the quadratic
magnitude of all harmonic components to the fundamental component magnitude.

THDMLI =

√
V2

2 + V2
3 + V2

4 + . . . V2
n + . . .

V1
(3)

Vn is the root mean square (RMS) value of the nth harmonic voltage and V1 is the
RMS value of the fundamental voltage. Thus, there is a direct relationship between RMS
and THD.

In this paper, the second section discusses the analysis and approximation of MLI
output waveforms. The third section details the results on dielectric stress and leakage
currents in stator ground-wall insulation with a discussion on targeting the power quality
and dielectric stress of the MLI followed by a conclusion in the fourth section.
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3. Simulations
3.1. Analysis of Multilevel Inverter Output Waveform

For the following analysis, all the MLIs are assumed to be fed by a 3 kV DC power
supply and run at a switching frequency of 3 kHz and a fundamental frequency of 60 Hz.
Ideal MLI output waveforms of 3-level, 5-level and 7-level inverters have been approxi-
mated as fa(t) as shown in Figures 4–6. The approximation is done by considering the first
20 terms in the Fourier series expansion; thus, ‘a’ is the number of terms considered and is
equal to 19. All the even harmonics are canceled due to symmetry of the output voltage
waveforms leaving out the odd harmonics. The approximated waveform in each case is
then fed to the motor stator windings as a per-phase voltage excitation.
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Per-phase output of a 3-level inverter is approximated as shown in Figure 4. Consider-
ing a symmetric wave, the mathematical representation of a 3-level inverter output voltage
is given in Equation (4) where Vdc is the inverter’s input, f is the switching frequency,
ϕ1 is the firing angle at which the voltage transition between the different levels occurs,
n is the nth harmonic and ‘a = 20’ is the total number of harmonics considered, in this
case it is 20. ϕ dictates the waveform shape of the inverter output phase voltage. It can
also be translated in terms of dead time for the 3-level inverter—as ϕ increases, the dead
time increases. Oscillations shown in Figure 4 are due to the finite number of harmonics
considered when constructing the waveform.

fa(t) =
4Vdc

π
×

a

∑
n=1,3,5

cos(nϕ1)

n
sin(n2π f t) (4)

A per-phase output of a 5-level MLI is shown in Figure 5 to obtain a symmetric wave.
The mathematical representation of 5-level inverter output voltage is given in Equation (5).

fa(t) =
4Vdc

π
×

a

∑
n=1,3,5

(cos(nϕ1) + cos(nϕ2))

n
sin(n2π f t) (5)

A per-phase output of a 7-level MLI is considered and approximated as shown in
Figure 6. The mathematical representation of a 7-level inverter output voltage is given in
Equation (6).

fa(t) =
4Vdc

π
×

a

∑
n=1,3,5

(cos(nϕ1) + cos(nϕ2) + cos(nϕ3))

n
sin(n2π f t) (6)

3.2. Finite Element Modeling of Medium-Voltage Machine

A 4500 HP medium-voltage induction motor was simulated in Ansys Maxwell. The
machine parameters have been detailed in Table 1 [15]. Initially, the mechanical design was
carried out in Ansys RMxprt tool, a template-based tool for fast design of electric machines.
The structural parameters of the machine, electrical setup, operating conditions and basic
electrical parameters are fed as inputs in RMxprt. Figure 7 shows the stator slot and rotor
slot parameters. Slot dimensions are detailed in Table 1 (under machine⇒ stator⇒ slot
and machine⇒ rotor⇒ slot). Then, a model is generated automatically, corresponding
to the machine geometry and excitation. Figure 8 shows the RMxprt model generated in
Ansys. Additionally, a rough estimate of the electrical properties such as rated current,
voltages, losses, efficiency, etc., and mechanical properties such as speed and torque, etc.,
of the machine based on the simplified equivalent circuit of the machine are simulated in
RMxprt. The machine parameters and the loss coefficients of the materials are chosen to
match the loss parameters in [16].

With the results from RMxprt, a 2-dimensional (2D) FEA model of the medium-voltage
motor is created using the built-in function in ANSYS Maxwell. The cross section of the
motor and a zoomed-in view of the stator slot is shown in Figure 9. Each stator slot has
two copper stator windings (upper and lower) surrounded by an individual winding
insulation. This is also called as stator groundwall insulation. The stator-ground wall
insulation material was chosen as Mica. The properties of Mica used in the simulation have
been listed in Table 2. Both the windings are separated by a space made of FR4 glass epoxy.
The stator slot is closed by a wedge made of Polytetrafluoroethylene (PTFE). The geometry
and material assignments of the different parts of the motor are listed in Table 3.
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Table 1. Machine simulation parameters used in a Finite element model in Ansys Maxwell.

Machine

Number of Poles 24
Reference Speed 193 RPM

Rated Output Power 4500 HP
Rated Voltage 4160 V

Operating Temperature 75 ◦C
Winding Connection Wye

Frequency 40 Hz
Stray Loss Factor 0.00

Frictional Loss 283 W
Windage Loss 0 W

Insulation Mica (stator ground-wall insulation)
Spacer FR4-epoxy
Wedge PTFE

Machine ⇒ Stator Machine ⇒ Rotor

Outer Diameter
Inner Diameter

Length Number of Slots
Steel Type
Slot Type

1170 mm Number of Slots 108
950 mm Outer Diameter 948 mm

1000 mm Inner Diameter 180 mm
144 Length 1000 mm

M36_24 G Steel type M36_24 G
6 Slot type 3

Machine ⇒ Stator Slot Machine ⇒ Rotor Slot

Hs0
Hs1
Hs2
Bs1
Bs2

1 mm
2.5 mm
75 mm
12 mm
10 mm

Hs0 1 mm
Hs01 0 mm
Hs1 0 mm
Hs2 30 mm
Bs0 4 mm
Bs1 10 mm
Bs2 10 mm
Rs 0 mm

Machine ⇒ Stator Winding Machine ⇒ Rotor Winding

Winding material
Pitch Number of

Strands Winding Type
Winding Layers Parallel

Branches Conductors
per Slot

Wire Size

Copper
5
1

Whole-Coiled
2
2

10
8 mm × 4.4 mm

Bar Conductor Copper
End Length 25 mm

End Ring Width 25 mm

End Ring Height 25 mm
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Table 2. Properties of Mica.

Property Value

Relative permittivity 5.4
Relative permeability 1

Bulk conductivity 1.11 × 10−13 Siemen/m
Dielectric loss tangent 0.0003

Mass density 2500 kg/m3

Table 3. Parts of medium voltage machine in Ansys Maxwell FEM model.

# Machine Part Material

1 Stator Core M36 Steel
2 Stator Winding Bar Copper
3 Rotor Core M36 Steel
4 Rotor Bar Copper
5 Stator ground-wall insulation Mica
6 Spacer FR4-epoxy
7 Wedge PTFE

Due to the symmetry of the machine, only a part of the cross-section is used for
electro-magnetic simulation in Maxwell and the entire machine is replicated using a master-
slave boundary condition. Material assignments, boundary conditions, mesh generation,
voltage source excitations, operating conditions, analysis setup and result field plots are
set automatically during creation to avoid the drawing and setup of the FEA model from
scratch. An automatically generated 2D model is modified to include the stator ground
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wall insulation layer. Additionally, spacers and wedges are added to show a more realistic
stator winding system.

4. Results
4.1. Effect of Increase in Number of Voltage Levels

The approximated inverter output voltages in Section 2 are fed as per-phase voltage
excitations to the motor phase windings. The dielectric stress and leakage currents within
stator ground-wall insulation for all the three levels of the MLI output waveforms were
analyzed. The contour of the dielectric stress distribution for these three different cases
are similar to Figure 2 but are differ in magnitude. The maximum values of the electric
field within the motor stator insulation (E) and current density within stator spacers and
insulation (J) are summarized in Table 3 below.

When the peak values of the voltage level is matched to the same voltage, it can
be seen from Table 4 that the dielectric stress decreases with an increase in MLI voltage
level, which is attributed to the RMS (Root Mean Square) values of voltage as the number
of levels increases. Similarly, it can be seen that the leakage current increases with the
increase in the number of voltage levels. The orientation of the leakage current vectors
changes as the number of voltage levels changes because of changing inter-turn and
ground-wall capacitance.

Table 4. Effect of increase in voltage levels on stator ground-wall insulation.

MLI Levels Firing Angles
(rad)

RMS
(V)

Peak Values of MLI
Matched to 3000 V

Maximum Dielectric
Stress (MV/m)

Maximum Leakage Current
Density (A/m2)

2 0 3000 2.91 0.0526
3 π/4 1244.5 0.773 0.0175
5 π/6, π/3 641.74 0.668 0.0119

For different numbers of voltage levels in MLIs, as ϕ increases, the maximum value of
dielectric stress and the current density is strongly correlated with the increase in RMS in the
absence of any internal voids/impurities which cause PD. Similarly, it is well established
that the power quality of the MLI output depends on the RMS value of the waveform.
As Total Harmonic Distortion (THD) and insulation stresses depend on RMS, it can be
independently selected to achieve both lower dielectric stress and a lower THD.

Many studies like [5] experimentally study the effect of MLI voltage levels on PD
in the presence of internal voids/impurities in insulation. Though the RMS value of
voltage increases with an increase in the number of MLI voltage levels, the results in [5]
show a decrease in the actual number of PD events. This decrease in PD events is due to
reduced dv/dt, causing a less frequent breakdown of the internal voids/impurities. As
these simulations do not capture voids/impurities and dv/dt, a direct comment cannot be
made on the dielectric stress in materials without any impurities.

4.2. Effect of Increase in Firing Angle

Firing angles of the inverter switches are chosen differently for different applications.
Applications involving motor control involve choice of firing angles based on torque
and/or speed requirements [17]. Applications like selective harmonic elimination used in
power quality control employ a choice of firing angles, such that one or more harmonics
are eliminated [18]. The effect of firing angle choice on dielectric stress of the insulation
is investigated to be able to comment on the best ways to switch the inverter to reduce
stress on the motor stator insulation. An approximated 3-level inverter output voltage
waveform, like that shown in Figure 4b, is considered and tested for four different firing
angles: π

8 , π
6 , π

4 , π
3 , as shown in Figure 10.



Energies 2022, 15, 4091 10 of 18

Energies 2022, 15, x FOR PEER REVIEW 10 of 19 
 

 

For different numbers of voltage levels in MLIs, as 𝜑 increases, the maximum value 
of dielectric stress and the current density is strongly correlated with the increase in RMS 
in the absence of any internal voids/impurities which cause PD. Similarly, it is well estab-
lished that the power quality of the MLI output depends on the RMS value of the wave-
form. As Total Harmonic Distortion (THD) and insulation stresses depend on RMS, it can 
be independently selected to achieve both lower dielectric stress and a lower THD. 

Many studies like [5] experimentally study the effect of MLI voltage levels on PD in 
the presence of internal voids/impurities in insulation. Though the RMS value of voltage 
increases with an increase in the number of MLI voltage levels, the results in [5] show a 
decrease in the actual number of PD events. This decrease in PD events is due to reduced 
dv/dt, causing a less frequent breakdown of the internal voids/impurities. As these simu-
lations do not capture voids/impurities and dv/dt, a direct comment cannot be made on 
the dielectric stress in materials without any impurities. 

4.2. Effect of Increase in Firing Angle 
Firing angles of the inverter switches are chosen differently for different applications. 

Applications involving motor control involve choice of firing angles based on torque 
and/or speed requirements [17]. Applications like selective harmonic elimination used in 
power quality control employ a choice of firing angles, such that one or more harmonics 
are eliminated [18]. The effect of firing angle choice on dielectric stress of the insulation is 
investigated to be able to comment on the best ways to switch the inverter to reduce stress 
on the motor stator insulation. An approximated 3-level inverter output voltage wave-
form, like that shown in Figure 4b, is considered and tested for four different firing angles: ஠଼ , ஠଺ , ஠ସ , ஠ଷ, as shown in Figure 10. 

 
Figure 10. Effect of increasing firing angle in a 3-level inverter. 

Maximum dielectric stress and the leakage current density of the four different sce-
narios are summarized in Table 5 and in Figure 11. As the considered waveform of a 3-
level inverter is a function of 𝑐𝑜𝑠ሺ𝑛𝜑௜ሻ ௦௜௡ሺ௡ఠ௧ሻ௡   and cosine is decreasing function in the 
interval of (0, ஠ଶ), the RMS value of the per-phase voltage decreases. Thereby, the maximum 
dielectric stress and leakage current density decrease as the firing angle increases. Thus, 
PWM schemes leading to inverter output waveforms with larger firing angles should be 
chosen when applicable to reduce the dielectric stress on motor-stator insulation. 

Figure 10. Effect of increasing firing angle in a 3-level inverter.

Maximum dielectric stress and the leakage current density of the four different sce-
narios are summarized in Table 5 and in Figure 11. As the considered waveform of a
3-level inverter is a function of cos(nϕi)

sin(nωt)
n and cosine is decreasing function in the

interval of (0, π2 ), the RMS value of the per-phase voltage decreases. Thereby, the maximum
dielectric stress and leakage current density decrease as the firing angle increases. Thus,
PWM schemes leading to inverter output waveforms with larger firing angles should be
chosen when applicable to reduce the dielectric stress on motor-stator insulation.

Table 5. Effect of increase in firing angles for 3-level inverter output.

ϕ (rad) RMS
(V)

THD
%

Maximum Dielectric
Stress (MV/m)

Maximum Leakage
Current Density (A/m2)

π/8 2580.60 18.64% 1.913 0.035
π/6 2431.77 20.10% 1.3572 0.0245
π/4 2099.73 32.3% 0.97169 0.0175
π/3 1704.18 54.42% 0.65882 0.0119
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Figure 11. Effect of increasing firing angle in a 3-level inverter. Left Vertical axis: RMS in kV;
Maximum Dielectric stress in MV/m; Maximum leakage current density in 10−2 A/m2; Right Vertical
axis: THD in %.

From Figure 9, for 3-level inverters, as ϕ increases, THD increases for the chosen ϕ.
However, as the value of RMS voltage decreases, the maximum dielectric stress decreases.
THD and insulation stresses are dependent on the MLI output waveform shape. There has
to be a compromise in choosing the THD if a lower insulation stress is desired. Similarly,
if the MLIs are designed only for better power quality with a lower THD, they stress the
motor, causing faster insulation breakdown in the 3-level inverter.

In the case of 5- and 7-level MLIs, maximum dielectric stress, maximum leakage
current density and THD need not be inversely correlated as seen in Tables 6 and 7 and
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Figures 12 and 13. The maximum dielectric stress and maximum leakage current density
are still strongly influenced by the RMS value. However, THD is strongly dependent on
the MLI wave shape. It is not only dependent on RMS value, but also on the firing angles,
number of voltage levels, and voltage magnitude. With multiple firing angles in MLIs,
there are multiple possibilities to obtain a close to sinusoidal output in order to minimize
THD. For the reduction of maximum dielectric stress and maximum leakage current density,
minimizing the RMS value of the waveform is a good approach. Thus, the MLI output
waveform shape can be carefully designed to achieve both lower dielectric stress and a
lower THD.

Table 6. Effect of the increase in firing angles for 5-level inverter output.

ϕ (rad) RMS
(V)

THD
%

Maximum Dielectric
Stress (MV/m)

Maximum Leakage Current
Density (A/m2)

π/12, π/6 2514.24 12.8% 3.3217 0.0599
π/10, π/5 2408.76 11.61% 3.1596 0.0570
π/8, π/4 2240.57 13.18% 2.8238 0.0509

Table 7. Effect of an increase in firing angles for 7-level inverter output.

ϕ (rad) RMS
(V)

THD
%

Maximum Dielectric
Stress (MV/m)

Maximum Leakage Current
Density (A/m2)

π/10, π/9, π/8 3928.95 18.49% 5.778 0.1042
π/9, π/8, π/7 3847.47 17.609% 5.472 0.0986
π/8, π/7, π/6 3737.675 17.014% 4.852 0.0875
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Maximum Dielectric stress in MV/m; Maximum leakage current density in 10−2 A/m2; Right Vertical
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Energies 2022, 15, 4091 12 of 18

5. Experimental Results
5.1. Low-Voltage Experimental Setup

A low-voltage (LV) experimental test setup of a 5-level neutral point clamped (NPC)
multilevel inverter was used to generate either 3-level or 5-level inverter waveforms. The
low-voltage testbed does not match the MV simulations, but the goal was to observe trends
in dielectric stress in relationship to MLI levels and firing angles. While the 5-level output
is standard for the schematic shown in Figure 14, the 3-level output was achieved by
operating the four switches above the midpoint as two pairs, and the four switches below
the midpoint as another two pairs. Figure 14 shows the schematic of the setup and Figure 15
shows the experimental test setup. Four isolated DC supplies—V1, V2, V3 and V4—were
used to power the setup. Eight switches S1–S8 and six diodes D1–D6 form the NPC leg.
A 7 mil NKN (2 mil Nomex—3 mil Kapton—2 mil Nomex) insulation film was used as a
load for testing the dielectric stress and the leakage current due to different inverter wave
shapes. Two current limiting resistors, Rlim1–2, of equal magnitudes were used to limit
the current through the power circuit in case the insulation film fails and causes a short
circuit while operating. The NKN film forms an RC load that is highly capacitive in nature.
The inverter output was controlled using Sinusoidal Pulse Width Modulation (SPWM) to
generate 3-level inverter with different firing angles. LabVIEW software is used to generate
the SPWM signals and communicate with gate driver board through NI FPGA RIO9612.
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The output voltage Vload is measured using a differential voltage probe. However,
the load current Iload (leakage current) is very small due to the large impedance (~MΩ)
of the insulation film able to be measured using a current probe. Thus, an opamp-based
differential amplifier as shown in Figure 16 (Rlim1 = 1000 Ω; R1 = 100 Ω; R2 = 1.2 MΩ;
Vref = 0 V) with a gain of 12,000 was used. This circuit generates the Vsense_Iload which is the
voltage across the current limiting resistor Rlim1 to find Iload. Vsense_Iload is readable by the
voltage probes on the oscilloscope and the current Iload as given by Equation (7)

Iload = (Vsense_I_loadVre f )
R1

R2 × Rlim1
A (7)
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It should be noted that geometry of insulation and the operating voltage of the simula-
tions differ from hardware, but the following subsections give a good understanding of the
trend of dielectric stress.

5.1.1. Effect of Firing Angle on Insulation Dielectric Stress

Four DC power supplies at 30 V each were used to generate a 120 V peak–peak
multilevel inverter. The fundamental frequency was at 60 Hz and the switching frequency
was 10 kHz. The SPWM was modified to generate the different ϕ. Figure 17 shows the
3-level MLI output waveforms—Vload, Vsense_I_load and PWM of Switch S8.
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It can be seen from Table 8 that a decrease in RMS value of the voltage excitation
causes a decrease in the dielectric stress on the insulation.

Table 8. Comparison of simulation and hardware results to check the effect of the increase in firing
angles for a 3-level inverter output.

MV Simulations LV Experiments

MLI Levels Firing Angles
(rad)

RMS
(V)

Dielectric Stress across
Insulation (MV/m)

RMS
(V)

Dielectric Stress across
Insulation (MV/m)

3 π/8 2580.60 1.913 51.6 0.290213
3 π/6 2431.77 1.3572 48.9 0.275028
3 π/4 2099.73 0.97169 42.4 0.238470
3 π/3 1704.18 0.65882 34.7 0.195163

Referring to Vsense_Iload from Figure 17, leakage currents Iload were calculated using
Equation (7). Vsense_Iload was observed to be around 50 V and the corresponding leakage
current was calculated to be 41.6 µA. However, there was no significant change in the
leakage current magnitudes for all the four different firing angles. This is because of the
very small changes in leakage current (~nA) due to different firing angles.

5.1.2. Effect of Increase in Voltage Levels

Similar to section A, four DC power supplies at 30 V each were used to generate a
120 V peak–peak multilevel inverter. The fundamental frequency was at 60 Hz and the
switching frequency was 10 kHz. The SPWM was modified to generate the two different
MLI voltage waveforms shown in Figure 18.
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It can be seen from Table 9 that for the same peak value of the 3-level and 5-level
MLI voltage, the RMS value decreases and causes a decrease in the dielectric stress on
the insulation.

Table 9. Comparison of simulation and hardware results to check the effect of increase in voltage
levels of MLI at same DC bus voltage.

Simulations
Vdc Scaled to Achieve Similar Peak

Voltage 3000 V
Experiments

MLI Levels Firing Angles
(rad)

RMS
(V)

Max Dielectric Stress
across Insulation (MV/m)

RMS
(V)

Max Dielectric Stress
across Insulation (MV/m)

3 π/4 1244.50
1000

0.773 42.4 0.238470
5 π/3, π/6 0.668 38.5 0.216535
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5.2. Additional MV Simulations and Experimental Results
5.2.1. MV Experimental Testbed

A 2-level medium-voltage H-bridge inverter testbed was used to evaluate the dielectric
stress of the insulation. A schematic of the test bed is shown in Figure 19, and details of the
experimental setup are shown in [19]. The test bed has the capability to operate up to 30 kV
DC, 3 mA input to give a +/−15 kV bipolar square waveform as the output up to 4 kHz
switching frequency. The H-bridge topology is chosen and built using four Si MOSFET
assemblies from BEHLKE. Two PWMs (PWM1 and PWM2) of switching frequency (fsw)
control the switching sequence and the operation of the inverter. A Kapton HN film of a
certain thickness (ε) is placed at the output of the inverter between the electrodes immersed
in Silicone oil. Four 200 Ω current-limiting resistors (R) are placed in series with the Kapton
HN film to limit the large current when the films break down.
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This testbed was used to generate a 3 kV peak, 6 kV peak-peak voltage as shown
in Figure 20. The RMS value of a bipolar pulse waveform Vrms = Vpeak = 3000 V. For an
insulation sample of thickness 2 mm, the dielectric stress across the sample would be
1.5 MV/m.
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5.2.2. Analysis and Simulations

Per-phase output of this 3 kV peak, 2-level MLI is considered and approximated as
shown in Figure 21. The mathematical representation of 2-level inverter output voltage is
given in Equation (8).

fa(t) =
4Vdc

π
×

a

∑
n=1

1− cos(nπ)

nπ
sin(n2π f t) (8)
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To evaluate the dielectric stress using simulations, mica is replaced with Kapton HN as
a stator ground wall insulation to match the material used in hardware tests in Section 5.2.1.
This is important to mention as Kapton HN is not usually used for ground wall insulation
and is only used here for demonstration purposes. Some properties of Kapton HN are
shown in Table 10. The 2-level per phase approximated waveform is fed to the motor stator
windings and the dielectric stress of the motor insulation is evaluated to be 1.5 MV/m
across the 2 mm thick Kapton insulation as shown in Figure 22. This is similar to the
dielectric stress measured in experiments.

Table 10. Properties of Kapton HN.

Property Value

Relative permittivity 3.4
Bulk conductivity 6.66 × 10−20 Siemen/m

Dielectric loss tangent 0.0018
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6. Conclusions

Multi-level inverters (MLIs) are widely replacing conventional 2-level inverters due to
many advantages, such as improved power quality, enhanced modularity, and reduced
voltage stress on the switches. However, their effect on insulation systems is not widely and
thoroughly understood. This paper aims to understand the effect of MLIs on motor insula-
tion systems. Specifically, the stator groundwall insulation in a medium voltage machine
has been considered. Finite element modeling software Ansys RMxprt and Maxwell were
used to create transient electromagnetic simulations of the medium voltage machine. MLI
output waveforms were approximated using Fourier series and fed a per-phase voltage
excitation to the medium voltage three phase machine. Two main parameters—dielectric
stress and leakage currents—were evaluated in the stator groundwall insulation for dif-
ferent MLI output waveforms. Hardware tests on a LV MLI testbed and an MV 2-level
inverter testbed were performed.

In this paper, 3-level, 5-level, and 7–level MLI output waveforms were approximated
and the motor stator insulation stress due to effect of increase in voltage levels of a multi-
level inverter and the effect of increase in firing angle for the 3-level inverter were validated
on a 3-level and 5-level low voltage NPC multilevel inverter testbed. Additional simulations
and hardware results were performed at MV to validate the dielectric stress due to a
2-level inverter.

When ignoring dv/dt transient effects, it was observed that there is a strong correlation
between the RMS values of the voltages and the insulation stress. The dielectric stress
increases with an increase in the RMS value of phase voltage excitations. Thus, at a given
voltage level, a higher number of levels in MLIs minimize the dielectric stress within the
insulation and avoid high voltage motor failure if the RMS value is chosen appropriately.
Thus, in addition to switching to MLI, choosing the right PWM scheme can help decrease
the dielectric stress on motor insulation systems. Additionally, it was observed that for a
given voltage, the dielectric stress in motor stator insulation increases with an increase in
firing angle and an increase in RMS values of 3-level MLIs.

Our contribution in this paper on the analysis of the effect of inverter wave shapes on
motor insulation stress would be very useful to the insulation, motor and power electronics
communities.

• Insulation community—to define motor class insulation for different WBG converters
and wave shapes;

• Motor design community—to choose appropriate insulation to ensure reliable and
safe operation of motors;

• Power electronics community—to develop new WBG multilevel converter control
schemes to optimally reduce the insulation stress and THD at same time.
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